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Zhu, J., Bettinger, P. & Li, R. 2007. Additional insight into the performance of a new heuristic for 
solving spatially constrained forest planning problems. Silva Fennica 41(4): 687–698.

The raindrop method of searching a solution space for feasible and efficient forest manage-
ment plans has been demonstrated as being useful under a limited set of circumstances, 
mainly where adjacency restrictions are accommodated using the unit restriction model. We 
expanded on this work and applied the model (in a modified form) to a problem that had both 
wood flow and area restriction adjacency constraints, then tested the problem formulation 
on six hypothetical forests of different sizes and age class distributions. Threshold accepting 
and tabu search were both applied to the problems as well. The modified raindrop method’s 
performance was best when applied to forests with normal age class distributions. 1-opt tabu 
search worked best on forests with young age class distributions. Threshold accepting and the 
raindrop method both performed well on forests with older age class distributions. On average, 
the raindrop method produced higher quality solutions for most of the problems, and in all 
but one case where it did not, the solutions generated were not significantly different than the 
heuristic that located a better solution. The advantage of the raindrop method is that it uses 
only two parameters and does not require extensive parameterization. The disadvantage is 
the amount of time it needs to solve problems with area restriction adjacency constraints. We 
suggest that it may be advantageous to use this heuristic on problems with relatively simple 
spatial forest planning constraints, and problems that do not involve young initial age class 
distributions. However, generalization of the performance of the raindrop method to other 
forest planning problems is problematic, and will require examination by those interested in 
pursuing this planning methodology. Given that our tests of the raindrop method are limited 
to a small set of URM and ARM formulations, one should view the combined set of work 
as additional insight into the potential performance of the method on problems of current 
interest to the forest planning community.
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1 Introduction
Forest management plans can be developed 
with traditional mathematical programming 
techniques, which include linear programming, 
mixed integer programming, and integer pro-
gramming (Bevers and Hof 1999, Hof et al. 1994, 
Hof and Joyce 1992). Forest planning problems 
are, however, becoming increasingly difficult to 
solve with these techniques due to the inclusion 
of adjacency and green-up constraints, which 
require the use of binary integer decision vari-
ables. Modern forest planning involves solving 
combinatorial optimization problems, and usu-
ally as the problem size increases, the complex-
ity of the problem will increase non-linearly. 
Thus as the problem size increases, solving it 
may become impractical using traditional math-
ematical programming methods (Lockwood and 
Moore 1993), although advances in mathemati-
cal programming software continue to mitigate 
this issue. Murray and Weintraub (2002) illus-
trate a case where a significant amount of time 
was required to generate the constraints for a 
small spatially-constrained planning problem, 
and although work continues in this area, they 
suggested in 2002 that it would be unrealistic to 
solve large problems, or more difficult problems, 
with exact approaches. As a result, heuristics such 
as Monte Carlo simulation (Nelson and Brodie 
1990), simulated annealing (Dahlin and Sallnäs 
1993, Lockwood and Moore 1993, Murray and 
Church 1995), threshold accepting (Bettinger et 
al. 2003), tabu search (Bettinger et al. 1997) and 
genetic algorithms (Glover et al. 1995, Falcão 
and Borges 2001, Boston and Bettinger 2002) 
are increasingly being used to address spatially-
constrained forest planning problems. The main 
disadvantage of using heuristics is that they can 
not guarantee that the global optimum solution to 
a problem will be located, but they usually can 
find good solutions to complex planning problems 
in reasonable amounts of time.

In this study, we take a heuristic, the raindrop 
method, which was introduced by Bettinger and 
Zhu (2006), and apply it to a forest management 
model that maximizes the net present value of 
a forest plan, and includes wood flow and area 
restriction adjacency constraints (Murray 1999). 
The raindrop method has only been tested on one 

forest management problem, thus the contribu-
tion of this research is to determine whether it is 
useful, as a search process, in broader applica-
tions. Bettinger and Zhu (2006) note that “what 
remains to be seen is whether the model can 
be applied successfully to the broader range of 
operations research problems... [including] forest 
planning problems with other objectives or a more 
comprehensive suite of constraints.”

In Bettinger and Zhu (2006), the raindrop 
method was shown to be preferable for locating 
solutions to problems that maximized even-flow 
of harvest volume and controlled adjacency with 
the unit restriction model (URM). The differ-
ence between this and the area restriction model 
(ARM) of adjacency is that the URM controls the 
scheduling of adjacent units (regardless of size) 
during the green-up period, while the ARM allows 
adjacent units to be scheduled during the green-up 
period as long as the total size of the clearcut area 
does not exceed the maximum clearcut size that 
is assumed. Thus this second method of modeling 
adjacency is more complex to both formulate and 
solve. Our hypothesis is that the raindrop method 
will be as effective as other standard heuristics in 
solving problems that include the ARM. In addi-
tion, some insight will be gained in the ability to 
modify and use the heuristic for a more complex 
problem. 

2 Methods

The methods section will first address the prob-
lem formulation for the forest planning model. 
Then the six hypothetical landowners that are 
modeled will be briefly described, along with 
the non-spatial economic assumptions pertinent 
to this research. Finally, the raindrop method will 
be briefly described along with the modifications 
necessary to implement it in a forest planning 
context.

2.1 Forest Planning Model Formulation

The forest planning problem that we investigate 
attempts to maximize the net present value of 
timber harvested. The problem formulation is: 
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where
Ai = area of management unit i
AGic = clearcut age for management unit i
AGit1 = age when first thinning occurs for manage-

ment unit i
AGit2 = age when second thinning occurs for man-

agement unit i
Cit = logging cost for management unit i harvested 

in time period t
i, z = management units
P = stumpage price
MCA = maximum clearcut area
N = the total number of management units
Ni = set of all management units adjacent to man-

agement unit i
Si = the set of all management units adjacent to 
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those management units adjacent to manage-
ment unit i

t, u = planning periods
T = the total number of planning periods in the 

planning horizon
Vit = the available clearcut timber harvest volume 

from management unit i during time period t
Vi20 = the unscheduled timber harvest volume from 

management unit i at the end of period 20, 
whether or not a harvest had been applied 
during the period represented by the plan

VT1it = the available first thinning timber harvest 
volume from management unit i during time 
period t

VT2it = the available second thinning timber harvest 
volume from management unit i during time 
period t

Xit = a binary variable, which = 1 if management 
unit i is clearcut harvested in time period t, 
and 0 otherwise

XT1it = a binary variable, which = 1 if management 
unit i is first-thinned in time period t, and 0 
otherwise

XT2it = a binary variable, which = 1 if management 
unit i is second-thinned in time period t, and 
0 otherwise

The objective function assesses the difference 
between value generation and cost of activities 
(prices versus logging costs) for each activity 
(clearcut, first thinning, and second thinning) 
applied to each stand over the time horizon. Deci-
sions are integer in nature, therefore an activity 
is applied to an entire stand when it is applied. 
Values associated with harvest activities are dis-
counted from the middle of each planning period, 
and the value of the ending inventory (that which 
remains un-cut in the final planning period) is 
included to fully value the forest enterprise over 
the 20-year planning horizon. Eq. 2 indicates 
that each management unit can only be clearcut 
harvested one time during the planning horizon. 
Eq. 3 indicates that each management unit can 
only be “first thinned” one time during the plan-
ning horizon. Eq. 4 indicates that each manage-
ment unit can only be “second thinned” one time 
during the planning horizon, assuming that it 
was previously first-thinned. Eq. 5 ensures that 
the maximum clearcut size will not be violated 
(assuming the green-up period is 2 yrs). This set 

of constraints represents a slight modification of 
the original ARM model provided by Murray 
(1999), where Si is a subset of treated stands 
containing all stands adjacent to neighbors of 
stand i and stands adjacent to the neighbors of 
the neighbors, etc. As Murray (1999) suggests, 
this constraint is a recursive function that senses 
a sprawling cluster of stands treated within the 
green-up period, and that the cluster depends 
on the contiguity of stands and their direct or 
indirect relationship to stand i. Eq. 6 is an ending 
volume constraint, where the residual standing 
volume must be at least 90% of the initial standing 
volume. Eqs. 7 and 8 ensure that the separation 
period between thinning and clear cutting activi-
ties is at least six years. Eqs. 9 and 10 constrain 
the volume harvested in each time period to a 
proportion of the residual, unscheduled, uncut 
volume. Eqs. 11 and 12 limit the deviation in 
harvest volume from one period to the next, as a 
form of harvest stability. This model formation is 
a model I (Johnson and Scheurman 1977), integer 
programming problem. The adjacency restrictions 
are considered the ARM formulation noted in 
Murray (1999).

2.2 Spatial and Non-Spatial Data

The hypothetical landowners considered in this 
research are divided into two ownership size 
groups, small and medium, and the polygons 
used to represent the management units (Table 1) 
were derived from an actual land ownership in 
the southern United States. We assume that the 
arrangement of the management units is dis-
persed, and we assigned three age class distribu-
tions to each: a young forest, a normal forest, and 
an older forest (Fig. 1), with the distribution of 
land by age class similar for both the small- and 

Table 1. Characteristics of the hypothetical landown-
ers.

Type Management Area Average
 units  polygon size
  (ha) (ha)

Small-sized 279 2 942 10.5
Medium-sized 477 5 821 12.2
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medium-sized landowners. Therefore, a matrix 
of six hypothetical landowners was available for 
analysis. The time horizon is 20 years, divided 
into twenty 1-year time periods. The interest rate 
assumed is 6 percent. The stumpage prices were 
obtained from Timber Mart-South (2004), and 
are $43.57 per ton for pine sawtimber, $25.60 
per ton for chip-n-saw, and $6.73 per ton for 
pine pulpwood. The costs assumed are $285.89 
per ha for mechanical site preparation, $116.48 
for planting, and $156.66 for a herbaceous weed 
control treatment. The maximum clearcut size 
is 97 ha, and the green-up period is assumed to 
be 2 years.

2.3 Modified Raindrop Method

The raindrop method was introduced by Bettinger 
and Zhu (2006), where a full description of the 
process can be found, and is theoretically based 
on raindrop impact. Like many other heuristics, 
it is a process that seeks to incrementally improve 
developing forest plans with iterative changes 
that are either selected randomly or deterministi-

cally. The basic process is that a management 
unit and a clearcut period are randomly chosen. 
This choice is forced into the current solution 
regardless of any potential constraint violations. 
If there are adjacency constraint violations, they 
are mitigated in a radiating wave motion. All of 
the management units contributing to the adja-
cency constraint violations are added to a list, and 
the violations are mitigated in order of distance 
from their centroid to the centroid of the origi-
nal randomly chosen management unit, with the 
closest units corrected first. The next best alterna-
tive for the affected management unit is inserted 
into the solution. Any management units that are 
subsequently affected by this change to the solu-
tion are added to the list of affected units. This 
process continues until all constraint violations 
have been mitigated. Any mitigation must pre-
vent subsequent adjacency constraint violations 
with management units which are nearer to the 
originally randomly chosen unit, thus the impacts 
radiate outward from the initial choice. Once all 
infeasibilities have been mitigated, a single itera-
tion of the raindrop method ends.

The main advantage of the raindrop method 

Fig. 1. Initial age class distributions for the small-sized hypothetical land-
owners examined.
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is that it only uses two parameters, and it has 
been shown to produce very good solutions for 
problems that include URM constraints. The two 
parameters are: 1) the total number of iterations, 
and 2) the number of iterations that pass before 
search process reverts to the best solution (stored 
in memory). Bettinger and Zhu (2006) showed 
that reverting every 3 or 4 iterations to the best 
solution produced results that were superior to 
other heuristics. Simply modeling the raindrop 
method without reversion does not lead to better 
solutions. As pointed out by Bettinger and Zhu 
(2006), one could reasonably assume that as the 
number of constraints grows, the problem-solv-
ing ability of the heuristic may become cumber-
some as it attempts to mitigate the infeasibilities 
that arise. Given our extensive knowledge of the 
heuristic, we hypothesize that for forest planning 
problems that include the ARM and wood flow 
constraints, it may become very difficult to imple-
ment this heuristic. This means that if we try to 
mitigate adjacency violations using a radiating 
manner, the search for all affected units becomes 
time-consuming, since when one uses the ARM, 
one must check the sprawling set of units that 
describe a clearcut (rather than simply the neigh-
bors that touch each harvest unit). This involves 
looking backward toward the original randomly 
chosen management unit more thoroughly than 
when using the URM constraints (which requires 
only checking the immediately adjacent units). In 
addition, changing the timing of harvests to miti-
gate adjacency constraint violations may result in 
wood flow constraint violations.

The modified algorithm puts all units that 
potentially can cause the adjacency constraint 
violation(s) into a list, then tries to mitigate the 
adjacency violation(s) by simply setting the units 
to “no cut” one-by-one for all units in the list. Two 
options are available:
1) If, after unscheduling a management unit, the 

adjacency constraints are no longer violated, the 
next-best harvesting alternative (that does not itself 
violate constraints backwards, towards the original 
randomly chosen unit) is assigned to the manage-
ment unit. This alternative focuses on mitigating 
any wood flow constraint violations.

2) If, after unscheduling a management unit, the 
adjacency constraints continue to be violated, the 
previous status (harvest period) is restored. The 

logic here is that if unscheduling the harvest does 
not mitigate the adjacency constraint violation, 
then the choice of harvest period had limited 
impact on the constraint violation.

It is possible that after mitigating all of the 
adjacency constraint violations, one or more of 
the wood flow constraints could continue to be 
violated. If this is the case, the process reverts 
immediately back to the best solution stored in 
memory. By trial and error, we found that the 
best parameters for these problems were to run 
the algorithm for 100,000 iterations on the small-
sized problems, and 200,000 iterations on the 
medium-sized problems. In addition, based on 
what was learned in Bettinger and Zhu (2006), 
the search process reverts back to the best solution 
every 4 iterations. 

The modified raindrop method was compared 
to threshold accepting and 1-opt tabu search. 
Threshold accepting was initially described by 
Dueck and Scheuer (1990), and has been applied 
to forest problems (Bettinger et al. 2002, 2003) 
with a high level of success. In complex forest 
planning problems, it has been shown to be as 
good as simulated annealing and other heuristics, 
and it is relatively simple to implement, although 
some parameterization is required. Tabu search 
was introduced by Glover (1989, 1990), and has 
also been successfully applied to forestry prob-
lems (Bettinger et al. 1997, 1998, 2002). Tabu 
search with 1-opt moves involves simply chang-
ing the status (clearcut period) of one manage-
ment unit. The change is made deterministically, 
whereas in threshold accepting the change is 
made randomly. Each of these heuristics was 
tested extensively and parameterized for each 
problem. Zhu (2006) contains a more exhaustive 
analysis of threshold accepting and tabu search on 
the problems analyzed here. In order to compare 
the results, 30 solutions were generated for each 
of the six hypothetical forest planning problems. 
Each of the 30 solutions can be considered inde-
pendent to each other because the initial solution 
is randomly defined (Bettinger et al. 1998). 
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3 Results
For two of the three problems that involved small-
sized hypothetical landowners, the best forest 
plans were developed using the modified raindrop 
method (Table 2). While thirty feasible solutions 
were generated for each problem and heuristic, 
tabu search was able to locate the best forest plan 
that involved the young initial age class distribu-
tion. In this case, the best forest plan developed 
with the modified raindrop method was within 
0.4% of the best tabu search forest plan. In each 
case involving the small-sized hypothetical land-
owners, the highest average solution value was 
produced using the modified raindrop method. 
In addition, the smallest variation was found 
amongst the plans developed using the modified 
raindrop method.

When examining the results for the medium-
sized hypothetical landowners, the modified 
raindrop method found the best solution for only 
one of the three initial age class distributions 

– the normal age class distribution (Table 2). Tabu 
search was able to locate the best solution for the 
young initial age class distribution, and threshold 
accepting was able to find the best solution for 
the older initial age class distribution. In case of 
the young age class distribution, the best solution 
found using the modified raindrop method was 
within 1.4% of the best tabu search solution. In 
the case of the older age class distribution, the 
best solution found using the modified raindrop 
method was within 0.1% of the best threshold 
accepting solution. Tabu search had the highest 
average solution value in the case of the young age 
class distribution. In the cases of the normal and 
older age class distributions, threshold accepting 
produced the highest average solution values. The 
variation amongst the solutions was mixed for the 
different initial age class distributions.

Fisher’s least significant difference (LSD) 
method was applied to the sets of results gen-
erated by the three heuristics for each of the 
six problems. The goal of this analysis was to 

Table 2. Quality of solutions generated by three heuristic techniques.

Problem Best Average Standard
 solution solution deviation

Small-sized forest, normal age class
 Threshold accepting $14 848 689 $14 632 945 122 556
 Tabu search 14 873 804 14 682 830 109 904
 Raindrop method 14 888 572 14 720 781 107 904
Small-sized forest, young age class 
 Threshold accepting 11 404 358 11 209 577 79 117
 Tabu search 11 551 907 11 376 069 70 280
 Raindrop method 11 507 865 11 395 723 66 960
Small-sized forest, older age class 
 Threshold accepting 17 902 145 17 534 926 178 391
 Tabu search 17 895 195 17 528 975 183 045
 Raindrop method 18 194 232 17 770 583 167 795
Medium-sized forest, normal age class 
 Threshold accepting 30 930 637 30 838 991 58 995
 Tabu search 30 950 206 30 714 628 109 727
 Raindrop method 31 083 463 30 805 706 198 183
Medium-sized forest, young age class 
 Threshold accepting 23 045 952 22 888 484 112 586
 Tabu search 23 395 162 23 217 040 74 480
 Raindrop method 23 069 865 22 943 418 78 677
Medium-sized forest, older age class 
 Threshold accepting 36 928 729 36 792 688 88 160
 Tabu search 36 668 720 36 431 426 150 379
 Raindrop method 36 888 317 36 737 841 87 160
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determine whether the sample data (30 independ-
ent runs of each heuristic) had means that were 
significantly different at the p = 0.05 level. In other 
words, we used an analysis of variance to test the 
null hypothesis that the means were equal. Based 
on the results of the statistical analysis (Table 3), 
we found that the results generated by the rain-
drop method were significantly different than the 
results generated by threshold accepting for the 
small-sized problem, normal and older forests. 
The raindrop method results were not signifi-
cantly different than the tabu search results for the 
small-sized normal forest problem, even though 
the raindrop method located the better solution to 
this problem. For the small-sized problem with 
the young forest, the raindrop method results 
were not significantly different than the tabu 
search results even though tabu search located 
the better solution. When examining the medium-
sized problems, and when considering the older 
and normal forests, the results generated by the 
raindrop method were not significantly different 
than the threshold accepting results, even though 
threshold accepting located the better solution to 
one of these two problems. For the medium-sized 
problem with the young forest, the tabu search 
results were significantly different than the results 
generated by the raindrop method.

Each forest plan was developed using a Pen-
tium 4 computer with a 3.0 GHz processor and 
1.0 Gb of RAM. The average time to generate a 
solution for the small-sized forests was 3.0 min-
utes, 5.6 minutes, and 14.2 minutes for threshold 
accepting, tabu search, and the modified raindrop 
method, respectively. The average time to gener-

ate a solution for the medium-sized forests was 
6.6 minutes, 10.4 minutes, and 25.4 minutes for 
threshold accepting, tabu search, and the modified 
raindrop method, respectively. Although anecdo-
tal, we found that developing the programming 
language for the modified raindrop method (when 
applied to problems involving the ARM and wood 
flow constraints) was difficult, and required more 
time than threshold accepting or tabu search. 
Even though only two parameters were required, 
the main issue is in how the modified raindrop 
method mitigates both ARM and wood flow con-
straint infeasibilities once they occur.

A final way to evaluate the quality of results 
generated by the modified raindrop method is to 
compare them to the results obtained from solving 
a relaxed linear programming formulation of the 
same problem. In the case of the relaxed linear 
programming model, the adjacency constraints 
were not included. The difference between the 
best solution generated by the modified raindrop 
method and the linear programming solution, 
divided by the linear programming solution, can 
be used to represent the cost of implementing the 
green-up and adjacency constraints. We found 
that the cost of adjacency restrictions ranged from 
about 1% to about 3.5% of the net present value 
of each forest plan (Table 4). We found no clear 
trend that would explain the range of differences 
from the relaxed linear programming solutions. 
For example, the modified raindrop method per-
formed very well for the medium-sized hypotheti-
cal landowner with either an older or a normal 
initial age class distribution, but not as well for the 
small-sized hypothetical landowner with young or 

Table 3. Multiple comparison of the mean solution values for three heu-
ristics when applied to six different forest planning problems. Values 
represented by different letters are significantly different (analysis of 
variance F-test p ≤ 0.05).

Heuristic Planning problem

 Small-sized problem Medium-sized problem

 Normal Older Young Normal Older Young 

Tabu search AB B A B B A
Threshold accepting B B B A A C
Raindrop method A A A A A B
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normal initial age class distributions. If one were 
to surmise that the heuristic did not locate the 
global optimum solution to the full management 
problem (even though 30 solutions were gener-
ated to each problem), and that the best heuristic 
solution was within 0.5–1.0% of the global opti-
mum solution to each problem, the cost of the 
adjacency restrictions would be 0.5–3.0% in net 
present value of each hypothetical forest. These 
results are consistent with previously published 
research on the impact of adjacency constraints 
for forests in the southeastern U.S. (e.g., Boston 
and Bettinger 2001).

Solving ARM problems exactly with mixed-
integer programming methods has been success-
ful on small problems (McDill et al. 2002, Murray 
and Weintraub 2002), however, depending on the 
problem instance, the resulting solution solv-
ing process can easily consume the memory of 
a computer or the software used. In addition, 
many applications of mixed integer programming 
assume that a solution is optimal when it is within 
some pre-defined optimality gap, only searching 
for solutions with objective function values within 
some percentage of the best one stored in memory. 
Raising the optimality gap shortens the computa-
tion time, reducing the gap increases computation 
time as well as memory required. Using a similar 
sized landscape as our smaller problem, yet with 
only one planning period, Murray and Weintraub 
(2002) needed over 60,000 constraints to fully 
specify the problem, and when solving it with a 

mixed integer solver, stopped the process when 
the tolerance gap was about 15%. Based on this 
guidance, and based on the fact that our problems 
are larger than those tested in previous research 
(management units x prescriptions available), we 
chose to compare our heuristic solutions to results 
from a relaxed linear programming formulation. 
If we had attempted to solve exactly a mixed inte-
ger problem formulation, we would have found 
similar mixed integer results using a tolerance of 
1 to 3%, far below the tolerance used by Murray 
and Weintraub (2002).

4 Discussion 

Over the past 15 years, researchers have been 
exploring alternatives to traditional mathemati-
cal programming search processes (i.e., linear 
programming, mixed integer programming) for 
solving spatial harvest scheduling forest planning 
problems. One avenue of research has been the 
development of testing of heuristic search meth-
ods. A number of heuristics have shown promise 
for addressing the development of spatially com-
plex forest management plans. These heuristics 
can produce near-optimal solutions very quickly 
(in most cases). However, the main limitation 
of many heuristics is the extensive testing of 
parameters which must be performed prior to 
their use. Bettinger and Zhu (2006) introduced a 

Table 4. Comparison of the results from the raindrop method to results from relaxed linear 
programming problems.

Problem Linear Percent difference b)

 programming 
 solution, a) RD c) TS d) TA e)

Small-sized forest, normal age class $15 424 070 3.47 3.57 3.73
Small-sized forest, young age class 11 897 810 3.28 2.91 4.15
Small-sized forest, older age class 18 596 600 2.16 3.77 3.73
Medium-sized forest, normal age class 31 392 270 0.98 1.41 1.47
Medium-sized forest, young age class 23 689 660 2.62 1.24 2.72
Medium-sized forest, older age class 37 269 520 1.02 1.61 0.91

a) Relaxed problems, where the adjacency constraints are not included in the problem formulation.
b) Linear programming solution value – best raindrop method solution value, divided by linear programming solu-

tion value
c) Raindrop method
d) Tabu search
e) Threshold accepting
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new heuristic that requires very limited testing, 
and has shown to be superior to other heuristics 
on small problems, where the objective is to 
maximize ever-flow of timber harvest volume 
subject to URM constraints. When this search 
process was modified to address larger problems, 
and problems with more typical southeastern U.S. 
character (e.g., maximizing net present value, 
subject to a 97 ha maximum clearcut size modeled 
using ARM methods), the heuristic was as good 
as or better than, other standard heuristics in most 
problems that were examined here. 

The raindrop method needed to be modified to 
accommodate the modeling of ARM adjacency 
constraints. Since this model uses a spatially-
sprawling method to determine all of the sizes of 
all of the clearcuts, within their respective green-
up windows, the preferred method of mitigating 
the constraint violation was to unschedule the 
clearcuts of some units until the constraints were 
again satisfied (i.e., not violated). This modifica-
tion may have led to suboptimal results, since as 
Bettinger and Zhu (2006) suggest, the next best 
choice for an affected unit should be selected. 
However, to explore other options for affected 
units (those that are a part of adjacency violation) 
would require much more processing time, as the 
ARM adjacency constraints would need to be 
accessed repeatedly until they were no longer vio-
lated. In any event, the modified raindrop method 
produced as good, or better solution to most 
problems studied, although the time to generate 
a solution was much greater than that required by 
threshold accepting and tabu search.

Tabu search located the best solutions to both 
the small- and medium-sized hypothetical land-
owners that were assigned the young initial age 
class distribution. However, only in the medium-
sized forest case were the results significantly 
different than the raindrop method. The ability 
of other heuristics to locate good solutions for 
forests with young age class distributions may 
therefore be better handled by standard 1-opt 
tabu search, particularly when larger landscapes 
are modeled. As a result, the mitigation of both 
ARM and wood flow constraint violations may be 
better handled by a deterministic process. Thresh-
old accepting continued to find very good solu-
tions to all problems, and if one were concerned 
about the time required to generate a solution to 

a complex forest planning problem, this method 
may be preferred. The size of the forest for which 
a spatially-constrained plan is being developed 
may also influence the performance of the heu-
ristics. As we have shown here, the solutions for 
the medium-sized forest were closer to the linear 
programming results (percentage-wise). How-
ever, the absolute difference between the relaxed 
linear programming solution and the best heuristic 
solutions (regardless of heuristic algorithm) was 
about the same for both the small- and medium-
sized problems. Therefore, the smaller problem 
seems to have more impact simply because the 
basis for analysis (the net present value) is inher-
ently smaller.

The clear advantage of the raindrop method 
lies in solving spatially constrained forest plan-
ning problems where the spatial constraints may 
be relatively simple (i.e., the URM adjacency 
constraints). If a landowner were interested in 
acknowledging and incorporating these kinds of 
spatial constraints, this method may be preferred. 
In addition, only two parameters are required, and 
they do not need extensive tests to determine the 
appropriate values. However, to accommodate 
ARM and wood flow constraints with the raindrop 
method requires an extensive and complex set 
computer code, which is the main disadvantage 
of using this heuristic.

5 Conclusions 

This modified raindrop method still shares the 
same core idea as the original model introduced 
in Bettinger and Zhu (2006), where a radiat-
ing, spatially-sprawling process is used to find 
high quality solutions to spatially-constrained 
forest planning problems. Some modification of 
the raindrop method is required to accommodate 
ARM and wood flow constraints, however. Just 
like the original raindrop method, the main advan-
tage is that it only uses two parameters and it has 
been shown to generate as good, or higher quality 
results as compared to threshold accepting or 1-
opt tabu search for the six hypothetical landown-
ers examined here. The two disadvantages of this 
method are 1) the additional programming logic 
required to accommodate ARM and wood flow 
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constraints, and 2) the additional time required to 
generate solutions to spatial harvest scheduling 
problems. One could conclude from this work 
that it may be advantageous to use this heuris-
tic for problems with relatively simple spatial 
forest planning constraints, and problems that do 
not involve young initial age class distributions. 
Generalization of the performance of the rain-
drop method to other forest planning problems 
is problematic, and will require examination by 
those interested in pursuing this planning meth-
odology. Based on our tests of the method to a 
limited set of URM and ARM formulations, one 
should view this set of work as additional insight 
into the potential performance of the method to 
problems of current interest to the forest planning 
community.
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