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1 Introduction

The prevailing Nordic harvesting system is to 
convert tree stems into smaller logs immedi-
ately at the harvesting site. Modern cut-to-length 
(CTL) harvesters are equipped with high-class 
measuring and computing systems which make 
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computer-based bucking optimization possible 
in harvesters. After crosscutting the harvester’s 
computer updates the so-called cumulative out-
come matrix which keeps a record of the logs 
produced.

The common trend in the sawmill industry, at 
least in Scandinavia, is towards customer-ori-
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ented production of well-defined products. It has 
become more and more important not only to 
supply the sawmill with a sufficient number of 
logs at minimum cost, but also to ensure that 
the raw material meets the requirements of the 
sawmill as regards to length, diameter and quality 
distribution of logs (Kivinen 2004). This in turn, 
has made proper assessment of the goodness of 
the bucking outcome of crucial importance.

In general, as listed by Kivinen et al. (2005), 
there are two main situations where the agreement 
between the distribution of logs demanded by the 
sawmill (demand distribution) and the actual out-
come (output) distribution of logs is of particular 
interest. These are 1) the standard pre-harvest 
planning procedure where bucking simulators are 
commonly used to determine the best available 
stands for prevailing customer orders, and 2) the 
postharvest analysis where it may be desirable 
to know, for example, how various harvesters 
have succeeded in meeting a certain demand 
distribution or to determine whether there are 
any significant differences between various wood 
suppliers. A proper measure for evaluating the 
bucking outcome also provides information on 
how to adjust the bucking instructions to meet the 
desired log distribution. According to Vuorenpää 
et al. (1997) the large sawmills should monitor the 
progress of the work of the harvesting machines 
on the daily basis to assure that the requirements 
of the sawmill are adequately satisfied.

The most widely used measure for assessing the 
agreement between the log demand and the log 
output distributions in Scandinavia is Apportion-
ment Index (AI) or Apportionment Degree (see 
Section 2.1 for mathematical formulation). The 
AI measures the output of the actual harvesting 
operation by comparing the relative proportions of 
the outcome and target distributions. The Appor-
tionment Index has gained ground especially by 
merit of its simplicity, ready interpretability and 
ease of use. The measure has been criticized 
mainly as being too crude, since, for example, it 
attributes the same weight to all log classes. The 
price-weighted version of the AI was proposed by 
Kivinen et al. (2005) and Nummi et al. (2005). 
Penalty-based variants of the traditional measure 
are suggested in papers by Kirkkala et al. (2000), 
Weijo (2000) and Malinen and Palander (2004). 
Sinha et al. (2005b) generalized the measure and 

introduced the family of Apportionment Indi-
ces. However, the Apportionment Index and its 
derivatives have been used mainly as a descriptive 
device and very little is known of their statistical 
properties. While there have been attempts to 
understand this index (Nummi et al. 2005 and 
Sinha et al. 2005a), a serious theoretical founda-
tion is still lacking. For a more comprehensive 
introduction to the topic we refer to Koskela 
(2007).

Kivinen et al. (2005) defined four criteria for 
an ideal measure of bucking outcome. According 
to the first two criteria an ideal measure should  
1) take into account the size of the stands to be 
compared in terms of the number of logs (i.e., 
given a common log demand distribution, the 
results from two stands with different numbers 
of logs should be commensurable) and 2) make it 
possible to compare results based on the demand 
matrices of different sizes (i.e., a different number 
of diameter or length classes or both). These 
criteria address the problems often encountered 
by forest managers in practice when determining 
a suitable stand or group of stands for the given 
demand distribution. It was concluded by the 
authors that the Apportionment Index, at least 
in principle, takes into account the stand size 
expressed in terms of the number of logs. This is 
because the AI apply proportional quantities of 
logs in each diameter-length combination. The 
issue related to handle the potentially confound-
ing effect caused by different matrix sizes is, 
however, much more complicated.

Kivinen et al. (2005) also conducted simula-
tion studies to test the Apportionment Index and 
three other goodness-of-fit measures against the 
given criteria. The study showed that stands with 
a small number of stems or a large number of 
small-sized stems were likely to match the log 
demand distribution more poorly than stands with 
a large number of stems and/or a wide diameter 
at breast height (DBH). This behaviour can be 
easily understood by noting that in stands with 
few trees there basically are fewer opportunities 
to produce logs in all log categories than in stands 
with many trees. In some situations we may only 
be interested in the proportion of “correctly” 
located logs in the outcome distribution with 
respect to the demanded log distribution without 
taking into account any underlying conditions 
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such as the stand size (cf. interpretation of the 
AI in Section 2.2). However, there may also exist 
situations where one is not only interested in the 
magnitude of the value of the measure itself but 
also wants to know whether the performance of 
the harvesting operation is tolerable with respect 
to some underlying conditions. For example, for 
a smaller number of logs harvested a lower value 
of the AI may not necessarily indicate a poorly 
performing harvesting operation. This then raises 
a question of the least tolerable value of the AI. 
This information is important especially for forest 
managers.

In this paper we examine some aspects of the 
asymptotic sampling distribution of the Appor-
tionment Index by assuming a multinomial distri-
bution for the outcome (see also Ransom 2000). 
In Section 3 we derive the approximate first two 
moments, i.e. the mean and the variance, of the AI 
assuming multinomial distribution for the buck-
ing outcome and using normal approximations. 
In Section 4 the derivated moments are utilized 
to construct a lower tolerance limit for the AI and 
simulations are then carried out to evaluate the 
goodness of the approximations. Some studies on 
the determination of the number of logs needed to 
attain high apportionment with a given accuracy 
are described in Section 5. The section illustrates 
the effect of certain underlying conditions such as 
the dimension and the form of the target distribu-
tion on the value of the AI.

2	 Measuring Bucking Outcome 
by the Apportionment Index

2.1	 Mathematical Formulation of 
the Apportionment Index

The output of the actual harvesting operation has 
been measured mainly by comparing the relative 
proportions of the output and target distributions. 
More specifically, let
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denote the m × n demand (target) matrix (or 
table) for a certain log type, where each row 
represents a particular small end diameter (SED) 
class of logs, each column refers to a particular 
length class and tij is the number of logs in the 
ith diameter class and jth length class, i = 1,…,m 
and j = 1,…,n. A log with an SED of d and a 
length of l will belong to the log class (i,j) if 
the log satisfies the constraints di ≤ d < di+1 and  
lj ≤ l < lj+1. Correspondingly, m × n matrix O = 
(oij) is used for the outcome of the harvesting 
operation. Matrices may be converted into vectors 
by arranging the columns of a matrix underneath 
each other. In what follows we consider the vec-
torized forms t = (t11,t21,…,tmn)’ = (t1,t2,…,tk)’ 
and o = (o11,o21,…,omn)’ = (o1,o2,…,ok)’ of the 
demand and outcome matrices, respectively.

A common practice in Scandinavia is to evalu-
ate the fit between the demand and actual output 
log distributions using the Apportionment Index 
first introduced in forestry by Bergstrand in the 
mid-1980s (e.g. Bergstrand 1989). For a fixed 
quality class the AI is defined as

AI o ti i
i

k

= − × −
=
∑ 1 0 5

1

. | |* * 	 (1)

where o o oi i jj
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=∑ 1

 and t t ti i jj
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are the 
relative proportions of the outcome and target 
matrices, respectively. After some simple manipu-
lations it can be shown that the AI can be rewrit-
ten as

AI o ti i
i

k

=
=
∑min( , )* *

1
	 (2)

The maximum value of the AI is 1 (100%), 
which indicates a perfect match between the 
distributions. The minimum value of the index 
is min( , ,..., )* * *t t tk1 2 , i.e. the smallest relative cell 
target, which is reached when all the logs fall into 
the diameter-length class of the smallest target 
proportion. The AI may be interpreted as the pro-
portion of “correctly” located logs in the outcome 
distribution with respect to the demanded log dis-
tribution. For example, if the AI value were 0.85, 
this would mean that 85% of the produced logs 
are in accordance with the demanded distribution 
while 15% are of the wrong size and should have 
been allotted to other log categories during the 
bucking process to make the outcome equal to the 
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target, i.e. to attain complete agreement between 
the two distributions.

2.2 Some Related Measures

The overlapping coefficient (OVL) is defined as 
a measure of agreement or similarity between 
two probability distributions or two populations 
represented by such distributions (Inman and Bra-
dley 1989). In a simple univariate case the OVL 
is simply the fraction of the probability mass 
common to both distributions. In a case of two 
discrete probability distributions, the OVL and 
the AI have the same formula. Both measures 
are also related to the so-called Dissimilarity 
Index (DI) or Index of Dissimilarity, which is 
commonly used e.g. to summarize the closeness 
of fit of a model to the categorical sample data 
(e.g. Agresti 2002, p. 329–330). One version of 
the DI has gained ground especially in sociology, 
where it has become the most common measure 
of social segregation. In fact, it is easy to see that 
OVL = 1−DI = AI for two discrete probability 
distributions.

The OVL has been proposed as a generalized 
measure of agreement. Obviously, however, the 
Dissimilarity Index appeared first. One of the 
very first instances of the DI as a measure of 
segregation was that of Jahn et al. (1947), and 
after Duncan and Duncan’s (1955) methodologi-
cal paper the index started to attain popularity 
among sociologists. Research characterizing the 
properties of the sampling distributions of the 
segregation indices, including the Dissimilarity 
Index, is rare. One important exception, how-
ever, is that provided by Ransom (2000), who 
examines the sampling distribution of the DI. He 
studies the segregation by sex across different 
occupations and derives the asymptotic sampling 
distribution for the Dissimilarity Index based on 
the statistical model provided by the multinomial 
distribution. Another interesting article is that by 
Inman and Bradley (1991), where approximations 
to the mean and variance of the index are given 
under a multivariate hypergeometric distribu-
tion for the cell frequencies in the context of a 
2 × k cross-classification table subject to fixed 
row and column totals. However, since the target 
distribution is a fixed quantity, neither of these 

two considerations can be directly applied to the 
Apportionment Index.

3	 Mean and Variance of 
the Apportionment Index

Appendix A includes some preliminary results 
used for the mathematical derivations in this 
section. We assume that the observed distribu-
tion (outcome) of logs follows the multinomial 
distribution

( , ,..., ) ~ ( ; , ,..., )* * *o o o MN N t t tk k1 2 1 2 	 (3)
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The distribution assumption may not necessar-
ily make sense if a stand is tried to harvest by a 
target which is unsuitable for the particular stand. 
It is, for example, impossible to produce logs 
with large SED from trees with smaller DBH. A 
situation of this kind immediately leads to a poor 
fit between the outcome and demand distribu-
tion arguing that the outcome cannot be a reali-
zation from the given multinomial distribution. 
However, if the pre-harvest planning procedure 
is performing appropriately, it feels reasonable 
that the selection of the harvested stand is done 
such that the production of the requested logs is 
possible.

For the relative random outcome we use the 
notation o* * *( ,..., )= o ok1 , where o o Ni i
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Under certain conditions, the binomial distribu-
tion can be approximated by the normal distribu-
tion. A conservative rule to follow in the case of 
X ~ Bin(n,p) is that min(np,n(1 – p)) ≥ 5 (see e.g. 
Casella and Berger 2002, p. 104–105). In terms 
of target values this means that e.g. for N = 500 
the cell target ti

*  should lie in the interval [0.01, 
0.99] and for N = 1000 it should belong to [0.005, 
0.995]. Since in practice the total number of logs 
(N) is usually large, the conditions will be satis-
fied even for quite small target values. The normal 
approximation gives
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Recall the definition of the Apportionment Index 
in Eq. 1. Before deriving the moments of the AI, 
we define
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If we assume normal distribution (Eq. 7), upon 
application of Result 1 in Appendix A, E AI( ) 
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It can easily be seen that E(AI) increases as N 
increases and E(AI) → 1 as N → ∞. Thus, under 
the assumption of multinomial distribution, index 
values close to one are expected for very large N. 
Applying Result 1 and Corollary 2 in Appendix 
A, V AI( )  becomes
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As seen in Eq. 12, the variance of the AI is a 
decreasing function of N and V(AI) → 0 as N 
→ ∞, i.e. very little variation is expected for a 
particularly large N. In a special case of equal 
target proportions, i.e. t* = (1/k,...,1/k), E(AI) and 
V(AI) reduce to
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4 Computational Examples

4.1	 The AI and Its Lower Tolerance Limit 
for a Real Target Matrix

The target matrix of Nummi et al. (2005) and 
a modification of the outcome distribution pre-
sented in the same article are used here. The target 
matrix T and the actual outcome sample matrix 
O are given in Table 1 and Table 2, respectively. 
For these matrices, calculation gives AI = 0.962, 
which indicates that 96.2% of the produced logs 
are in accordance with the target, while 3.8% 
should have been located in other log categories 
during the bucking operation. Taking a closer 
look at the matrices it can be seen that 13 out 
of 25 log categories in the outcome matrix are 
overloaded by a total of 38 logs if compared to 
the target. These 38 logs are those which should 
have been located during the bucking process in 
those 10 log categories with shortfall. There are 
only 10 underloaded log categories, since 2 out of 
25 categories exhibit a perfect match between the 
target and the outcome. See Remark 1 below.

Using standard theory we may deduce that

AI E AI

V AI
N

− ( )

( )
~ ( , ),0 1 	 (14)

for a large number of logs, N, and for a moderate 
number of log categories, k. E(AI) and V(AI) are 
given in Eq. 10 and Eq. 12, respectively. From 
Eq. 14 it follows that
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giving the approximate 100 × (1–α)% lower toler-
ance limit for the AI as

E AI z V AI( ) ( )− α 	 (16)

For the output and target matrices to be consid-
ered similar, the lower tolerance limit serves as 
the least acceptable value of the AI. Thus, in a case 
where the observed outcome matrix assigns the 
index value which falls below Eq. 16, we would 
consider the outcome to indicate disagreement 
with the given target matrix. Overall, the larger 
the observed AI, the better the agreement. We 
hence suggest values higher than the mean (E(AI)) 
to indicate a satisfactory level of agreement. It is 
worth noting, especially for practical implementa-
tion, that E(AI) is very easy to compute. For N = 
1000 and the above target matrix, E(AI) = 0.939 
and V(AI) = 0.9025·10–4. Hence, the 95% lower 
tolerance limit is 0.923. For the sample outcome 

Table 1. Target matrix.

	 Length (cm)
Top diam (mm)	 430	 460	 490	 520	 550	 Total

160	 28	 16	 58	 45	 45	 192
200	 37	 17	 65	 45	 37	 201
240	 17	 49	 37	 44	 55	 202
280	 22	 39	 39	 44	 59	 203
340	 19	 30	 47	 54	 52	 202
Total	 123	 151	 246	 232	 248	 1000

Table 2. Outcome matrix.

	 Length (cm)
Top diam (mm)	 430	 460	 490	 520	 550	 Total

160	 27	 14	 62	 46	 48	 197
200	 39	 13	 72	 46	 32	 202
240	 14	 46	 35	 45	 58	 198
280	 16	 40	 39	 42	 66	 203
340	 9	 35	 49	 55	 52	 200
Total	 105	 148	 257	 234	 256	 1000
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matrix, however, AI = 0.962. This far exceeds 
the mean 0.939 and we may hence conclude that 
the agreement in this case is highly satisfactory. 
Note that both the expected value and the lower 
tolerance limit take into account the effect of the 
number of logs. This may give valuable infor-
mation e.g. when results of different harvesting 
operations with different stand sizes and targets 
are compared.

Remark 1. We propose to take a closer look at the 
two matrices in Tables 1 and 2. As noted above, 
there are 13 (respective 10) log categories which 
indicate overload (respective underload) while 
2 are “neutral”. We now examine the frequency 
distribution of the amount of overloads and under-
loads in this example. Both these distributions are 
shown in Table 3. As expected, x f

i i
=∑ 38  for 

both frequency distributions.
The computation of the AI simply depends on 

the total amount of overloads (or underloads) 
and not on their specific frequency distribution. 
However, from a practical point of view, the 
distortion or deviation from the target matrix in 
terms of the overload or underload distribution 
will have an impact on the overall cost-effective-
ness of the sample output matrix. This calls for a 
price-weighted index of agreement (see Kivinen 
et al. 2005 and Nummi et al. 2005). For uniform 
price policy (only of theoretical interest), possibly 
concentration of overload or underload in a few 
categories would be desirable. It may, for exam-
ple, be preferable to have overload in categories of 
larger diameter-length combinations, as large logs 

may possibly be converted into logs of smaller 
dimensions, if required.

4.2	 A Simulation Study for 
the Tolerance Limit

A simulation study was conducted to investigate 
the accuracy of the confidence level (1–α) of the 
approximate tolerance limit (TL) given in Eq. 16. 
However, we carried out this study with reference 
to both-sided tolerance limits mainly to under-
stand the nature of normal approximation. The 
approximate 100(1−α)% tolerance limits used 
in this simulation study are defined as

E AI z V AI( ) ( )
/

± α 2
	 (17)

We simulated 10 000 outcome matrices from 
MN N t t

k
( ; ,..., )* *

1
, with the given target probabili-

ties (Table 1) and N = 50, 100, 500, 1000, 5000, 
10 000, 50 000, 100 000. The index value was com-
puted for each simulated outcome (with respect 
to the given target matrix) and 100(1−α)% TLs 
were constructed using Eq. 17. The confidence 
levels (CL) of the approximate TLs were evalu-
ated by calculating the proportion of the times AI 
falling within the respective tolerance limits. We 
also report the proportions of times the AI takes a 
value below and above the lower and upper toler-
ance limits. These are denoted in Table 4 by LP 
and RP, respectively. In Table 5 E(AI) and V(AI) 
are computed for all N and the given target using 
Eq. 10 and Eq. 12, respectively. We also report 
the sample point estimates of E(AI) and V(AI) 
calculated from the simulations.

Tables 4 and 5 show that the approximation 
works reasonably well. The CL values are in 
accordance with the respective confidence levels 
and the sample point estimates match nicely with 
E(AI) and V(AI). However, comparison of the LP 
and RP values in Table 4 reveals that in most of 
the cases LP is slighly greater than RP, which 
indicates some degree of non-symmetry in the 
distribution of the AI. Table 5 also illustrates the 
performance of E(AI) and V(AI) as a function of 
N. It can be seen that a relatively large N (≥ 500) 
is needed to obtain E(AI) ≥ 0.914. With respect to 
the given 5 × 5 target distribution, N ≥ 368 seems 
to be sufficient for E(AI) > 0.90.

Table 3. The frequency distribution of the amount of 
overloads and underloads.

	 fi
xi	 overload	 underload

1	 5	 1
2	 2	 3
3	 2	 2
4	 1	 1
5	 1	 1
6	 –	 1
7	 2	 –
8	 –	 –
9	 –	 –
10	 –	 1
	 13	 10
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5 Determination of N to Attain 
High Apportionment with 
a Given Accuracy

For very large N, index values close to 1 are 
expected. In this section we illustrate the effect of 
certain underlying conditions such as the dimen-
sion and the form of the target distribution by 
determinining the size of N required to attain a 
high value of the index with a chosen level of 
confidence. In other words, we determine N, say 
N0, such that for a given ε (> 0), relative target 
matrix and α,

P AI( )> − ≥ −1 1ε α 	 (18)

which is equivalent to

P AI( )< ≥ −2 1ε α 	 (19)

where AI  is as defined in Eq. 8. Assuming Eq. 
14 and a given relative demand distribution, N0 

is solved from z = zα, where

z
E AI

V AI
N=

−2
0 1

ε ( )

( )
~ ( , ) 	 (20)

zα is the upper α100% point of N(0,1) distribu-
tion, and E AI( ) and V AI( ) are as defined in Eq. 
9 and Eq. 11, respectively. This yields

N

z

0

2

2

2

4
=

+








α π

ε

∆ Γ( ) ( )* *t t
	 (21)

where t* * * *( , ,..., )= t t t
k1 2

 is the relative target,
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i i
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
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t
j

i j

	(22)

and

Table 4. The approximated condidence levels for the approximative tolerance limits based on 10 000 simulations 
and N = 50, 100, 500, 1000, 5000, 10 000, 50 000, 100 000.

	 1−α
N	 0.900	 0.950	 0.990	 0.999
	 CL	 LP	 RP	 CL	 LP	 RP	 CL	 LP	 RP	 CL	 LP	 RP

50	 0.9109	 0.0495	 0.0396	 0.9575	 0.0263	 0.0162	 0.9935	 0.0049	 0.0016	 0.9992	 0.0008	 0.0000
100	 0.9132	 0.0487	 0.0381	 0.9589	 0.0274	 0.0137	 0.9920	 0.0061	 0.0019	 0.9993	 0.0006	 0.0001
500	 0.8974	 0.0606	 0.0420	 0.9511	 0.0300	 0.0189	 0.9906	 0.0071	 0.0023	 0.9987	 0.0011	 0.0002
1000	 0.8958	 0.0511	 0.0531	 0.9492	 0.0271	 0.0237	 0.9914	 0.0061	 0.0025	 0.9988	 0.0012	 0.0000
5000	 0.9050	 0.0526	 0.0424	 0.9542	 0.0287	 0.0171	 0.9900	 0.0073	 0.0027	 0.9986	 0.0013	 0.0001
10000	 0.9035	 0.0515	 0.0450	 0.9464	 0.0321	 0.0215	 0.9905	 0.0063	 0.0032	 0.9990	 0.0010	 0.0000
50000	 0.9013	 0.0590	 0.0397	 0.9498	 0.0341	 0.0161	 0.9894	 0.0090	 0.0016	 0.9980	 0.0019	 0.0001
100000	 0.8963	 0.0578	 0.0459	 0.9491	 0.0306	 0.0203	 0.9894	 0.0083	 0.0023	 0.9989	 0.0011	 0.0000

Table 5. E(AI), V(AI) and their sample point estimates avg(AI) and s2(AI) based on 
10 000 simulations and N = 50, 100, 500, 1000, 5000, 10 000, 50 000, 100 000.

N	 E(AI)	 avg(AI)	 V(AI)	 s2(AI)

50	 0.729	 0.729	 1.805·10–3	 1.684·10–3

100	 0.808	 0.808	 9.025·10–4	 8.362·10–4

500	 0.914	 0.914	 1.805·10–4	 1.829·10–4

1000	 0.939	 0.940	 9.025·10–5	 9.049·10–5

5000	 0.972	 0.973	 1.805·10–5	 1.798·10–5

10000	 0.981	 0.981	 9.025·10–6	 8.980·10–6

50000	 0.991	 0.991	 1.806·10–6	 1.837·10–6

100000	 0.994	 0.994	 9.025·10–7	 9.133·10–7

±

±

±

±

±
±
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Γ( ) ( )* * *t = −
=
∑ t t

i i
i

k

1
1

	 (23)

Note that ∆(t*) and Γ(t*) are proportional to 
V AI( )  and E AI( ), respectively.

We investigated three illustrative examples. In 
the first N0 is solved for the 5 × 5 target distribu-
tion given in Table 1. In the sequel we call this 
target distribution the referred target matrix. In the 
second case the dependence of N0 on the dimen-
sion of the target matrix is examined by solving 
N0 for a k-dimensional relative target matrix t* = 
(1/k,1/k,...,1/k) as k varies from 20 to 30. The third 
example investigates the effect of the form of the 
target matrix on the magnitude of N0.

Example 1: The referred 5 × 5 target  
distribution

Assume the target distribution in Table 1. Table 
6 displays N0 solved for some given values of ε 
and α.

The above results and Eq. 21 show that the 
number of logs N0 depends on both the specified 
accuracy ε and the specified confidence level α. 
Table 6 shows for α = 0.05, for example, that 
while reducing ε from 0.1 to 0.01, N0 must be 
increased from 582 to 58186. For α = 0.01 and the 
same decrease in ε, the number of logs needs to be 
increased from 685 to 68482. For both confidence 
levels a more than 100 times larger N is required 
for ε = 0.01 than for ε = 0.1. Hence, a decrease 
in confidence level α needs to be followed by 

an increase in N to attain the specified accuracy. 
Similarly, a decrease in ε, which determines the 
accuracy, requires an increase in N to attain the 
specified confidence.

Example 2: Target with equal probabilities

Assume the relative demand distribution t* = 
(1/k,1/k,...,1/k). Table 7 displays N0 solved for α 
= 0.05 and some selected values of ε as k varies 
from 20 to 30. The bolded row corresponds to the 
5 × 5 matrix. The results with α = 0.01 are shown 
in Table 10 in Appendix B.

Table 7 and also Table 10 in Appendix B con-
firm the intuitively obvious result that higher 
dimensional targets require a larger N to main-
tain the specified accuracy and/or the specified 

Table 7. N0 solved for α = 0.05 and some selected values of ε as k varies from 20 to 30.

		  ε
		  0.01	 0.02	 0.03	 0.04	 0.05	 0.06	 0.07	 0.08	 0.09	 0.10

	 20	 49871	 12468	 5541	 3117	 1995	 1385	 1018	 779	 616	 499
	 21	 51912	 12978	 5768	 3245	 2076	 1442	 1059	 811	 641	 519
	 22	 53943	 13486	 5994	 3371	 2158	 1498	 1101	 843	 666	 539
	 23	 55962	 13991	 6218	 3498	 2238	 1555	 1142	 874	 691	 560
	 24	 57972	 14493	 6441	 3623	 2319	 1610	 1183	 906	 716	 580
k	 25	 59973	 14993	 6664	 3748	 2399	 1666	 1224	 937	 740	 600
	 26	 61966	 15491	 6885	 3873	 2479	 1721	 1265	 968	 765	 620
	 27	 63950	 15988	 7106	 3997	 2558	 1776	 1305	 999	 790	 640
	 28	 65927	 16482	 7325	 4120	 2637	 1831	 1345	 1030	 814	 659
	 29	 67897	 16974	 7544	 4244	 2716	 1886	 1386	 1061	 838	 679
	 30	 69860	 17465	 7762	 4366	 2794	 1941	 1426	 1092	 862	 699

Table 6. N0 solved for the referred 5 × 5 target matrix 
and some given values of ε and α.

		  α
ε	 1−ε	 0.01	 0.05
		  N0

0.01	 0.99	 68482	 58186
0.02	 0.98	 17121	 14547
0.03	 0.97	 7609	 6465
0.04	 0.96	 4280	 3637
0.05	 0.95	 2739	 2327
0.06	 0.94	 1902	 1616
0.07	 0.93	 1398	 1187
0.08	 0.92	 1070	 909
0.09	 0.91	 845	 718
0.10	 0.90	 685	 582

± ±
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confidence level. In other words, for a fixed N, 
low dimensional targets tend to give higher index 
values than targets of higher dimension.

Example 3: Targets with a variety of forms

The results in the above examples indicate that the 
form of the target distribution has a demonstrable 
effect on the size of N0 required. For example, 
for the referred 5 × 5 target distribution and 
the choices ε = 0.05 and α = 0.05, N0 = 2327 is 
required (Table 6). For the 5 × 5 equal probability 
distribution, however, N0 = 2399 is needed (Table 
7). In this example we examine the effect of the 
form of the target distribution.

The relative target distributions to be compared 
are constructed by changing the frequency pat-
tern of the relative values of the referred 5 × 5 
target given in Table 1. The idea is to cover most 
of the commonly observed standard unimodal 
frequency curves. A detailed description of the 
construction procedure is left to Appendix C. The 
frequency histogram of the relative target values 
of the referred demand distribution and of those 
constructed (Target matrices 1–7) are displayed in 
Fig. 1. Table 11 in Appendix C reports some sum-
mary statistics related to the targets presented.

Table 8 shows N0 solved for the target matrices 
1–7, α = 0.05 and a variety of ε (= 0.01, 0.02, 
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10). 
The bolded row corresponds to the 5 × 5 target 
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matrix with equal probabilities. The correspond-
ing results for α = 0.01 are displayed in Table 12 
in Appendix C.

Table 8 above and Table 12 in Appendix C 
show that N0 depends on the form of the given 
target matrix. For all pairs of ε and α exam-
ined in the example, we observe the largest N0 
for the target with equal cell probabilities. This 
behaviour can partly be explained by observing 
that for a fixed N, minimum E(AI) is attained 
for t* = (1/k,1/k,...,1/k). The above result is easy 
to prove by denoting a t

i i
= *  and b t

i i
= −1 *, 

and applying the Cauchy-Schwarz inequality, i.e. 

a b a b
i ii ii ii∑ ∑ ∑( ) ≤ ( )( )2

2 2 .

6 Discussion

Although the Apportionment Index is the most 
widely used measure for evaluating the bucking 
outcome in Scandinavia, relatively little is known 
regarding its statistical properties. In this article 
we have examined the asymptotic sampling dis-
tribution of the AI assuming multinomial distribu-
tion for the outcome and utilizing large sample 
normal approximations. The assumed distribu-
tion of the random outcome should be reason-
able when the pre-harvest planning procedure is 
performing appropriately. Under the assumption 
of the multinomial outcome distribution and for 
the given target matrix we have then derived the 
approximate first two moments, i.e. the mean and 
the variance. A simulation study is conducted to 
confirm that the approximations work reason-
ably well.

It can be easily seen from the derived formulas 
that the expected value of the AI increases as 

the number of harvested logs increases and the 
expectation is almost one for very large number of 
logs. The derivations also show that the variance 
of the AI decreases towards zero as the number of 
logs increases, i.e. very little variation is expected 
for highly large number of logs. The findings are 
important and should, especially, be taken into 
account e.g. when comparisons are made between 
two different harvesting operations.

Since, for a given target distribution, the 
expected value of the Apportionment Index seems 
to strongly depend on the number of logs har-
vested, there may exist situations where not only 
the magnitude of the measure itself is of special 
interest but one also wants to know whether the 
performance of the harvesting operation is tolera-
ble with respect to the number of stems harvested. 
This kind of a situation may arise, for example, 
when adjusting the bucking instructions according 
to the harvesting information gathered. In order to 
answer the question of a tolerable value of the AI 
we have derived a lower tolerance limit for the AI. 
It is then suggested that the lower tolerance limit 
should serve as the least acceptable value of the 
AI while index values higher than the mean would 
indicate a satisfactory level of agreement.

Studies are conducted on the determination 
of N (the number of harvested logs) needed to 
obtain a high apportionment with a given accu-
racy under some special kinds of distributions. 
Although our considerations are purely theoreti-
cal, our opinion is that they also have some useful 
practical implications. The conclusions that can 
be drawn from the studies in Section 5 are that 
not only the number of harvested logs, as noted 
earlier, affect the magnitude of the AI but also the 
dimension of the target matrix as well as the form 
of the target distribution. It is hence important 

Table 8. N0 solved for the target matrices 1–7, α = 0.05 and a variety of ε.

Target	 Ref.	 ε
	 fig.	 0.01	 0.02	 0.03	 0.04	 0.05	 0.06	 0.07	 0.08	 0.09	 0.10

1	 1b	 59973	 14993	 6664	 3748	 2399	 1666	 1224	 937	 740	 600
2	 1c	 58006	 14502	 6445	 3625	 2320	 1611	 1184	 906	 716	 580
3	 1d	 58346	 14586	 6483	 3647	 2334	 1621	 1191	 912	 720	 583
4	 1e	 58664	 14666	 6518	 3667	 2347	 1630	 1197	 917	 724	 587
5	 1f	 58781	 14695	 6531	 3674	 2351	 1633	 1200	 918	 726	 588
6	 1g	 59013	 14753	 6557	 3688	 2361	 1639	 1204	 922	 729	 590
7	 1h	 57494	 14373	 6388	 3593	 2300	 1597	 1173	 898	 710	 575
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to also study how the values of the AI between 
target matrices with different dimensions (and 
varying number of logs) can be made commen-
surable. However, more thorough investigations 
are needed to exclusively determine how the form 
and size of the target matrix are actually affecting 
the AI. Such knowledge would be important, for 
example, when interpreting the values of the AI 
with certain other possible measures, as discussed 
by Kivinen et al. (2005).

Instead of using the Apportionment Index (or 
the OVL) alone to evaluate the similarity of two 
distributions, standard statistical tests (e.g. χ2-
test) can also be applied (see e.g. Nummi et al. 
2005). For a large sample size the standard statis-
tical tests often possess high power to detect small 
differences. Thus virtually unimportant deviations 
from the target may in practice lead to rejection of 
the null hypothesis. As discussed by Inman and 
Bradley (1989) regarding the OVL, the AI should 
also be seen as supplementary to statistical tests 
rather than as an alternative method.

The connection of the Apportionment Index to 
the OVL and some other related measures is taken 
up in the paper to encourage those interested in 
the topic to do some literature research in other 
fields of science such as sociology. The authors 
strongly believe that the work done e.g. on the 
Dissimilarity Index and other measures of segre-
gation may give valuable ideas for the research of 
the Apportionment Index as well as for the devel-
opment of new measures of apportionment.
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Appendix A

In this Appendix we present some results and corollaries to be used in Section 3.

Result 1. Suppose X ~ N(θ,σ2).
Then

E X(| |)− =θ σ
π
2 		  (24a)

V X(| |)− = −
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θ σ
π

2 1
2 		  (24b)

The proof is omitted.

Result 2. Suppose (X,Y) ~ BVN(0,0,1,1,ρ).
Then
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The proof is omitted.
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Result 4. Suppose (X,Y) ~ BVN(0,0,1,1,ρ).
Then

ψ ρ ψ ρ
π

ρ ρ
π

ρ( ) ( ) (| |) | | arcsin | |= − = = + −E XY
2 2

1 2 	 (30)

Table 9 displays ψ(ρ) for some selected ρ. Note that ψ
π

( )0
2

= .

Proof.
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 and

other ϕ’s are defined similarly.

Result 3.
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Proof.
Set
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Upon substituting u
x

=
−1 2ρ

 and v
y

=
−1 2ρ

 into Eq. 27 and using Eq. 25, we obtain
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Therefore,
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From Eq. 29 it is evident that J(0) = 1.
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Next observe that
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upon substituting
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(See Result 3 for the definition of J(ρ).)
Likewise,
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Therefore,
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Table 9. ψ(ρ) for some selected ρ.

ρ	 0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30
ψ(ρ)	 0.6366	 0.6374	 0.6398	 0.6438	 0.6494	 0.6566	 0.6655

ρ	 0.35	 0.40	 0.45	 0.50	 0.55	 0.60	 0.65
ψ(ρ)	 0.6760	 0.6883	 0.7022	 0.7180	 0.7356	 0.7551	 0.7766

ρ	 0.70	 0.75	 0.80	 0.85	 0.90	 0.95	 1.00
ψ(ρ)	 0.8002	 0.8260	 0.8542	 0.8851	 0.9191	 0.9567	 1.0000

Corollary 1. Suppose (X,Y) ~ BVN(μ1, μ2, σ1, σ2, ρ).
Then

E X Y(| || |) ( )− − =μ μ σ σ ψ ρ
1 2 1 2 					     (33)

Corollary 2. Suppose (X,Y) ~ BVN(μ1, μ2, σ1, σ2, ρ). 
Then

Cov X Y E X Y E X(| || |) | ( )( ) | (|− − = − −( ) − −μ μ μ μ μ
1 2 1 2 1

||) (| |)

( ) ( )

E Y −

= − = −





μ

σ σ ψ ρ σ σ
π

σ σ ψ ρ
π

2

1 2 1 2 1 2

2 2 




		  (34
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Appendix C

Let us define the summary statistics related to a 
target matrix as

Mean
k

=
1

	 (35a)

Var

t
k

k

i
i

k

=
−







−
=
∑ * 1

1
1

2

	 (35b)

CV
t

k k k
ii

k

= −












=∑ *2

1

2
1 1

	 (35c)

where Mean, Var and CV are the sample mean, 
sample variance and the coefficient of variation 
calculated for the target values. We also include 
in the summary statistics the functions ∆(t*) and 
Γ(t*), which are defined in Eq. 22 and Eq. 23 
in Section 5, respectively. For the referred 5 × 5 
target in Table 1 in Section 4 Mean = 0.0400, 
Var = 0.0002, CV = 0.3458, ∆(t*) = 0.3610 and 
Γ(t*) = 4.8078.

The relative target distributions to be compared 
in Example 3 in Section 5 are constructed by 
changing the frequency pattern of the relative 
target values of the referred 5 × 5 target given in 
Table 1. (See their summary statistics in Table 
11 below.) First, all 25 relative proportions of the 
referred target matrix are classified into 5 intervals 
of equal length (= 0.011) so that (f1, f2,…, f5) 
= (5,2,11,5,2) and ( , ,..., )* * *t t t1 2 5  = (0.020, 0.031, 
0.042, 0.053, 0.064), where t

i
*  denotes the mid-

value of the ith interval and fi is the corresponding 
frequency. For a new frequency pattern, say (f ’1, 
f’2,…,f’5), we define the ith adjusted mid-value as 
t t f t

i i j jj

** * ' *= ( )=∑ 1

5
, i = 1,…,5. The correspond-

ing relative target matrix is then constructed by 
setting the relative target values in the first f ’1 
log categories equal to t

1
**, in the next f ’2 log 

categories equal to t
2
** etc.

Table 12 shows N0 solved for the target matri-
ces 1–7, α = 0.01 and a variety of ε (= 0.01,0.02, 
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10). The 
bolded row corresponds to the 5 × 5 target matrix 
with equal probabilities.

Appendix B

Assume the relative demand distribution t* = 
(1/k,1/k,...,1/k). Table 10 displays N0 for ε = 0.01, 
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 

0.10 and α = 0.01 as k varies from 20 to 30. The 
bolded row corresponds to the 5 × 5 target with 
equal probabilities.

Table 10. N0 solved for α = 0.01 and some selected values of ε as k varies from 20 to 30.

		  ε
		  0.01	 0.02	 0.03	 0.04	 0.05	 0.06	 0.07	 0.08	 0.09	 0.10

	 20	 59436	 14859	 6604	 3715	 2377	 1651	 1213	 929	 734	 594
	 21	 61664	 15416	 6852	 3854	 2467	 1713	 1258	 964	 761	 617
	 22	 63876	 15969	 7097	 3992	 2555	 1774	 1304	 998	 789	 639
	 23	 66074	 16519	 7342	 4130	 2643	 1835	 1348	 1032	 816	 661
	 24	 68258	 17064	 7584	 4266	 2730	 1896	 1393	 1067	 843	 683
k	 25	 70429	 17607	 7825	 4402	 2817	 1956	 1437	 1100	 869	 704
	 26	 72588	 18147	 8065	 4537	 2904	 2016	 1481	 1134	 896	 726
	 27	 74735	 18684	 8304	 4671	 2989	 2076	 1525	 1168	 923	 747
	 28	 76872	 19218	 8541	 4805	 3075	 2135	 1569	 1201	 949	 769
	 29	 78999	 19750	 8778	 4937	 3160	 2194	 1612	 1234	 975	 790
	 30	 81116	 20279	 9013	 5070	 3245	 2253	 1655	 1267	 1001	 811

∞ ∞ ∞

∞

∞∞∞

∞

∞
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Table 11. The summary statistics of the referred 5 × 5 target matrix and of Targets 1–7.

Target	 Ref.
	 figure	 t1**,...,t5**	 f1,...,f5	 Mean	 Var	 CV	 Γ(t*)	 ∆(t*)

Referred	 1a	 0.0197,0.0305,0.0413,	 5,2,11,5,2	 0.0400	 0.0002	 0.3183	 4.8238	 0.3611
		  0.0521,0.0629

1	 1b	 0.0190,0.0295,0.0400,	 0,0,25,0,0	 0.0400	 0.0000	 0.0000	 4.8990	 0.3616
		  0.0505,0.0610

2	 1c	 0.0248,0.0384,0.0520,	 10,7,4,3,1	 0.0400	 0.0003	 0.4006	 4.7990	 0.3607
		  0.0656,0.0792

3	 1d	 0.0213,0.0330,0.0447,	 5,8,6,4,2	 0.0400	 0.0002	 0.3511	 4.8162	 0.3609
		  0.0564,0.0681

4	 1e	 0.0190,0.0295,0.0400,	 3,5,9,5,3	 0.0400	 0.0002	 0.3054	 4.8324	 0.3611
		  0.0505,0.0610

5	 1f	 0.0172,0.0267,0.0362,	 2,4,6,8,5	 0.0400	 0.0001	 0.2845	 4.8383	 0.3612
		  0.0457,0.0552

6	 1g	 0.0155,0.0240,0.0325,	 1,3,4,7,10	 0.0400	 0.0001	 0.2505	 4.8501	 0.3613
		  0.0410,0.0495

7	 1h	 0.0190,0.0295,0.0400,	 7,4,3,4,7	 0.0400	 0.0003	 0.4190	 4.7722	 0.3607
		  0.0505,0.0610

Table 12. N0 solved for the target matrices 1–7, α = 0.01 and a variety of ε.

Target	 Ref.	 ε
	 figure	 0.01	 0.02	 0.03	 0.04	 0.05	 0.06	 0.07	 0.08	 0.09	 0.10

1	 1b	 70429	 17607	 7825	 4402	 2817	 1956	 1437	 1100	 869	 704
2	 1c	 68282	 17071	 7587	 4268	 2731	 1897	 1394	 1067	 843	 683
3	 1d	 68654	 17164	 7628	 4291	 2746	 1907	 1401	 1073	 848	 687
4	 1e	 69002	 17251	 7667	 4313	 2760	 1917	 1408	 1078	 852	 690
5	 1f	 69131	 17283	 7681	 4321	 2765	 1920	 1411	 1080	 853	 691
6	 1g	 69383	 17346	 7709	 4336	 2775	 1927	 1416	 1084	 857	 694
7	 1h	 67727	 16932	 7525	 4233	 2709	 1881	 1382	 1058	 836	 677

∞ ∞
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