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Monitoring changes in soil C has recently received interest due to reporting under the Kyoto 
Protocol. Model-based approaches to estimate changes in soil C stocks exist, but they cannot 
fully replace repeated measurements. Measuring changes in soil C is laborious due to small 
expected changes and large spatial variation. Stratification of soil sampling allows the reduc-
tion of sample size without reducing precision. If there are no previous measurements, the 
stratification can be made with model-predictions of target variable. Our aim was to present 
a simulation-based stratification method, and to estimate how much stratification of inventory 
plots could improve the efficiency of the sampling. The effect of large uncertainties related 
to soil C change measurements and simulated predictions was targeted since they may con-
siderably decrease the efficiency of stratification. According to our simulations, stratification 
can be useful with a feasible soil sample number if other uncertainties (simulated predictions 
and forecasted forest management) can be controlled. For example, the optimal (Neyman) 
allocation of plots to 4 strata with 10 soil samples from each plot (unpaired repeated sam-
pling) reduced the standard error (SE) of the stratified mean by 9–34% from that of simple 
random sampling, depending on the assumptions of uncertainties. When the uncertainties of 
measurements and simulations were not accounted for in the division to strata, the decreases 
of SEs were 2–9 units less. Stratified sampling scheme that accounts for the uncertainties 
in measured material and in the correlates (simulated predictions) is recommended for the 
sampling design of soil C stock changes.
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1 Introduction

Monitoring of carbon stocks in soil has become  
a topical issue due to reporting requirements set 
by the Climate Convention and Kyoto Proto-
col (UNFCCC 1992, UNFCCC 1997). Repeated 
measurements provide a direct way to assess 
possible changes in soil C stocks. The measure-
ment-based estimates of soil C changes can be 
used in national inventory submissions to the 
UNFCCC, or they can be used for evaluation of 
models that provide these estimates (Peltoniemi 
et al. 2007).

Measuring changes in soil C is notoriously 
difficult and laborious. Typically, the changes 
are small, and their estimation by repeated mea-
surements is impaired by large heterogeneity of 
soil C stocks that is already present within small 
distances (Palmer et al. 2002, Conen et al. 2004). 
Consequently, a large number of soil samples are 
required to detect the change in soil C signifi-
cantly, or a very long period of time is needed for 
the change to become detectable (e.g. Hungate et 
al. 1996, Garten and Wullschleger 1999, Conen 
et al. 2003, Conen et al. 2004, Smith 2004). On 
regional or national scale this means that soil 
surveys need to measure a very large number 
of sample plots to provide reliable estimates of 
averages. There is a great need to improve the 
efficiency of large-scale soil C sampling, espe-
cially in forest soils where the spatial variation is 
generally higher than on cultivated land (Conant 
et al. 2003).

Stratification provides a way to improve effi-
ciency of sampling, i.e., to reduce the number of 
sample plots needed without reducing precision, 
or to estimate the parameters of interest more 
precisely with the same effort (see e.g. Cochran 
1977, Rao 2000). The idea of stratification is to 
group similar sites into the same stratum, and 
to conduct independent samplings within each 
stratum to estimate stratum means. Usually, a 
selected number of sampled sites (sample plots) 
per stratum are either equal to each others, or 
proportional to stratum size, or based on stratum 
size and variance (optimal i.e Neyman alloca-
tion). An unbiased estimate of the population 
mean is obtained as a weighted average of the 
stratum means with weights proportional to the 

stratum sizes. Stratification is particularly useful 
if it yields strata that either have a small variance 
or a small size.

Soil carbon is an essential ecosystem variable. 
When changes in soil C occur, they are most 
likely to occur also in other ecosystem properties, 
such as pH, N, K, P, Fe, Al, or S (Bormann et al. 
1995, Chen and Li 2003) either because they are 
dynamically linked, they share the same driving 
agent, or they all are sensitive to disturbances such 
as harvests or forest fires. Therefore, stratification 
of sampling according to predicted change in soil 
C is likely to enhance the probability of detecting 
change also in other variables.

Before stratification takes place, one should 
know what features make individuals of a popu-
lation similar to each other. In our case, it means 
similarity in terms of changes in soil C stocks. 
Before comprehensive measured material is avail-
able, one can estimate this similarity with models 
of ecosystem and soil, e.g. Century, RothC and 
Motti/Yasso (Parton et al. 1987, Coleman and 
Jenkinson 1996, Peltoniemi et al. 2004, Liski 
et al. 2005, Salminen et al. 2005). Models can 
be considered to provide a synthesis of current 
process understanding. We call this approach 
model-based stratification.

Typically, regional soil C measurements are 
conducted on a systematic grid or a systematic 
sub-sample of a grid that is established to moni-
tor several ecosystem properties. These sampling 
designs may be soil surveys or forest invento-
ries (e.g. Ståhl et al. 2004, Bellamy et al. 2005, 
O’Neill et al. 2005), or even grids established for 
monitoring the effects of atmospheric pollution 
in Europe (ICP Level 1, Arrouays et al. 2001). 
Systematic (sub-)selection of plots has merits, 
but it may not be optimal regarding the detection 
of changes in soil C. For example, stratification 
of plots with data on land management decreases 
the time for changes to become detectable (Saby 
and Arrouays 2004).

Stratification based on model-predicted changes 
in soil C is a feasible approach to decrease sam-
pling variance, when a sub-sample of an existing 
grid of sample plots is selected for measuring 
changes in soil C stock. But how useful is this 
approach considering that there are large uncer-
tainties in both measurements of soil C changes 
and predictions used for stratification?
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The objectives of this study were i) to present 
a novel application of process-based stand-soil 
model to sampling design for soil C changes, and 
ii) to estimate how much model-based stratifica-
tion (with different sampling schemes) can be 
expected to improve the sampling efficiency when 
both soil measurements and simulated predictions 
contain considerable uncertainties, and when they 
are accounted for in the stratification.

2 Materials and Methods

2.1 Simulations for Changes in Soil C

Simulations were made on permanent sample 
plots established by National Forest Inventory 
(NFI) (Mäkipää and Heikkinen 2003). They form 
nearly a uniform grid covering all land-area of 
Finland. Spacing of the grid is denser in South-
ern Finland. Altogether, there are 3009 plots on 
forestry land, of which 1911 are on mineral soils. 
Plots that missed data on tree species or age 
were neglected, as were the most northern plots 
that were outside the parameterization range of 
the models used for providing stratification cor-
relates. Consequently, our target population con-
sisted of 1719 plots.

Growth of each stand was simulated with Motti 
stand simulator (Hynynen et al. 2002, Matala et 
al. 2003, Hynynen et al. 2005). For each stand, 
Motti was given a location and an altitude of 
the stand, dominant tree species, site fertility 
(according to Cajander 1949), and mean annual 
temperature sum with 5ºC threshold at given 
location (estimated with a model of Ojansuu and 
Henttonen 1983). Initialization of trees was made 
with typical seedling stand (by diameter class 
and height) under measured conditions. Stand 
simulations were run assuming standard forest 
management regime; stands were thinned with 
a basal area vs. height criteria, or clear-cut when 
the volume weighted mean diameter of trees was 
achieved (Tapio 2001)

In Motti, biomass is estimated for each tree 
class separately (by diameter class and height), 
and for compartments of stem, branches, needles, 
roots (Marklund 1988). Fine-root biomass (< 2 
mm) is estimated with a relation (0.1 + 0.0018 t) bf; 

where t is age of the tree (years) and bf is foliage 
biomass (Vanninen and Mäkelä 1999). These 
estimates were used for both standing and har-
vested trees.

Estimates of annual litter production were 
obtained by multiplying the biomasses with turno-
ver rates (Liski et al. 2006). Estimates of harvest 
residues were calculated for each removed tree. 
For each removed tree in a stand, most of the 
stem wood was removed from forest (accord-
ing to share of merchantable wood estimated by 
Motti); the rest of the stem and 100% of other 
biomass compartments were left in the forest as 
harvest residues.

Soil C was simulated for each stand with the 
soil carbon model Yasso (Liski et al. 2005). Yasso 
is a dynamic seven-pool soil carbon model that 
takes litter as input and simulates decomposition 
of litter based on litter quality, temperature sum, 
and summer drought (precipitation – potential 
evapotranspiration). In this study, soil C (litter, 
organic layer and mineral soil 0–100 cm) was rep-
resented with a sum of all model compartments of 
Yasso (Liski et al. 2005). Mean values of climatic 
variables from the period 1961–1990 were used 
to estimate temperature sum and summer drought 
(Ojansuu and Henttonen 1983)

Soil model was initialized for each stand sepa-
rately, by feeding repeatedly the litter time series 
estimated with Motti for typical rotation period. 
Rotation started with a clear cut and ended one 
year before the next clear cut. Iteration was 
stopped when all model pools differed less than 
1% between the final and the previous simulation 
cycle at the end of the rotation. This eliminated 
the potential long term trend in simulated soil C. 
By this we assumed that the changes during the 
final rotation are considerably larger than what 
could occur, for example, due to previous land 
use (which we did not know).

The result of these simulations are plot specific 
curves, Ci(t), of C stock (kg · m–2) as a function 
of stand age, t, for each of the 1719 permanent 
sample plots, i (see Fig. 1 for one example). The 
target variable, y, is the change in soil C stock 
during a hypothetical sampling period of Δt = 
10 years. In the simplest case, where all sources 
of uncertainty were ignored, yi = Ci(t1i) – Ci(t0i), 
where t0i was set to ti,obs, the stand age at plot 
i obtained from inventory data and t1i = t0i + Δt. 
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If the measured stand age t0i was higher than 
the length of the simulated rotation period for 
the plot, the stand was considered old-growth, 
and yi was determined from the last ten years 
of rotation. If t0i was less than 10 years shorter 
than the rotation, then yi = Ci (t0i + Δt – length of 
rotation) – Ci(t0i).

Sources of uncertainty were accounted for by 
adding random variation both to t0i and to yi as 
explained in the following sections.

2.2 Stratification and Sampling Variance

Suppose then that the C stock change, y, would 
actually be measured on a given number of sample 
plots, n, a subset of the total population of N = 
1719 plots. The population is assumed to be 
divided into G strata with Ng plots in stratum g, 
and ng plots are randomly selected to be measured 
from each stratum g with restriction

n n
g

g

G
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∑ =
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where Wg = Ng / N and y
g is the sample mean in 

stratum g. Our aim was to quantify the anticipated 
sampling variance of ŷ

str
 under various stratified 

sampling schemes, which determine the number 
of strata, G, the stratification of the population 
and the sample sizes within each stratum, ng, 
(the allocation), and under various assumptions 
concerning the uncertainty of the predicted yi’s. 
The results are presented for the case n = 250.

Let us first consider the case, where the pre-
diction and measurement errors are ignored. 
Approximately optimal stratum boundaries are 
then obtained using cumulative function, F(y), 
calculated from the square root of probability 
density function, f(y) (Dalenius and Hodges Jr. 
1959, Cochran 1977):
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with density f(w) estimated from the distribution 
of predicted C stock changes, yi, over all plots. 
Equal sized intervals, which form the strata, are 
divided on F-scale. The optimal number of strata 
is strongly case dependent, but empirical results 
rarely support more than 6 strata (Cochran 1977). 
In this study, we varied the number of strata, G, 
from 1 to 7.
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Fig 1. Example of simulated litter and soil C stock over rotation (left panel). High value of soil 
C at the start of the rotation is due to harvest residues, three peaks between 30 and 60 years 
represent thinning residues. Right panel shows the effect of scenario uncertainty, the simulated 
distribution of yis when 50 random samples were drawn from age distribution, t0i ~ N(8a, 5a). 
The vertical line shows the predicted value Ci(18a) – Ci(8a).
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Equal, proportional, and Neyman allocation 
were considered in determining the proportions, 
pg = ng / n of the samples to be allocated to each 
stratum, g. In equal allocation, pg = 1/G for all g, 
in proportional allocation, pg = Wg, and in Neyman 
allocation,

p
W S

W S
g

g g

g gg

G
=

=∑ 1

 (4)

where Sg is the standard deviation of yi’s in stra-
tum g. In each case the sampling variance of the 
stratified estimator ŷ

str
 is
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where fg = ng / Ng (Rao 2000).

2.3 Uncertainties

Ignoring uncertainty in predictions of yi can result 
in unrealistically small within stratum standard 
deviations Sg, which has a complex effect on the 
comparison of variances of the mean, V, associ-
ated with different sampling schemes. The overall 
distribution of the measured C stock changes is 
also likely to be more dispersed than that of the 
predictions yi, which affects the optimal stratum 
boundaries. We therefore suggest that the deter-
mination of stratum boundaries, the allocation of 
sample plots, and the computation of anticipated 
variance should be based on modified predictions 
y’i , to which prediction and measurement errors 
have been added.

Simulation Uncertainty

It is fair to admit that the simulated predictions 
of soil C stock changes are far from precise. 
Therefore, we implemented simulation uncer-
tainty into the predictions of yi. This uncertainty 
represents all the error sources that are related to 
the simulated predictions, e.g. the limited ability 
of the model to represent real variation in the 
soil C stock changes between the plots, and the 
uncertainty due to choice of the model.

Simulation uncertainty was implemented by 

adding to the predicted changes yi random nor-
mally distributed noise with standard deviation 
σsim,i = (50 g · m–2 + 0.10 yi) · A, for A = 1, 5, and 
10. The minimum uncertainty in the simulated 
material is therefore 50 g of C per 10 years, which 
corresponds to an average change (over rotation 
length) in organic layer C change measured from 
a chronosequence of sites in southern Finland 
(Peltoniemi et al. 2004). Minimum of 10% of 
simulated change was added to admit that simu-
lating rapidly changing ecosystem variables may 
be more difficult than simulating nearly stable 
ecosystems.

Measurement Uncertainty

Based on empirical data on measured soil C 
stocks (org. layer + mineral soil 0–100 cm; 30 
sites, each with 6 sample cores) (Liski and West-
man 1995), we assumed that the variance in single 
measurements of soil C stock is multiplicative to 
the measured mean stock size: ln(σ2) = a + b ln(C). 
Parameters a and b were estimated by fitting a 
linear model to the log-transformed C and σ2 
values (Fig. 2) and correction residual variance/2 
was added to a so that the back-transformed pre-
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Fig 2. Within plot variance of soil C stock measurements 
as a function of the measured mean carbon stock on 
a plot. Dash line represents extrapolation towards 
small and large stocks of carbon. Data from Liski 
and Westman (1995).



532

Silva Fennica 41(3), 2007 research articles

dictions σ2(C) = eaCb are unbiased.
To estimate the measurement error of soil C 

stock change due to within site variation of soil 
C, we assumed an unpaired repeated sampling 
with m soil samples taken at each plot both at the 
beginning and at the end of the monitoring period. 
Combining the two assumptions, the measure-
ment error variance of the plot-level change in 
soil C stock is

σ
σ σ

meas,i
i i i i

C t C t

m
2

2
0

2
1=

+( ( )) ( ( ))
 (6)

where σ2(Ci(t)) is the stock variance calculated 
from predicted stock at time t with equation pre-
sented in Fig. 2.

Scenario Uncertainty

Scenario uncertainty stems from the uncertainty 
of projecting the future forest management of 
the plots, and the fact that our predictions of the 
current state of the stands are uncertain.

Scenario uncertainty was implemented by 
simulating 50 different populations of plots by 
simulating 50 scenarios of soil C changes for each 
of the 1719 plots. Scenarios were constructed 
by drawing the t0i s as random samples from 
the normal distribution N(ti,obs, σsce) instead of 
using the measured ages ti,obs as such. Varying 
measured age instead of timing of harvests was 
considered as an adequate representation of sce-
nario uncertainty. The varying assumptions of 
scenario uncertainty refer to the applied standard 
deviations of σsce = 2.5, 5, or 10 a,

Combining Sources of Uncertainty

The effects of these sources of uncertainty were 
combined by means of simulations. We created 
27 sets of 50 populations of N sample plots with 
simulated C stock changes y’i   each set corre-
sponding to one combination of σsce = 2.5, 5, 10 a, 
A = 1, 5, 10, and m = 1, 10, Inf. The y’i   were 
simulated independently by
1. drawing a random ‘starting age’ t0i from 

N(ti,obs, σ2
sce),

2. computing the corresponding predicted change 
as yi = Ci(t1i) – Ci(t0i), where t1i = t0i + Δt, and

3. setting y’i  = yi + esim,i + emeas,i, where esim,i and 
emeas,i were drawn from N(0, σ2

sim,i), and 
N(0, σ2

meas,i), respectively.

One of the populations in each set (corresponding 
to combinations of σsce, A, m) was exceptional so 
that t0i = ti,obs. The stratum boundaries for G = 
2,…,7 and within stratum variances for Neyman 
allocation were computed using that specific pop-
ulation. For each combination of σsce, A, m, G and 
allocation method, 49 different values of V, the 
sampling variance of the stratified estimator ŷ

str
 

were obtained by calculating Sgs (in Eq. 5) from 
the 49 simulated populations the stratum to which 
a plot belongs being determined by the original 
prediction yi. The results are plotted as standard 
errors of stratified means relative to those of 
simple random sampling, SE / SEsrs = √V / √Vsrs.

The results of stratification that accounted for 
the uncertainty assumptions of measurements and 
simulations were compared to a ‘naive stratifica-
tion’ where ignoring simulation and measurement 
uncertainty, stratum boundaries and allocations 
were determined purely on the basis of the origi-
nal predictions yi.

3 Results

3.1 Strata

Very large negative or positive predictions of soil 
C change, yi, were classified to outermost strata 
(Fig. 3). The number of plots in outermost strata 
was consistently and remarkably smaller than 
the number of plots in innermost strata. Also the 
variances Sg

2 of the outermost strata were consis-
tently and remarkably larger than the variances of 
innermost strata. The outermost yis were related 
to simulated peaks in Fig. 1 caused by harvests 
and thinnings.

Stratum boundaries were more evenly distrib-
uted along y-axis when the uncertainty of the 
measurements was high (m = 1 in Fig. 3). Without 
any uncertainties, the widths of thinnest strata 
were approximately 0.5 kg·m–2(10a)–1 when the 
material was divided into 7 strata.
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Optimal sample allocation to strata was closer 
to proportional allocation with small m than with 
large m (Fig. 4). Increasing uncertainty of the 
simulated y’i   had a similar effect.

3.2 Precision and Sampling

Neyman allocation performed better than the pro-
portional and equal allocation, especially when 
G > 2, and when the uncertainties of measure-
ments (high m) and scenarios were small (Fig. 
5). Equal allocation performed poorly when the 
simulation, measurement and scenario uncertain-
ties were high.

The efficiency of stratification reduced when 
the measurement and simulation uncertainties 
were not accounted for in the division of material 
to strata (naive stratification), especially when the 
uncertainties of measurements and simulations 
were large, and there were many strata (Fig. 5). 
For example, with m = 10, σsce = 5, A = 1, strati-
fication accounting for the uncertainties led to 
15, 25, and 28% reductions of the average SE of 
mean relative to SRS, for G = 2,4,7, respectively, 
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but naive stratification only to 13, 18, and 19% 
reductions.

Increasing number of strata, G, generally 
increased the sampling efficiency (Fig. 5). The 
increase of sampling efficiency was less pro-
nounced and saturated faster when the uncertain-
ties of measurements, simulations, and scenario 
were high. 

Increasing precision of measurements of y 
(i.e. increasing m) increased the efficiency of 
stratification (Fig. 5). With a practically feasible 
number of soil samples (m = 10), stratifications 
were clearly beneficial with all assumptions of 
uncertainties. For example, with G = 4 and m = 10 
the mean stratification gains relative to SRS were 
34, 25, and 15%, for scenario uncertainties of 
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2.5, 5, and 10 years, respectively. However, these 
gains were reduced to 18, 14 and 9% when the 
simulation uncertainties were increased to 10-fold 
(i.e. A = 10). The role of simulation uncertainties 
(solid and dash lines) stood out more clearly 
when the measurement and scenario uncertain-
ties were low.

Distributions of expected Neyman sampling 
gain were wider than those of proportional allo-
cation, especially when the m was large (Fig. 5). 
With large m, strata contained less plots, which 
lead to less reliable estimates of Sg s, and ng s that 
had relatively large probability of performing very 
well or very poorly in independent target popula-
tions (different scenarios) that were sampled to 
estimate the reported SEs. Proportional allocation 
is not based on Sg s of strata, thus its expected 
sampling efficiencies are more robust.

4 Discussion

Large uncertainties of soil measurements, sce-
narios, and simulations affect the stratification of 
sampling, and decrease its efficiency. However, 
some improvements of sampling efficiency can be 
obtained if uncertainty of soil C stock estimates 
is controlled by taking an adequate number of 
soil samples per plot. For efficient soil sampling 
design the number of soil samples should be 
determined, and uncertainties of stratification cor-
relates should be quantified before the stratifica-
tion takes place.

The estimation of standard errors of stratified 
sampling based on simulated material includes 
some stochastic factors. Therefore, the stra-
tum boundaries, allocation of plots, and esti-
mated SEs and especially their confidence limits 
slightly differ each time the simulated sampling 
is repeated. General trends of the effects of the 
number of strata (G), number of soil samples (m), 
and the uncertainties related to possible forest 
management scenarios still hold.

Relatively small number of plots in outermost 
strata has a large effect on the mean soil C stock 
change, yi, of all plots. Disproportionately inten-
sive sampling of outermost strata that were mostly 
consisted of harvested or thinned plots was sug-
gested by Neyman allocation. Since the sampling 

of these strata is emphasized, they have a large 
effect on the expected stratification efficiency. The 
efficiency of stratified sampling can be expected 
to increase if forest management is predictable 
and very large positive or negative changes in soil 
C can be predicted reliably.

In this study, we used a simple relation to esti-
mate the measurement error of soil C change, yi 
(Fig. 2). Theoretically, the most precise estimate 
for temporal change at the plot scale can be 
obtained by cokriging (Papritz and Flühler 1994). 
However, in practice, where m are small and there 
is no information on spatial autocorrelation, strati-
fied random sampling with two samples per strata 
is recommended (Papritz and Webster 1995). If 
these sampling methods were applied on plots, 
they would likely improve the efficiency of model 
based stratification, similar to what occurred by 
increasing m.

Models are often highly averaging and they 
cannot capture all variation present in nature 
with just a few parameters (in our case: tree spe-
cies, temperature, location, altitude, soil fertility, 
litter quality, harvests, and age at measurement). 
Therefore, we embedded a random error compo-
nent to soil C change predictions, yi, which had 
a low limit of 5 g·m–2a–1. The low limit parallels 
with the long-term average C accumulation rate 
to organic layer measured from chronosequences 
in boreal forests (Wardle et al. 2003, Peltoniemi 
et al. 2004), and it is a magnitude smaller than 
the thinnest strata in this study (~50 g·m–2a–1). 
Furthermore, we tested the effect of even more 
uncertain model predictions, by multiplying the 
previous assumption by A=5 or 10. Our study 
suggests that simulation estimates are useful for 
the purposes of stratification although they would 
be far from precise. Uncertainties of scenarios and 
measurements reduce the expected stratification 
gain at least as much.

Increasing number of strata lead to reduced 
variance of the mean (via smaller within strata 
variances) but this decrease saturated with larger 
G. If the estimates that stratification is based on 
(simulated y) are uncertain, the gain in precision 
of the mean estimate by increasing G becomes 
soon negligible (Cochran 1977). Based on the 
results of this study, we would like to add that also 
the uncertainties of measurements (that are notori-
ously high for soil sampling) affect the selection 
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of G. Often 4 or 5 strata should be enough for soil 
sampling stratification.

Time-dependent stratification criteria, such as 
changes in ecosystem properties, are not usually 
recommended for selection of plots for permanent 
monitoring (Scott 1998). However, in our simula-
tions, changes in soil C were closely related to 
time (mostly due to simulated effect of harvests 
and thinnings), and it seems important to take 
that into account. Further studies are needed on 
applicability, usefulness and cost-efficiency of 
a method that stratifies plots by their average 
susceptibility to change. Similarly, also options 
that plots are recycled at certain intervals or that 
plots have varying sampling period lengths need 
further studying.

Soils under different land-use can store vary-
ing amount of carbon, and a change in land-use 
can lead to long-term accumulation or depletion 
of carbon (Post and Kwon 2000). In our study 
this effect was not accounted for since there was 
no information on the history of plots, although 
recent land-use changes may lead to large changes 
in soil carbon. Similarly, some of the plots or 
some regions can be more vulnerable to climate 
change, or may face larger changes or variability 
in climatic conditions in future than other plots or 
regions. Both of these effects could promote the 
selection of some plots in the stratified sampling 
design.

There is a strong political interest towards 
reporting changes in all carbon pools, one of 
which is soil carbon (UNFCCC 1992, UNFCCC 
1997). Therefore, stratification based on one target 
variable, soil C change, may become a reasonable 
option when soil inventories are developed. Fur-
thermore, one could assume that the changes in 
other soil properties are correlated (negatively or 
positively) with changes in soil carbon, and that 
also their monitoring would be facilitated with 
this stratification. The cross-correlation may be 
due to dynamic coupling of parameters, or by the 
fact that most of the changes occur when forest 
ecosystem is disturbed in some manner (in this 
study by harvests, but also by climate change, 
fires, tillage, etc.). If neither of these applies, 
for example, if one would like to stratify sam-
pling using two criteria, forest health, and soil 
C change, one has to determine importance of 
each target parameter. Methods for multi-criteria 

stratification have been presented by Yates (1960) 
and Cochran (1977).

Forest ecosystem models provide a synthesis 
of current data and knowledge on ecosystem 
functioning, but their application can be chal-
lenging due to large input data requirements. 
Empirical models are often less demanding in 
input data requirements, but they require meas-
urements of target variable. Models in various 
forms can provide efficient tools to plan sampling 
optimally since strata variances that are required 
for Neyman allocation can be anticipated using 
the modelled data appended with uncertainties. 
In this study, we made the stratification for soil C 
change measurements, but this kind of approach 
and conclusions should apply for many other 
ecosystem properties that can be modelled.

Despite the large uncertainties of soil model-
ling, measurements, and scenarios of future har-
vests, the sampling efficiency of soil C changes 
can be improved with stratification and optimal 
allocation of samples to some extent. In large 
inventories, also small improvements in sam-
pling efficiency of uncertain target parameters, 
such as soil C change, may lead to large cost 
reductions.
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