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Ant colony optimization (ACO) is still quite a new technique and seldom used in the field of 
forest planning compared to other heuristics such as simulated annealing and genetic algo-
rithms. This work was aimed at evaluating the suitability of ACO for optimizing the clear-cut 
patterns of a forest landscape when aiming at simultaneously minimizing the risk of wind 
damage and maintaining sustainable and even flow of periodical harvests. For this purpose, 
the ACO was first revised and the algorithm was coded using the Visual Basic Application 
of the ArcGIS software. Thereafter, the performance of the modified ACO was demonstrated 
in a forest located in central Finland using a 30-year planning period. Its performance was 
compared to simulated annealing and a genetic algorithm. The revised ACO performed logi-
cally since the objective function value was improving and the algorithm was converging 
during the optimization process. The solutions maintained a quite even periodical harvesting 
timber while minimizing the risk of wind damage. Implementing the solution would result in 
smooth landscape in terms of stand height after the 30-year planning period. The algorithm 
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It is comparable in solution quality to simulated annealing and genetic algorithms.
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1 Introduction
Forest management objectives are nowadays very 
diverse and complex and they include also spatial 
goals, such as adjacency constraints in harvesting 
(Crowe and Nelson 2003) and spatial patterns of 
habitats for wildlife populations (Bettinger et al. 
2002). Risk management of wind damage is also 
a kind of spatial problem. This is because the 
orographic terrain and surface roughness affect 
the wind profile and consequently the risk of wind 
damage. The surface roughness is significantly 
affected by silvicultural measures. For example, 
forest gaps created by clear-fellings can speed 
up the high-speed winds and increase their fre-
quencies (Venäläinen et al. 2004). Trees located 
at newly created forest edges have the highest 
risk of wind damage. Old stands are the most 
vulnerable to be damaged in these circumstances 
(Zeng et al. 2004). Thus, the risk of wind damage 
of a forest area depends on the spatial patterns 
of stand characteristics such as stand height and 
age. Fragmented forests may induce more risks 
because of longer stand edges at risk (Zeng et 
al. 2007). On the other hand, the landscape con-
figuration is changing along with forest growth 
and dynamics as well as management regimes. 
For example, aggregated clear-cuts can smooth 
the landscape regarding stand height and reduce 
spatial fragmentation (Zeng et al. 2007).

Forest planning problems with spatial objec-
tives are often formulated as non-linear integer 
programming problems, which cannot always be 
solved by traditional mathematical programming, 
e.g. linear programming (Boston and Bettinger 
2002). Heuristic optimization techniques, which 
can solve combinatorial problems, are therefore 
increasingly being used in forest planning (Borges 
et al. 2002). Examples of these heuristics include 
simulated annealing, SA (e.g. Dahlin and Sallnäs 
1993, Lockwood and Moore 1993, Öhman 2000), 
tabu search, TS (e.g. Bettinger et al. 1997, Boston 
and Bettinger 1999) and genetic algorithms, GA 
(e.g. Lu and Eriksson 2000, Falcao and Borges 
2001). Recently, different variations and combi-
nations of these techniques have also been applied 
in forestry (Bettinger et al. 1999, Boston and Bet-
tinger 2002, Falcao and Borges 2002, Heinonen 
and Pukkala 2004). 

In addition to those heuristics mentioned above, 

ant colony optimization (ACO) proposed by 
Colorni et al. (1991) has also been widely used in 
decision making recently (Bonabeau et al. 2000). 
It mimics the behaviour of ants in their search for 
the shortest path from their colony to food source: 
ants lay pheromone (chemical) trails when they 
move. The pheromone evaporates at certain rate 
with time. The more there is pheromone in a path, 
the more likely it will be followed by other ants. 
The ACO was first and most commonly used 
for Traveling Salesman Problem (TSP), which 
consists of finding the shortest tour between a 
number of cities when visiting each only once 
and ending at the starting point (e.g. Dorigo et al. 
1996, Merkle et al. 2000, Sun et al. 2004). The 
ACO has also previously been applied in some 
other combinatorial optimization problems, such 
as machine scheduling (e.g. Bauer et al. 1999) 
and quadratic assignment problems (Maniezzo 
and Colorni 1999). 

In regard to the risk management of wind 
damage in forest planning, Zeng et al. (2007) 
were among the first ones who integrated heuris-
tics (SA, TS and GA) with a forest growth and 
yield model, mechanistic wind damage model, 
and geographical information system (GIS). They 
optimized the clear-cut patterns of a forest under 
multiple objectives concerning timber harvest and 
the risk management of wind damage. 

Ant colony optimization is still quite a new 
technique and seldom if ever used in the field of 
forest planning. This work was aimed at evaluat-
ing the suitability of ant colony optimization for 
optimizing forest clear-cut patterns to minimize 
the expected wind damage under the constraint 
of sustainable and even flow of periodical (10-
year) timber harvest. For this purpose, the ACO 
algorithm was revised and coded using the Visual 
Basic Application (VBA) of the GIS software 
ArcGIS (ESRI 2006). The performance of the ant 
colony optimization (ACO) was demonstrated in 
a forest located in central Finland using a 30-year 
planning period. It was compared to the perform-
ance of other heuristics, namely simulated anneal-
ing and genetic algorithms. 
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2 Material and Methods
2.1 Study Area and Simulation of Treatment 

Alternatives

The forest area employed in this study repre-
sented a typical boreal forest in central Finland 
(63°01´N, 27°48´E). It was mostly dominated by 
Scots pine (Pinus sylvestris) and Norway spruce 
(Picea abies) stands, but some silver birch (Betula 
pendula) stands were also present. The study 
area was surveyed in 2001 and included 225 ha 
of forests (excluding clear-cut areas) and 4 ha 
of open terrain (including fields and clear-cut 
areas). The 225 ha of forest consisted of 63 ha of 
Scots pine (36 stands), 158 ha of Norway spruce 
(75 stands) and 4.5 ha of silver birch (4 stands). 
The GIS software ArcGIS was used to store forest 
stand data and their boundaries. A forest growth 
and yield model SIMA (Kellomäki et al. 1992), 
mechanistic wind damage model HWIND (Pel-
tola et al. 1999) and ACO were all embedded in 
the ArcGIS. The SIMA model (Kellomäki et al. 
1992) is a non-spatial gap model which simulates 
forest growth and yield in individual stands based 
on mean stand characteristics as regulated by 
environmental conditions and management. The 
HWIND model (Peltola et al. 1999) describes 
the mechanistic behavior of Scots pine, Norway 
spruce and birch trees under wind loading and 
predicts the minimum wind speeds lasting 10 min 
at 10 m above ground level at which trees will 
be uprooted or broken. This, so-called critical 
wind speed, is the highest speed that a tree can 
resist. Trees with smaller critical wind speeds 
have higher risks of wind damage.

The SIMA model was used to simulate the 
growth and dynamics of the forest stands over a 
30-year period with different treatment schedules. 
During the 30-year planning period, there may 
be no clear-cut, or a clear-cut at the 5th, 15th or 
25th year of simulation. Therefore, each stand 
may have at maximum 4 alternative treatment 
schedules. Stands that did not meet the clear-cut 
criteria at the 5th, 15th or 25th year had less than 
4 alternative schedules. The criteria, which speci-
fied whether a clear-cut was allowed or not, were 
the mean tree diameter at breast height (DBH) and 
stand age. The DBH criterion was set at 27 cm 
for Scots pine and 24 cm for Norway spruce and Fig. 1. The flow of alternative solution generation.
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silver birch. The age criterion was 70 for Scots 
pine, 80 for Norway spruce, and 60 years for 
silver birch. After clear-cut, artificial regeneration 
was applied so that the stand was planted with 
seedlings of the same tree species which were 
previously growing there. No other management 
practices were applied during the simulation. 

A candidate solution was a combination of 
treatments schedules for all the stands. It represented 
a possible forest plan. The 10-year timber harvests 
and the risk of wind damage were evaluated for 
each candidate solution during the optimization 
process. Since usually only the trees located at 
forest edges are uprooted or broken in Finnish 
conditions (Talkkari et al. 2000, Pellikka and 
Järvenpää 2003), only stands next to gaps (edge 
stands) were considered to be at risk in this study. 
Forest gaps include open fields, clear-cut stands 
and seedling stands with average tree height less 
than a certain threshold (2 m used in this study). 
The edge stands and the boundaries between edge 
stands and gaps (edges) were extracted as polygon 
and polyline maps, respectively (Fig. 1). Because 
of forest treatment and the dynamics of stands, the 
edge stands and edges changed with time and were 
therefore updated to correspond to different time 
points. In Finnish conditions, stands with critical 
wind speeds < 20 m s–1 can be considered to be at 
risk (Zeng et al. 2006). For each edge stand, the 
risk of wind damage (critical wind speed) was 
calculated by the HWIND model at the 5th, 15th 
and 25th simulation year. 

2.2 Problem Formulation

Each solution was evaluated for the timber har-
vests and the risk of wind damage using an addi-
tive utility function (Eq. 1):

U(s) = WhUh(s) + WrUr(s) (1)

where U(s) is the total utility of solution s, Uh(s) 
and Ur(s) are the sub-utilities from timber harvest-
ing and the risk of wind damage for solution s, 
respectively; Wh and Wr are the weights of timber 
harvesting objective and the risk of wind damage 
objective, respectively. Both weights were set a 
value of 0.5 in this study.

The sub-utility of timber harvesting was the 

sum of the harvest utilities of the three 10-year 
sub-periods. The utility value of each 10-year 
period increased with harvested volume until 
it was 10 times of the annual growth (aspired 
level), after which the utility started to decrease 
(Fig. 2b). The sub-utility for the risk of wind 
damage was calculated by the relative values of 
the number of stands at risk, their total area and 
the length of edges at risk (i.e. stands with critical 
wind speeds < 20 m s–1) (Eq. 2):
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area and the length of edges at risk. Index T 
represents a 10-year sub-period. The sub-utility 
functions of the number of stands at risk, their 
area and the length of edges at risk had a descend-
ing shape, i.e. sub-utilities decreased with the 
increment of the three variables (Fig. 2a). The 
weights Wd, Wa and We were set to 0.111, 0.222 
and 0.667, respectively, because the length of 
edges at risk was considered the most important 
variable to assess the risk of wind damage in Finn-
ish conditions (Zeng et al. 2006). The purpose of 
the optimization was to maximize the total utility, 
which means minimizing the risk of wind damage 
and trying to keep an even flow of periodical 
timber harvest (10-year harvests). 

2.3 Application of the Ant Colony 
Optimization (ACO)

The original algorithm of ACO was specially 
designed for the traveling salesman problem 
(TSP) (Dorigo et al. 1996, Dorigo and Gam-
bardella 1997). In this optimization technique, 
each alternative solution is named as an ant. A 
number of ants compose an ant cycle. The ants 
are usually located at different cities (e.g. one ant 
for each city). All the ants move at the same time. 
An ant located at city x goes to city y among the 
unvisited cities according to a probability (Eq. 3) 
(Dorigo et al. 1996):
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where P txy
k ( ) is the probability for ant k to move 

from city x to city y, l is the index of the cities 
which allowed for ant k to visit (allowedk), t 
represents the moving time of the ant from one 
city to another and also the iterations, txy(t) is the 
intensity of pheromone trail on path (x, y) at time 
t, i.e. the pheromone laid by previous ants who 
had chosen path (x, y), hxy is called visibility and 
is the inverse value of the distance between cities 
x and y, a and b are two positive parameters that 
control the relative importance of pheromone 
versus visibility. 

The pheromone intensity txy(t) is updated when 
the ant cycle is ended, i.e. all the ants complete 
their tours. This is because the pheromone evapo-
rates at a certain rate with time, and new pherom-
one is added if new ants select the path (x, y). The 
optimization process is iterated for a number of 
ant cycles. It stops when all the ants in the same 
cycle select the same tour of all the cities. The ter-
minating conditions can also be set in some other 
way, e.g. on the basis of the number of iterations, 
or the aspired values of objective variables.

In forest planning problems there are no real 
paths for ants to select. The treatment schedules 
of the same stand, however, can be treated as dif-
ferent “path” options for ants to select. This kind 

of path has no distance, i.e. the visibility values η 
are not used in our revised ant colony optimiza-
tion algorithm. Thus, an ant selects a schedule of 
a stand according to the probability (Eq. 4):
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where Pij(t) is the probability to select schedule 
j of stand i at time t (i.e. ant cycle and iteration), 
tij(t) is the pheromone of schedule j of stand i 
at ant cycle t, a is a parameter controlling the 
intensity of the pheromone on the probability 
of selecting the schedule, Ji is the total number 
of schedules of stand i. The pheromone tij(t) is 
updated at each cycle t (Eq. 5):

t r t tij ij ijt t t( ) ( ) ( ) ( )= ⋅ − +1 5D

where r is a coefficient such that 1 – r is the 
evaporation rate of the pheromone, tij(t – 1) is the 
previous pheromone intensity of the schedule j. 
At the beginning of optimization the initial phe-
romone tij(0) is usually set to a constant value 
(number of ants per cycle/3 in this study). Dtij(t) 
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is the new pheromone trail at time t added by the 
ants who select schedule j of stand i. It is calcu-
lated by Eqs. 6 and 7:
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where Dtijk(t) is the pheromone added by ant k 
to schedule j of stand i during ant cycle t, n is the 
number of ants per cycle, Uk(t) is the utility value 
of ant k of cycle t calculated by Eq. 1 (Uk(t) is 
corresponding to U(s) in Eq. 1), g  is a positive 
parameter that controls the effect of utility on 
the amount of added pheromone (i.e. a power 
function of Uk(t)), Q is a constant to prevent the 
cumulative pheromone level from being too high 
or too small. Different values of Q were tested 
in this study and the final pheromone values of 
all the schedules in each stand were output and 
studied. Q with a value of 32 gave reasonable phe-
romone intensities after a number of ant cycles, 
and was therefore used in the optimizations of 
this study.

The original algorithm of ACO will most prob-
ably get trapped in local optima (Sun et al. 2004) 
because the pheromone contents of some paths 
(schedules in this study) may be too low to be 
selected by any ants within a small number of 
iterations. In order to guarantee that each schedule 
in a stand can get enough pheromone at cycle t, a 
lower bound of the pheromone in each stand was 
set in our revised algorithm (Eq. 8):
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where tiMax(t) is the maximum pheromone among 
the schedules of stand i at cycle t, g is a parameter 
that controls intensity of decreasing the lower 
bound values. The lower bound will decrease 
with the number of cycles so that the algorithm 
can converge at the final stage.

An ant completes its tour by selecting one 
schedule per stand (i.e. to compose a forest plan). 
The pheromone of each schedule in each stand 

is updated after all the ants in a cycle complete 
their tours. Before a new ant cycle is created, the 
utilities of the forest plans are calculated and the 
pheromone levels of the schedules are updated 
according to the utilities of the plans. Therefore, 
an iteration of the algorithm is equal to developing 
a set of forest plans (ants), evaluating the plans, 
and updating the pheromone levels. The ant with 
the best utility value is always maintained in 
the memory. The final solution of the algorithm 
(Appendix 1) is the plan found during the whole 
run.

2.4 Performance of the ACO for the Risk 
Management of Wind Damage in Forest 
Planning

The performance of the ACO was tested using 
different values of the parameters of the algorithm 
(i.e. a, g , g and n, see Table 1). However, coef-
ficient r controlling pheromone evaporating was 
fixed at 0.5 in the sensitivity analysis according 
to suggestions in earlier studies (Gorigo et al. 
1996, Bonabeau et al. 2000). Moreover, since the 
calculation within the ArcGIS is very time con-
suming, the algorithm was moved outside ArcGIS 
for the sensitivity analysis. All the other analyses 
were done in ArcGIS and they used the “optimal” 
parameter values found in the sensitivity analy-
ses. In the sensitivity analyses conducted outside 
ArcGIS, the input dataset and the problem formu-
lation were the same as in ArcGIS, but the spatial 
calculation was simplified because GIS was not 
used. The gap size was fixed at 10 times the mean 
tree height of the stand. In addition, only 3000 
solutions (forest plans) were evaluated in one 
optimization run. This number of solutions was 
also used in ArcGIS as a stopping criterion. This 
is because the optimal parameter values depend 
on the allowed converging time, and converging 
time mostly depends on the number of candidate 
solutions. The optimization was repeated 6 times 
with each parameter combination in sensitivity 
analyses. The parameter value, which gave the 
largest average value of the best ants in the 6 
repetitions, was chosen as the “optimal” param-
eter value.

The output results were evaluated to confirm if 
the ACO would achieve the defined objectives, 
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i.e. minimizing the risk of wind damage and 
maintaining even-flow of periodical harvests. The 
forest landscape at the end of the planning period 
was described by a fragmentation metric called 
Contrast-Weighted Edge Density (CWED; see 
FragStats 2006). The CWED metrix measured 
the fragmentation based on the contrast of the 
neighbor stands in terms of the tree height.

The performance of ACO was compared with 
two other heuristic optimization techniques, 
namely simulated annealing (SA) and genetic 
algorithms (GA). SA and GA were used for the 
same planning problem with the same formulation 
(utility function). Since the extraction of forest 
gaps and edges, and calculation of gap sizes, 
dominated the computing time of the whole opti-
mization process, the heuristic algorithm had little 
influence on the total calculating time. The same 
number of alternative solutions (forest plans) as in 
ACO (i.e. 3000) was tested in SA and GA so that 
they were running for almost the same time. 

SA is a local improvement method. A change of 
the solution is called a move. Solutions that can be 
obtained with one move form the neighborhood 
of the current solution. In this work, a move was 
equal to making two simultaneous changes in the 
current solution, i.e. the treatment schedule was 
changed simultaneously in two stands, because 
the two-stand neighborhood has been found to 
be a better approach in spatial problems than 
the more commonly used one-stand neighbor-
hood (Heinonen and Pukkala 2004). Moves that 
improve the objective function value are main-
tained. Non-improving moves are maintained 
with a probability of p = exp((UNew – UOld) Ti

–1), 
where Ti is the current “temperature”, and U is 
the objective function value. The “temperature” 
defines the probability of accepting a candidate 
solution poorer than the current solution. During 

the optimization process the temperature is gradu-
ally decreased so that at the end of the search the 
likelihood of accepting inferior moves is close to 
zero. In this study, the search was stopped when 
a certain number solutions had been evaluated. 
Different values of the parameters of simulated 
annealing were studied using trial and error, 
and the following values were used with a total 
number of 3000 solution evaluations: The initial 
and freezing (stop) temperature were 0.72135 and 
0.00334, respectively. The cooling multiplier was 
calculated from the temperatures so that a fixed 
number of iterations (3000) were performed.

Unlike SA, the search process of GA is not 
based on neighborhood search. Instead, GA are 
based on an initial population of solution alterna-
tives, their evaluation and their breeding. Each 
iteration (named as a generation) has a set of 
alternative solutions called parent chromosomes. 
Two of these parent chromosomes were selected 
to generate a new chromosome for the next 
generation. One chromosome was selected with 
a probability proportion to its ranking; the other 
was chosen randomly with an equal probability 
for all the remaining chromosomes. The two 
selected parent chromosomes were processed by 
crossing over (combining parts of two chromo-
somes) and mutation (random change in one or 
several genes, or stands) giving birth to a new 
chromosome (offspring). The incremental GA 
technique was used in this study, i.e. the new 
chromosome replaced one chromosome of the 
current population. The removed chromosome 
was selected based on its objective function value, 
the probability of removal being highest for chro-
mosomes that had a low utility function value. 
The parameters of the GA were optimized as 
follows: population size of each generation was 
set as 40 solutions. The probabilities of mutation 
at first iteration (0.5) and at last iteration (2.0) 
were set according to similar study of Zeng et al. 
(2007), and other studies on forest planning by 
Heinonen and Pukkala (2004) and Pukkala and 
Kurttila (2005). The probability of a mutation for 
intermediate iterations was obtained with linear 
interpolation. A probability of 0.5 means that one 
random stand (gene) is mutated with a probability 
of 0.5. A probability of 2.0 means two random 
stands are mutated with a probability of 1.0.

Table 1. Sensitivity analysis of ACO parameters.

Parameter Analyzed values

u 6, 10, 14, 16, 18, 22
Ant numbers of  20, 30, 40, 50
   a cycle
a 0.8, 1.0, 1.1, 1.2
g 0.25, 0.5, 0.8, 1.0, 1.2, 1.5, 4
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3 Results
3.1 Effects of ACO Parameters

When studying the sensitivity of the ant colony 
optimization (ACO) to its parameters, it was found 
that small changes in g  had a very small effect on 
the performance of the algorithm. For example, the 
performance of g  = 10 was difficult to distinguish 
from the performance of g  = 6 and 14. The same 
occurred when comparing cases g  = 16 or g  =18 
to g  = 14 or g  = 22. This is because the utilities of 
most solutions (ants) were within a small range 
(0.7–1). Therefore, parameter g was changed on a 
larger scale in the sensitivity analysis so that there 

was more difference in the pheromone between 
schedules within the same stand. The higher was 
the value of g, the more important were the ants 
with high utilities in reinforcing new pheromone. 
The algorithm converged faster with high g  values 
than with low g values (Fig. 3), i.e. the mean utility 
of an ant cycle increased fastest and its standard 
deviation decreased fastest when g  was set to 22. 
Although the algorithm with parameter of g  = 22 
had the highest mean utility at the final stage, it 
did not output the best utility value. The algorithm 
gave the best utility (0.9771) with g  = 18 when the 
other parameters were fixed as: a  = 1, g = 1, and 
30 ants per cycle. 

The influence of parameter g  on the pheromone 

Fig. 3. Sensitivity analysis for parameter g : mean utility (a) and its standard 
deviation (b). Other parameters were fixed: a  = 1, g = 1. Each cycle had 
30 ants.

a)

b)
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depends on the lower bound g. The algorithm 
with a larger value of g (e.g. 4) had a lower mean 
utility and higher standard deviation in most ant 
cycles (Fig. 4). This is because a large value 
of g (e.g. 4) limits the difference between the 
maximum and minimum pheromone (Eq. 8). As 
a result, the algorithm converged more slowly. 
When parameter g was decreased to a very small 
value, for example 0.25, the result differed little 
from the case of g = 0.5. It seems that 0.25 was 
a too small value to constrain the lower bound 
pheromone, and therefore it had little influence 
on the algorithm performance. 

When studying effect of the number of ants 
per cycle on the convergence of the algorithm, 
the same total number of candidate solutions 
(3000) was still used. Thus the number of ant 
cycles differed when using different number of 
ants per cycle. There were over 150 cycles when 
each cycle had only 20 ants, and about 60 cycles 
with 50 ants per cycle. The algorithm gave a much 
higher mean utility when a cycle had 20 ants com-
pared with 30 or 50 ants in each cycle (Fig. 5). 
Even within the same number of ant cycles, the 
mean utility was larger when there were only 
20 ants in a cycle, while it was smaller when 

Fig. 4. Sensitivity analysis for the lower bound of pheromone (g): mean utility 
(a) and its standard deviation (b). Other parameters were fixed: g  = 14, 
a  = 1, 20 ants per cycle. 

a)

b)
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the cycle had 50 ants (Fig. 5). Therefore, many 
more iterations were needed for the algorithm 
to converge when each cycle had 30 or 50 ants. 
As 20 ants per cycle is a small number already, 
smaller number of ants per cycle was not tested 
in this study.

Since both parameter g  and the number of 
ants per cycle can affect the convergence of the 
algorithm, the two parameters were combined and 
their joint influence on the algorithm perform-
ance was studied (Table 2). It was found that 
different combined parameter values result in a 
rather similar utility. For example, when the cycle 
had 20 ants with parameter g  = 14, the algorithm 
gave a similar utility as in the case when a cycle 
had 30 ants with g  = 18. Therefore if parameter g 

Fig. 5. Sensitivity analysis for the number of ants in a cycle: mean utility 
(a) and its standard deviation (b). Other parameters were fixed: g  = 14, 
a  = 1, g = 1.

Table 2. The best utility outputted by the ant colony 
optimization using different combined values of 
parameter g  and the number of ants per cycle.

 Number of ants per cycle

 20 30 40 50

g  = 6 0.975 0.973 0.971 0.969
g  = 10 0.975 0.974 0.971 0.971
g  = 14 0.9773 0.974 0.972 0.972
g  = 16 0.9767 0.975 0.975 0.972
g  = 18 0.975 0.9771 0.975 0.974
g  = 22 0.976 0.974 0.976 0.974

Note: The values in bold were outputted maximum utilities.

a)

b)
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was fixed to 14, the optimal number of ants per 
cycle was 20; while it was 30 when parameter g 
was fixed to 18. The combination g  = 14 and 20 
ants per cycle gave the largest utility (Table 2). 
Thus, the joint influence of different parameters 
needs to be studied in order to search the optimal 
parameter values of the algorithm.

Compared to parameter g and the number of 
ants per cycle, a smaller change of parameter 
a, defining the selecting probability, could sig-
nificantly affect the performance of ant colony 
optimization. The mean utility increased signifi-
cantly and its standard deviation decreased sig-
nificantly when a was increased by 20% (i.e. 1.2), 
and vice versa (Fig. 6). The algorithm seemed to 
converge much earlier during the optimization 

process when a was 1.2, i.e. the standard devia-
tion of utility within a cycle was around 0.01 after 
60 cycles (Fig. 6b). Due to smaller variation, it 
gave a smaller best utility than a  = 1 even though 
a  = 1.2 had a larger mean utility. The effect of 
parameter a is so significant because it changes 
the probability of selecting schedules directly and 
no lower bound affects the selecting probability 
between schedules within the same stand.

3.2 Performance of ACO in the Forest 
Planning Problem

According to the results of all the sensitivity 
analyses the values of the parameters were set 

Fig. 6. Sensitivity analysis for parameter a: mean utility (a) and its standard 
deviation (b). Other parameters were fixed: g  = 14, g = 1. Each cycle had 
20 ants.

a)

b)
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as follows: g  = 14, g = 0.5, a  = 1, and 20 ants per 
cycle. The clear-cut regime of the study area was 
optimized using the ACO inside ArcGIS with the 
optimal parameter values. 

The ACO algorithm performed logically in the 
forest spatial planning problem under multiple 
objectives (Fig. 7). Both the mean and best utility 
increased during the optimization process. The 
mean utility of each ant cycle increased from 0.68 
at the beginning to 0.94 at the end of optimization 
while the standard deviation of a cycle decreased 
from 0.06 to 0.02. Thus, the solution improved 
during the optimization process and the algorithm 
gradually converged, but it did not reach the stag-
nation stage after over 150 ant cycles (i.e. 3000 
solutions, see Fig. 7).

The ACO optimization also gave rational results 
for the forest planning problem. The harvested 
volumes were quite even for the three 10-year 
sub-periods (Table 3). In addition, the risk of 
wind damage decreased signifi cantly (Table 3). 
Most of the clear-cut stands were clustered at 
each period (Fig. 8). Clustered clear-cuts reduced 
the total length of forest edges. A few scattered 
clear-cuts may be required to fulfi ll the even-fl ow 
target of timber harvesting. In addition, the land-
scape confi guration regarding stand height was 
also smoothed during the 30-year period (Fig. 9). 
Fewer old stands, which are the most vulnerable 
to be damaged, were located at the edges as 
compared to the initial forest. Furthermore, the 
fragmentation statistic CWED decreased from 

Fig. 7. The current and best utilities output by ACO.

Table 3. The harvested timber and the risk of wind 
damage output by the ACO.

Planning period Harvest (m3) The risk of wind damage

 Stands Area (ha) Edges (m)

1st period 9174 5 7.3 1501
2nd period 9379 4 9.3 439
3rd period 8919 1 2.3 864

Fig. 8. The optimal clear-cut schedules output by 
ACO.

Clearcut schedule

No clearcut

1st period 3rd period

2nd period
0 250 500 m
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0–2

≥ 2015–20

10–152–10Stand height (m)

Fig. 9. The landscape confi guration of stand height: (a) 
the initial forest (b) the forest at 30th year.

Fig. 10. Development of objective function value (utility) in ant 
colony optimization (ACO), simulated annealing (SA) and 
genetic algorithms (GA).

When comparing the performance of ACO 
with other heuristics simulated annealing (SA) 
and genetic algorithm (GA), it was found that in 
general, the three heuristic techniques resulted in 
very similar fi nal output (Fig. 10). The fi nal utility 
values outputted by ACO, SA and GA were 0.960, 
0.966 and 0.958, respectively. 

The optimization process within ArcGIS was 
very time-consuming. This program was coded 
and run in a PC with CPU of 1.5G Hz and RAM 
of 1G bytes using MS Windows 2000 operat-
ing system. In the pretest of the ACO coded in 
ArcGIS, the algorithm spent on average 21 h 
54 min to complete the evaluation of altogether 
1500 alternative solutions. The main reason 
for the slowness is that the spatial calculation 
(extraction of gaps, edge stands and edges, gap 
size calculation) in ArcGIS is complicated and 
therefore time-consuming. This kind of spatial 
calculation must also be repeated for each alter-
native solution. Therefore, the complexity of the 
ACO algorithm itself had little impact on the total 
computing time compared to spatial calculation 
in GIS. The same situations occurred with SA 
and GA implemented in ArcGIS. Furthermore, 
the computing time varied signifi cantly. In the 
pre-tests with 1500 solution evaluations the mini-
mum computing time was 16 h 6 min while the 
maximum was 27 h 11 min. The large variation 
in computing time is mainly due to differences in 
forest gap patterns, which induce variation in the 
time required for the spatial calculation.

78 m/ha at the beginning to 65 m/ha at the end of 
simulation. Thus, the ACO algorithm found rea-
sonable temporal schedules and spatial patterns 
of clear-cuts to decrease the risk of wind damage 
while maintaining even periodical harvests. 

a)

b)
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4 Discussion and Conclusions
This study revised the original ant colony optimi-
zation (ACO) to be specific for the combinatorial 
problems in forest planning. The revised ACO 
performed logically since the objective function 
value (utility) was improved and the algorithm 
gradually converged during the optimization 
process. The ACO gave reasonable solutions to 
the forest planning problem set in this work. The 
harvests of the three sub-periods were quite even. 
The clear-cuts were clustered so as to reduce the 
length of vulnerable forest edges. The landscape 
was smoothed to prevent old stands from being 
located at edges. The results were similar to an 
earlier study by Zeng et al. (2007) who used 
simulated annealing (SA), tabu search (TS) and 
genetic algorithms (GA) to solve a similar prob-
lem. Furthermore, the performance of the ACO 
was also found in our work comparable to two 
other heuristic optimization techniques, named 
as SA and GA. 

The revised ACO is quite different from the 
original ACO algorithm because forest planning 
problems are different from the traveling salesman 
problem for which ACO was originally designed. 
Firstly, the treatment schedules are not real paths 
and therefore they have no distance values. Thus, 
the probability of selecting a schedule within 
a stand only depended on the pheromone trail 
laid by ants (Eq. 4). Secondly, in the traveling 
salesman problem a city may have several paths 
connecting to different cities so that all the cities 
are connected as a network. The number of ants in 
each cycle is usually set the same as the number of 
cities and each city is located an ant (Dorigo et al. 
1996). However, the treatment schedules of forest 
stands do not form a network. Therefore, all the 
ants start their tour from the first stand and follow 
the same sequence to the last stand, although they 
could equally well start from different stands and 
follow different sequences. In addition, the best 
ant is maintained in the next ant cycle so that the 
importance of the best ant is reinforced in the 
optimization. Dorigo et al. (1996) also used a 
similar elitist strategy to reinforce the importance 
of the best ant since it proved to be efficient to 
search for the optimal solution.

The algorithm was programmed in the Visual 
Basic Application (VBA) of the GIS software 

ArcGIS that accommodates the topology of poly-
gons and arcs. The spatial complexity, such as 
extraction of gaps, edge stands and edges, calcu-
lation of gap sizes, and the links between edges 
and edge stands, could be done within the pro-
gram automatically. On the other hand, the spatial 
calculation must be repeated for each alternative 
solution because different clear-cut patterns have 
different spatial patterns of gaps and consequently 
different edge stands and edges. This kind of 
spatial calculation is time-consuming, and the 
complexity of the heuristic algorithm itself has 
little impact on the total computing time for this 
specific problem. Thus, the parameter values, 
which affect the converging time and the possibil-
ity of getting trapped into local optimal, seemed 
to be important when solving the problems with 
spatial calculations. This is also why only 120 
stands and 3000 alternatives were demonstrated 
in this study. The same routine can, however, 
be applied to a larger area and with more itera-
tions without any technical problems provided 
that advanced computers are available or parallel 
system implemented. The computing may also be 
a reason why it is not common to call GIS from 
a heuristic algorithm during an optimization run. 
Instead, simplified algorithms for dealing with the 
topology are utilized to fasten the computation of 
spatial variables.

The initial pheromone and the lower bound of 
pheromone affected so that most schedules were 
pre-tested during a rather small total number of 
iterations. The lower bound strategy was also 
proved efficient by Sun et al. (2004). Higher 
values of lower bound (affected by parameter 
g) may, however, delay the convergence of the 
algorithm as demonstrated in this study. In addi-
tion, higher values of g (Eq. 7) can reinforce the 
weights of the ants with higher utilities when 
calculating the new added pheromone trail. The 
difference between the best and worst schedules 
will also be enlarged and the optimization process 
will converge faster. The effects of higher values 
of parameter g may, however, be limited by the 
lower bound if parameter g is set to a high value. 
Thus, the value of g must be consistent with the 
value of g. 

Moreover, with the same total number of eval-
uated alternatives, smaller number of ants per 
ant cycle increases the number of ant cycles 
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and therefore the algorithm converges faster. On 
the other hand, it has a higher risk of getting 
trapped into local optimal. Unlike parameters g 
and the number of ants per cycle, a small change 
of parameter a will significantly affect the per-
formance of the algorithm. This is because a 
directly affects the schedule selecting probabili-
ties without limitation of the lower bound of the 
pheromones.

When searching for the optimal values of the 
parameters by sensitivity analysis it may not be 
enough to change only one parameter value and 
fix all the others. The optimal value of a parameter 
may depend on the values of other parameters. 
Therefore, it would be better to change several 
parameters simultaneously and study their joint 
impact on the algorithm. Pukkala and Heinonen 
(2006) proposed a method for finding the opti-
mal parameter combination of heuristics used in 
forest planning. The use of this method would 
mean, however, that much more time is needed to 
find the optimal parameter values. Furthermore, 
the optimal values of parameters most probably 
depend on the number of iterations (convergence 
time). Usually, more iterations produce better 
solutions and need such parameter values for the 
algorithm that lead to slower convergence. 

In conclusion, the revised ant colony optimi-
zation can be applied in forest planning to solve 
combinatorial problems since it performs logi-
cally, outputs reasonable results, and is compa-
rable to other heuristics. In addition, the GIS 
software, which serves as a platform of the ACO 
program, expanded the program to solve the 
problems with spatial calculations (e.g. the risk 
management of wind damage as well as sustain-
able even flow timber harvesting). As the spatial 
calculation is complicated and time-consuming, it 
is important to carefully balance between the con-
verging time and the likelihood of getting trapped 
in local optima when setting the parameter values 
and number of iterations. 
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Appendix 1. The algorithm of the revised ACO.

The algorithm of the revised ACO is listed below:
1. Initialization
 Set initial pheromone tij(0) = c, c is a constant value.
 Create the initial ant cycle (i.e. create ants by randomly selecting a schedule per 

stand) and calculate the timber harvesting, the risk of wind damage and the util-
ity of each ant.

 Search the BestAntId according to the utilities.
 Set UpdateAntId in the cycle.

2.  Pheromone calculation
 FOR i = 1 TO standcount //standcount is the number of stands
  IF stand i has more than 1 schedule THEN
   FOR j = 1 TO schedulecount (number of schedules) of stand i
    Calculate tij(t) by Eqs. (5)–(7).
  NEXT j (schedule)
  Check the lower bound pheromone value of schedules in stand i by Eq. (8).
 NEXT i (stand)

3. Create new ant cycle by updating ants in previous ant cycle
  FOR k = 1 to antCount //antcount is the number of ants per cycle
  FOR i = 1 TO standcount
   IF stand i has more than 1 schedules THEN
    Select a schedule for stand i by Eq. (4).
 NEXT i (stand)
 Calculate utility for the new ant.
 IF ant k is not BestAntId THEN
  Replace ant k.
  Renew updateAntId.
 NEXT k (ant)
 Update the BestAntId.

4. IF the stop criteria not satisfied THEN
  GOTO step 2, repeat cycle.
 ELSE
  Stop.
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Appendix 2. Notations.

allowedk: The cities allowed for ant k to select for its trip;
g: A parameter that controls the minimum pheromone value;
i: Index of forest stand;
j: Index of schedule;
Ji: Total number of schedules in stand i;
k: Index of ant number in an ant cycle;
n: Number of ants per cycle;
Pxy

k(t): Probability of selecting path (x,y) for ant k at time t;
Q: A constant to prevent the cumulative pheromone level from being 

too high or too small to be used for calculating the schedule select-
ing probability;

T: Index of sub-planning period (10 year);
t: Time of ant moving;
U(s): Total utility of solution s (forest plan);
Uh(s): Sub-utility of timber harvesting;
Ur(s): Sub-utility of the risk of wind damage;
Ud(s): Sub-utility of the number of stands at risk;
Ua(s): Sub-utility of the areas at risk;
Ue(s): Sub-utility of the length of edges at risk;
Uk(t): Utility of ant k in cycle t; it corresponds to U(s);
Wh: Weight of timber harvesting objective;
Wr: Weight of the risk of wind damage objective;
Wd: Weight of the number of stands at risk;
Wa: Weight of the areas at risk;
We: Weight of the length of edges at risk;
x, y: Index of cities;
a: Positive parameter to control the importance of pheromone
b: Positive parameter to control the importance of visibility;
g: A positive parameter to control the effect of utility on the amount of 

added pheromone;
hxy: Visibility, i.e. the inverse value of the distance between cities x and 

y;
r: A coefficient such that 1 – r is the evaporation rate of the pherom-

one;
txy(t): Intensity of pheromone trail on path (x, y) at time t;
tij(t): Pheromone of schedule j in stand i at time t;
Dtij(t): New pheromone trail added by the ants that select schedule j in 

stand i;
Dtijk(t): New pheromone added by ant k that selects schedule j in stand i;
tiMax(t): The maximum pheromone among the schedules of stand i at time t;
tiMin(t): The minimum pheromone among the schedules of stand i at time t.
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