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Our purpose was to develop a FTIR spectroscopic method to be used to determine the lignin 
content in a large number of samples and to apply this method studying variation in sapwood 
and heartwood lignin content between three fast-growing cutting clones grown in three sites. 
Models were estimated with 18 samples and tested with 6 samples for which the Klason 
lignin + acid soluble lignin content had been determined. Altogether 272 candidate models 
were built with all-subset regressions from the principal components estimated from differ-
ently treated transmission spectra of the samples; the spectra were recorded on KBr pellets of 
sieved and unsieved unextracted wood powder and subjected to four different preprocessings 
and two different wavenumber selection schemes. The final model showed an adequate fit 
in the estimation data (R2 = 0.74) as well as a good prediction performance in the test data 
(R2

P = 0.90). This model was based on the wavenumber range of 1850–500 cm–1 of the line-
subtraction-normalised spectra recorded from sieved samples. The model was used to predict 
lignin content in 64 samples of the same material. One of the clones had a slightly lower 
sapwood lignin content than the two other clones. The fertile growing site with fast growing 
trees showed slightly higher sapwood lignin content compared with the other two sites. The 
model was also used to predict the lignin content in the earlywood of 45 individual annual 
rings. Variation between individual stems and between annual rings was found to be large. 
No correlation was found between the lignin content and density of earlywood.
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1 Introduction
The conifer cell wall consists of 40–50% cellu-
lose, 20–35% hemicellulose and 15–35% lignin 
(Panshin and deZeeuw 1980, Sjöström 1993, 
Walker 1993). In the stem wood of Norway spruce 
the mean lignin content (gravimetric lignin + acid 
soluble lignin) has been reported to be 28.9% 
with standard deviation of 0.8% (Anttonen et al. 
2002, Anttonen, personal communication). The 
variation of lignin content in wood raw mate-
rial causes problems to wood-utilizing industry, 
which endeavours to assure a uniform quality of 
the end products. On the other hand, the natural 
genetic variation in trees provides an opportunity 
to select individuals with desirable lignin contents 
for breeding. So far, however, the genetic varia-
tion in lignin content or composition in trees has 
been studied very little. 

The lignin content has traditionally been deter-
mined by wet chemical methods e.g. with the acetyl 
bromide method (spectrophotometric method) 
suitable for a small amount of sample (Iiyama and 
Wallis 1988, Hatfield et al. 1999, Fukushima and 
Hatfield 2001, Hatfield and Fukushima 2005) and 
with the Klason lignin (gravimetric method) and 
acid soluble lignin (spectrophotometric method) 
measurement (Dence 1992) suitable for a large 
amount of sample. In the first method the ground 
extracted wood is dissolved in acetyl bromide 
in acetic acid containing perchloric acid and in 
the latter methods degraded with sulphuric acid 
(Iiyama and Wallis 1988). The extraction is often, 
e.g. with the Soxhlet method, slow and consumes 
a large amount of organic solvent. Hence, it is 
unfeasible for large sets of samples. A rapid and 
reproducible method for screening of lignin con-
tent, as well as other cell wall properties, would 
thus be welcome to practical wood use and tree 
breeding purposes.

Transmission or diffuse reflectance spectra in 
the mid infrared or near infrared regions (NIR) 
are fast and relatively easy to measure and have 
been shown to provide reliable information on the 
chemical properties of biological materials. The 
KBr transmission technique is the most common 
tool for the quantitative estimation of lignin and 
suitable for routine work (Faix 1992). The diffuse 
reflectance infrared Fourier transform (DRIFT) 
method is suitable for a wood surface investiga-

tion and the lignin evaluation in wood, though 
its reproducibility is considered to be poor (Faix 
1992). Absorption bands of spectrum represent 
vibration frequencies, which are characteristic of 
covalent bonds or functional groups and a whole 
molecule. The problem from the lignin model-
ling point of view is that many of the chemical 
components in wood contribute to the intensities 
at all or a large part of the wavenumbers, and that 
few wavenumber regions or bands, if any, thus 
reflect purely lignin (Ferraz et al. 2000, Costa e 
Silva et al. 1999); specifically, the aromatic signal 
intensities are low in comparison with the more 
polar polysaccharides. Consequently, it would 
seem prudent to base lignin content modelling on 
the intensity information on the whole spectrum. 
This is likely to result in a dimensionality prob-
lem, as a spectrum typically consists of intensities 
at some thousands of wavenumbers but not more 
than some dozens or hundreds wood samples 
can realistically be expected to be available for 
modelling.

In earlier studies, the relation between lignin 
content of a wood sample and a Fourier transform 
infrared (FTIR) spectra measured on it has been 
quite successfully modelled using linear regres-
sion in Eucalyptus globulus (Rodrigues et al. 
1998), principal component regression (PCR) in 
Picea sitchensis and biodegraded Pinus radiata 
(Costa e Silva et al. 1999, Ferraz et al. 2000), par-
tial least squares (PLS-1) in Pinus radiata (Meder 
et al. 1999), and projection to latent structures 
(PLS-2; lignin modelled simultaneously with 
glucan and polyoses) in biodegraded Eucalyp-
tus globulus and Pinus radiata (Ferraz et al. 
2000). The models have been built with a collec-
tion of individual wavenumbers or wavenumber 
regions or the whole spectrum as the input; the 
dimension reduction has then been tackled with 
a theoretically or empirically motivated selection 
of individual wavenumbers, or with principal 
component analysis (PCA), or, as in PLS-1 and 
PLS-2 methods, with a method resembling PCA 
where the components are formed by maximis-
ing not their variances but their covariances with 
the lignin content. The work by Gierlinger et al. 
(2002), although not dealing with lignin and FTIR 
but modelling heartwood extractives in Larix sp. 
with PLS models based on FTNIR spectra, sets a 
good example in coping with the various aspects 
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of sample preparation, spectrum preprocessing, 
wavenumber selection as well as model valida-
tion and evaluation that one is likely to encounter 
is this kind of modelling work. However, as far 
as we know, no such work has been done on 
Norway spruce. Also, although many articles 
have been written on the building of the statistical 
models, very few if any report the actual use of the 
obtained models for the purposes (e.g. screening) 
to which they were intended. 

The purpose of our work was to develop a 
method based on FTIR spectra to determine the 
relative total lignin content of clonal Norway 
spruce samples and to use the method to study 
lignin variation in a large number of samples of 
similar kind. The aim was to replace the combina-
tion of three wet chemical methods (extraction, 
Klason lignin and acid soluble lignin determina-
tion) with one FTIR spectroscopic method, where 
the total lignin content is predicted in the small 
amount of powdered unextracted wood sample. 
This paper describes the building of an empirical 
lignin content model by using all-subset princi-
pal component regression; with the model, the 
percentage of dry mass of total lignin in a wood 
sample may be predicted by the FTIR spectrum 
measured on it. The key feature of the model 
building was that the selection of the final model 
was based equally on its fit in the estimation 
data and on its prediction performance in the test 
data. The paper also reports the application of the 
model to predict the lignin content variation in 
a large number of samples taken from the same 
three Norway spruce cutting clones planted on the 
same three sites of different fertility and climate 
from which the model was built. 

2 Material and Methods

2.1 Material

Disks of wood were sawn at breast height (1.3 m)  
from the stems of 44 trees representing three dif-
ferent Norway spruce (Picea abies [L.] Karst.) 
cutting clones (A, B, C) growing at three different 
sites in Finland: Loppi (60°37´N 24°26´E), Imatra 
(61°08´N 28°48´E) and Kangasniemi (61°57´N 
26°41´E). The trees were 26, 28 and 24 years old 

at the time of felling. Samples (about 5 g) were 
taken from annual rings 3–6 in the heartwood and 
from three annual rings (rings between 13 and 22) 
in the middle of sapwood area. The distribution of 
the samples in different site-clone combinations 
is shown in Table 1. In addition, samples were 
taken from earlywood of 45 individual annual 
rings from 9 trees (5 samples per tree, 3 trees 
per each of the three clones) grown in one site 
(Loppi). Trees with the highest, average and slow-
est growth rate were chosen from each of the three 
clones. Annual rings with high and low peaks of 
weight density were further chosen in order to 
maximise density variation. The samples were 
taken avoiding knots and compression wood. 
The Norway spruce clones and their growth rate, 
weight density, mechanical strength properties 
and lignin modification experiments are described 
in Raiskila et al. 2006a, 2006b.

2.2 Klason Lignin and Acid Soluble Lignin 
Measurement

For model estimation and model testing, the 
relative total lignin (Klason lignin + acid solu-
ble lignin) content was measured in duplicate 
for the sapwood and heartwood samples of 12 
stems (24 samples) representing the three dif-
ferent clones growing in the three different sites 
(Table 1). Wood samples were ground frozen 
with a blade-mill (Polymix PX-A10). The dry 
solids content of the milled wood samples was 
determined at 103 °C. The samples of air-dried 
wood powders (3 g) were extracted with acetone, 
ethanol and water using a Soxhlet apparatus for 
6 hours with each solvent separately (modified 
KCL 1982). After evaporation of the solvents the 
residues were dried at 103 °C, allowed to cool 
in a desiccator and then weighed. The amount 
of acid insoluble lignin was determined by the 
Klason method (KCL 1982, Dence 1992). The 
samples of the extracted wood powders (300 mg) 
were treated with 3 cm3 of 72% sulfuric acid in 
an ultrasonic bath for 1 hour. The mixtures were 
diluted with about 82 cm3 portions of water and 
autoclaved at 125 °C for 1 hour. The precipitates 
were collected with sintered glasses (4G) by suc-
tion filtration and washed with water. The sinters 
with the acid insoluble lignin (Klason lignin) 
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were dried at 103 °C, cooled in the desiccator 
and weighed. In order to determine the amount of 
acid soluble lignin the filtrates were diluted with 
water to 250 cm3. Absorption of the acid solutions 
with the dissolved lignin was measured at 203 nm 
using sulfuric acid of the same concentration as a 
blank (KCL 1982). The absorbance readings were 
obtained with a Shimadzu UV-2401 PC UV-VIS 
Recording spectrophotometer. The relative total 
lignin (Klason lignin + acid soluble lignin) con-
tent was calculated from the unextracted wood 
as follows: Klason lignin % = p × (100 – u)  /  m, in 
which p = precipitate [g], u = extractives [%] and 

m = calculated dry weight of extracted sample [g]. 
The acid soluble lignin content was calculated 
using a lignin absorptivity of 128 l g–1 cm–1 and 
corrected because of the absorption of carbohy-
drates according to a procedure of KCL (1982). 
The relative total lignin content of each sample 
was determined as the mean of the duplicate 
measurements; this is referred to as the measured 
lignin content of the sample. The variation of the 
measured lignin contents in the model estima-
tion and model testing data sets is summarised 
in Table 2.

Table 1. Numbers of the samples taken from each site-clone combination and used for model estimation, model 
testing and lignin content prediction. The numbers of the stems are given in parentheses. In model estima-
tion, model test and prediction data two samples (one from heartwood and one from sapwood) were taken 
in each stem. In tree ring prediction data five earlywood samples (each from a separate annual ring) were 
taken in each stem.

 Clone Loppi Imatra Kangasniemi Total

Model estimation data A 2 (1) 2 (1) 2 (1) 6 (3)
 B 2 (1) 2 (1) 2 (1) 6 (3)
 C 2 (1) 2 (1) 2 (1) 6 (3)
 Total 6 (3) 6 (3) 6 (3) 18 (9)

Model test data A  2 (1)  2 (1)
 B  2 (1)  2 (1)
 C  2 (1)  2 (1)
 Total  6 (3)  6 (3)

Prediction data A 8 (4) 6 (3) 8 (4) 22 (11)
 B 8 (4) 6 (3) 8 (4) 22 (11)
 C 8 (4) 6 (3) 6 (3) 20 (11)
 Total 24 (12) 18 (9) 22 (11) 64 (32)
 Total 30 (15) 30 (15) 28 (24) 88 (44)

Tree ring prediction data A 15 (3)
 B 15 (3)
 C 15 (3)
 Total 45 (9)

Table 2. Summary of the measured relative total lignin contents (Klason lignin + acid soluble lignin) in the model 
estimation data and model test data.

Data Minimum 1st quartile Median Mean 3rd quartile Maximum Standard
       deviation

Estimation (n = 18) 23.2  25.4  25.7  25.7  26.1  28.1  1.03 
Test (n = 6) 23.4 26.2 26.8 26.5 27.7 28.0 1.68
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2.3 FTIR Analysis

For model estimation and model testing, FTIR 
analysis was performed in triplicate on the same 
24 samples of 12 stems for which the relative 
total lignin (Klason lignin + acid soluble lignin) 
content was measured with the wet chemical 
methods. For lignin content prediction, single 
spectra were recorded on the heartwood and sap-
wood samples of the rest 32 stems (64 samples; 
Table 1) and in addition to this double spectra 
on the earlywood samples of annual rings (45 
samples) from the 9 stems collected from one 
site (Loppi). Wood samples were ground frozen 
with a blade-mill (Polymix PX-A10), and half of 
the unextracted finely ground wood was passed 
through a sieve with hole size of 0.125 mm (see 
Faix and Böttcher 1992). Subsamples of 3.00–
3.04 mg of sieved and unsieved wood powder 
were added to 300.0–301.0 mg of dry KBr in 
test tubes. The samples were dried at 60 °C for 
2 hours, then cooled in a desiccator and mixed 
with a test tube mixer. The mixtures were pressed 
(112 bar / 2 min) into discs with a diameter of 
13 mm using a hydraulic press (Perkin Elmer, 
Hydraulische Presse) equipped with a vacuum 
pump. FTIR spectra were then recorded from the 
KBr tablets of the sieved and unsieved samples (3 
tablets per sample for model estimation and test-
ing, 1 tablet per sample or 2 tablets per earlywood 
samples for lignin content prediction) on a Perkin 
Elmer System 2000 FT-IR spectrometer (software 
version 4.0) equipped with a MIRTGS detector 
with a resolution of 4 cm–1 using the transmission 
technique. Altogether 16 scans were accumulated 
from each sample. Data were acquired in the wav-
enumber range of 4000–500 cm–1 (wavelength 
range of 2500–20 000 nm). 

2.4 Principal Component Regression 
Modelling

Principal component regression (PCR), instead 
of the also commonly used partial least squares 
(PLS), was chosen as the modelling approach 
because it straightforwardly follows the standard 
statistical theory of linear models (as to estima-
tion, testing and prediction; see e.g. Jolliffe 2002) 
and because it, unlike PLS, is easy to carry out 

with any general statistical or matrix computation 
software. In general, PCR and PLS have been 
found in practice to give comparable results (Næs 
et al. 2002). 

As already mentioned, the 24 samples from 
the12 trees for building lignin content models 
were divided into two sets: model estimation data 
consisted of 18 samples from 9 trees, each tree 
representing one of the three clones growing in 
one of the three sites (Table 1), whereas model 
test data comprised 6 samples from 3 trees, each 
tree representing one of the three clones growing 
in one site (Imatra; Table 1). 

Three different preprocessing methods (nor-
malisations) were applied to the spectra recorded 
on the sieved and unsieved samples (Table 3). 
The normalisations were performed on each 
of the three repeated spectrum measurements 
of a sample, and the final normalised spectrum 
was then the pointwise average of these nor-
malised replicates. Of the whole wavenumber 
range (4000–500 cm–1), only the subrange of 
1850–500 cm–1 known to encompass lignin-
related information (Hergert 1971) was eventu-
ally employed in the modelling. Alternatively, to 
diminish the effect of lignin-unrelated variation in 
intensity values, the modelling was performed on 
13 subjectively selected wavenumber regions con-
taining 299 wavenumbers (Table 3), the choice of 
which was based on chemical knowledge (Hergert 
1971) and previous empirical work (e.g. Rod-
rigues et al. 1998, Costa e Silva et al. 1999). In 
Fig. 1, the wavenumber range of 1850–500 cm–1 
of the raw and LS-normalised spectra of the 
sieved samples in the model estimation data and 
model test data are shown.

PCR was carried out separately for each com-
bination of the sieving, normalisation and wav-
enumber selection factor values (Table 3). There 
were altogether 16 factor value combinations 
resulting from two sieving methods, four nor-
malisations (raw spectra included) and two wav-
enumber selection schemes. The first stage of 
PCR, the principal component analysis (PCA) 
for dimension reduction, was performed on the 
sample covariance matrix of the intensity vari-
ables (intensities at wavenumbers 1850–500 cm–1 
or at the 299 wavenumbers of the 13 wavenum-
ber regions). The matrix was estimated from the 
samples in the estimation data set. The use of 
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Table 3. Factors affecting the quality of the spectral information that were tested in modelling. A set of 17 
principal component regression models was built for each combination of the factor values resulting in 272 
(2 × 4 × 2 × 17) candidate models.

Stage Factor Value

Sample preparation Sieving Unsieved
Sieved fraction of 125 µm

Spectrum measurement
and preprocessing

Preprocessing a) No normalisation, raw spectra (R)
Line subtraction (LS)
Standard normal variate normalisation (SNV) 
Standard normal variate normalisation in the range of 
1800–500 cm–1 (SNV1350)

Modelling Wavenumber selec-
tion b)

Wavenumber range of 1850–500 cm–1

13 wavenumber regions

a) LS: The baseline passing through the intensity values at wavenumbers 4000, 1929, 835 and 500 is subtracted from the spectrum, and the 
maximum intensity value is set to 1.5 SNV: The mean taken over all the intensity values is subtracted from the spectrum, and the mean-
corrected spectrum is then divided by the standard deviation taken over all the intensity values 

b) 13 wavenumber regions: 1610–1590, 1520–1500, 1474–1444, 1434–1414, 1384–1364, 1341–1315, 1280–1260, 1233–1213, 1150–1124, 
1043–1019, 870–850, 824–804, 628–608 cm–1 (299 wavenumbers in total)

Fig. 1. Wavenumber range of 1850–500 cm–1 of the raw and LS-normalised (Table 3) spectra of the sieved 
samples in the model estimation data (n = 18) and model test data (n = 6). The final model was based on the 
LS-normalised spectra.
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the covariance matrix was justified by the fact 
that the observed intensities in different samples 
were more or less at the same measurement scale. 
Thus, their variances were of similar magnitude, 
especially after the within-spectrum normalisa-
tion. Of the resulting principal components (PCs; 
uncorrelated linear combinations of the intensity 
variables), the 17 first ones accounting for a non-
zero portion of the total variance of the intensity 
variables were retained in the analysis. 

The retained PCs constituted the set of pos-
sible explanatory variables in an ordinary linear 
model with the measured relative total lignin 
content as the response variable and with the usual 
assumptions on the additive random error term, 
i.e. the error terms of different observations are 
independent and identically normally distributed 
with expectation 0 and constant variance.  The 
parameters of the all-subset regressions were esti-
mated with the ordinary least squares method 
(OLS) in the estimation data, i.e. all the possible 
combinations of the 17 retained PCs were tried 
as explanatory variables. In each model size class 
p = 1, 2, …, 17, (i.e., among the models with 
p PCs as the explanatory variables), the model 
with the largest adjusted coefficient of determi-
nation (R2

adj), or equivalently, with the smallest 
root mean square error (RMSE) was taken as a 
candidate model for the final model selection (for 
the definition of the concepts, see e.g. Weisberg 
1985 and Table 4). 

Note that in the parameter estimation the model 
assumption of mutually independent observations 
(samples) was clearly violated by the within-tree 
and within-plot dependencies of the estimation 
data. Such a flaw is not unusual in these kind 
of studies (see e.g. Meder et al. 1999), but it 
is usually passed without a mention. The vio-
lation causes the parameter estimate variances 
to become underestimated and, accordingly, the 
related significance tests to become too optimis-
tic, whereas the parameter estimates themselves 
are still unbiased (Weisberg 1985). This can be 
regarded as acceptable for a prediction model.

As we were aspiring after a model for predic-
tion, the selection among the 17 × 16 = 272 candi-
date models (17 models in each of the 16 factor 
value combinations) was based not only on the 
fit in the estimation data but also on the perform-
ance in the leave-one-out cross-validation in the 

estimation data and, most importantly, on the 
prediction capability in the test data. Therefore, 
the root mean square error of lignin content in the 
estimation data (RMSE), the leave-one-out cross-
validation estimate of root mean square prediction 
error in the estimation data (RMSPECV), and 
the root mean square prediction error in the test 
data (RMSPE) were computed for each candidate 
model and used as the model selection criteria 
(for the definition of the concepts, see e.g. Weis-
berg 1985 and Table 4). The criteria were plotted 
against the model size, and the most parsimonious 
models – to avoid over-fitting – with satisfying 
criteria values were chosen for further study. 
This involved 1) checking the model assump-
tions (normality of residuals with Q-Q plots, vari-
ance homoscedasticity of residuals with residual 
plots), 2) testing the significance of the parameter 
estimates (F-test for overall model significance, 
t-tests for individual parameters), 3) diagnosing 
the model fit (by means of plots of raw residuals, 
standardised residuals and studentised residu-
als) and 4) studying the influence of individual 
observations (leverages, and changes in regres-
sion coefficients, predicted values and RMSE that 
result from the deletion of each observation) in 
the customary manner (see e.g. Belsley et al.1980, 
Weisberg 1985). The model with the best “overall 
performance” was chosen as the final model to be 
used for lignin content prediction in this study. 
Modelling computations were performed with 
S-Plus 3.4 and R 1.9.1 software (Venables and 
Ripley 1997, http://www.r-project.org/).

2.5 Lignin Content Prediction

With the final model, the relative total lignin con-
tent was predicted in 64 samples from 32 trees, 
12 trees being taken from Loppi (4 trees per each 
of the three clones), 9 trees from Imatra (3 trees 
per each of the three clones), and 11 trees from 
Kangasniemi (4 trees per clones A and B, 3 trees 
per clone C; Table 1). To avoid extrapolation in 
the explanatory variables, the similarity of the 
normalised spectrum of each sample to the nor-
malised spectra in the model estimation data was 
controlled with the Hotelling T2 test based on the 
Mahalanobis distance between the sample and 
the estimation data centroid in the relevant PC-
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space (Mardia et al. 1979). All the samples with 
the observed p-value larger than 0.05 were taken 
into the prediction (i.e., the samples accepting the 
null hypothesis that the sample point equals the 
estimation data centroid in the PC-space given the 
normality of distribution and the common covari-
ance matrix estimated with the sample covariance 
matrix). In addition, the relative total lignin con-
tent was predicted in 45 earlywood samples (5 
samples per tree) from 9 trees (3 trees per each of 
the three clones) from Loppi (Table 1). 

A point prediction of the lignin content of 
a sample was obtained as the fixed part of the 
final model with the estimated parameter values. 
As usual, the PC scores used as the explanatory 
variable values were computed from the centered 
spectrum of the new sample; centering was done 
with the mean spectrum of the estimation data. 
The variance of the point prediction, the variance 
of the prediction error, and the 95% prediction 
interval based on the normality assumption were 
estimated in the usual manner (Weisberg 1985) 
using the RMSE and the inverse of the moment 
matrix of the model in the estimation data as well 
as the vector of the PC scores computed from the 
new sample spectrum as the input. 

A Matlab macro was constructed to facilitate 
the use of the model for prediction. With a LS-
normalised spectrum as the input, the macro out-
puts the point prediction, the estimated variance 
of the point prediction, the estimated variance 
of the prediction error, and the 95% prediction 
interval. 

2.6 Statistical Analysis of Measured and 
Predicted Lignin Contents 

The relative total lignin content measurements 
(24 samples from 12 trees) obtained with the wet 
chemical methods and predictions (64 samples 
from 32 trees) obtained with the final model 
were pooled into one data set. Differences in 
the amount of lignin in these data were analysed 
with the one-way analysis of variance (ANOVA) 
using a mixed model in the SPSS for Windows 
program version 12.0.1. The effect of clone (A, B, 
C) and growth site (Loppi, Imatra, Kangasniemi) 
on the heartwood and sapwood lignin content was 
tested pairwise at p ≤ 0.05 level with a one-way 

Tukey HSDa,b,c test based on the normal distri-
bution. The stem was used as a random factor. 
Differences in the predicted relative total lignin 
content of earlywood (45 samples from 9 trees) 
obtained with the final model were analysed with 
the one-way ANOVA and the effect of year on the 
earlywood lignin content was tested pairwise at 
p ≤ 0.05 level with the Tukey HSD test. The results 
were considered at significance levels p ≤ 0.05, 
p ≤ 0.01 and p ≤ 0.001.

3 Results

3.1 Principal Component Regression 
Modelling

In Fig. 2, the model selection criteria (RMSE, 
RMSPECV, RMSPE) are plotted as a function 
of model size (the number of PCs involved) for 
213 of all the 272 candidate models considered; 
each point represents the model with the smallest 
RMSE in the particular size class and factor value 
combination, and models of larger size and with 
larger RMSE than the one with the minimum 
RMSE in the particular factor value combination 
are omitted. The figure very concretely exposes 
the trade-off between a good fit and a decent 
prediction capability: large models with many 
PCs tended to follow the estimation data too 
closely and thus predicted poorly in the slightly 
different test data. Especially the models based on 
unsieved samples seemed to be prone to this over-
fitting. Irrespective of the preprocessing method 
applied, the models based on sieved samples and 
continuous wavenumber range 1850–500 cm–1 
showed the most balanced behaviour in terms of 
all the three model selection criteria, and there-
fore the attention was focused on this class of 
54 models.

Due to the risk of over-fitting, models with 
more than 7–8 PCs in the chosen model class 
were considered unfeasible for prediction, even 
though they were performing quite well also in 
the test data (producing RMSPEs around 1.0%; 
Fig. 2). The set of possible candidates was hence 
reduced into 32 models with less than 9 PCs in 
them. The statistical quality of these models was 
examined, and many of the models proved to be 
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decent (with adequate normality and homoscedas-
ticity of residuals, signifi cant parameter estimates, 
“clean” residual plots etc.). The aim being a 
model for prediction, the role of the test data 
was emphasised in the fi nal selection among the 
statistically adequate models: the model with the 
clearly smallest RMSPE in the test data (Fig. 2) 
was chosen as the fi nal model. This decision 
meant dismissing several adequate models fi tting 
better to the estimation data but predicting worse 
in the test data. The Hotelling T2 test showed 
(p = 0.0747) that the test data, although collected 
from only one site (Imatra), does not signifi cantly 
(at 0.05 risk level) deviate from the estimation 
data in the 4-dimensional PC-space associated to 
the model (given the normality assumption and 

the common estimated covariance matrix); thus 
the prediction error in the test data is a reasonable 
selection criterion when the model is intended to 
be applied to similar kind of data. 

The fi nal model is summarised in Table 4. 
Note that the fi rst PC accounting for 86% of the 
total variance of the intensity variables in the 
estimation data was not included in the model, 
which indicates that most of the spectral varia-
tion between the samples was due to chemical 
properties unrelated with the lignin content. The 
coeffi cients of the intensity variables in the 4 PCs 
included in the model are presented in Fig. 3. The 
model fi t in the estimation data and the predic-
tion performance in the test data are illustrated in 
Fig. 4; following the common statistical terminol-

Fig. 2. Model selection criteria (RMSE, RMSPECV, RMSPE) with respect to model size (number of principal 
components included as the explanatory variables) in 213 of the 272 candidate models obtained with different 
wood powder sieving procedures, spectrum preprocessings and wavenumber selections (Table 3). RMSE is 
the root mean square error of lignin content in the estimation data (n = 18), RMSPECV is the leave-one-out 
cross-validation estimate of root mean square prediction error in the estimation data, and RMSPE is the 
root mean square prediction error in the test data (n = 6). Each point represents the model with the smallest 
RMSE in that size class. The model selected for use in prediction in this study (Table 4) is marked with a 
black square.
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ogy, the lignin content obtained with the model is 
termed estimated lignin content for the samples 
in the model estimation data and predicted lignin 
content for the samples in the independent model 
test data.

The residual plots of the model (Fig. 5) reveal 
one deviating sample in the estimation data with a 
negative residual larger than 1% in absolute value 
and with standardised and studentised residu-
als below –2. However, this heartwood sample 
from the clone A growing in Loppi could not 
be categorised as an outlier: its spectrum did 
not significantly differ from the centroid of the 
other model estimation data in the 4-dimensional 
PC-space, nor was its measured lignin content 
(25.07%) extreme. Fortunately, the leverage of 
the observation was low (0.146), and its removal 

did not markedly influence the model parameter 
estimates, RMSE or the predicted lignin value.

3.2 Lignin Content Prediction

All the 64 samples from the 32 trees in the predic-
tion data were accepted for the prediction, as their 
Mahalanobis distances from the model estimation 
data centroid were small enough not to result in 
similarity hypothesis rejection in Hotelling T2 
test at 0.05 risk level. The different sites did not 
considerably differ from each other in terms of the 
distribution of the Mahalanobis distances.

As is evident from the formulae of the variance 
of the point prediction (which incorporates the 
effect of the error in the parameter estimates of 

Table 4. Summary of the principal component regression model chosen for lignin content prediction in this study. 
The model was estimated from the wavenumber range of 1850–500 cm–1 of the LS-normalised (Table 3) 
spectra of the sieved samples and involves the principal components (PC) that accounted for the 2nd (8.9%), 
3rd (2.0%), 4th (1.3%) and 6th (0.3%) largest portions of the total variance of the intensity variables (intensi-
ties at wavenumbers 1850–500 cm–1) in the estimation data.

Model: lignin content a) = β0 + β1PC2 + β2PC3 + β3PC4 + β4PC6 + random error b)

Parameter Estimate Standard error p-value of t-statistic

β0	 25.681 0.143 0.0000  
β1	 2.046 0.575 0.0036 
β2	 –3.049 1.231 0.0277 
β3	 –4.367 1.496 0.0120 
β4	 9.802 3.240 0.0098 

F-statistic (df 4 and 13) 9.100 p-value of F-statistic 0.000986
RMSE (estimation data) 0.606% R2 (estimation data) 0.737
RMSPECV (estimation data) 0.686% R2

adj (estimation data) 0.656
RMSPE (test data) 0.525% R2

CV (estimation data) 0.702
      R2

P (test data) 0.903

RMSE = [SSE / (n – p)]1/2, where SSE = sum of squared residuals, n = 18, p = 5
RMSPECV = [SSECV / n]1/2, where SSECV = sum of squared prediction errors in leave-one-out cross-validation, 

n = 18
RMSPE = [SSEP / m]1/2, where SSEP = sum of squared prediction errors, m = 6
R2 = 1 – SSE / SST, where SST = sum of squared differences between lignin content in each sample and 

mean lignin content over the samples
R2

adj = 1 – [SSE / (n–p)] / [SST / (n – 1)] = 1 – RMSE2 / Var(lignin content)
R2

CV = 1 – SSECV / SST
R2

P = 1 – SSEP / SST

a) Relative total lignin content: proportion of total lignin of dry mass, expressed in percentage
b) Assumptions on the random error needed in parameter estimation and statistical testing: normally distributed with expectation 0 and vari-

ance σ2, errors of different observations mutually independent. RMSE2 in the estimation data is an unbiased estimate of σ2.
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Fig. 4. Relative total lignin contents estimated/predicted with the final model (Table 4) 
versus the measured (Klason lignin + acid soluble lignin measurement) values 
in the model estimation data (n = 18) and model test data (n = 6).

Fig. 3. Coefficients of the intensity variables (intensities at wavenumbers 1850–500 cm–1) in the four principal 
components (PC) included in the final model (Table 4); the PCs were estimated from the wavenumber range 
of 1850–500 cm–1 of the LS-normalised spectra of the sieved samples in the model estimation data (n = 18) 
(Fig. 1, Table 3). 
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Fig. 5. Residual plots of the final model (Table 4) in the model estimation data (n=18).

the linear model) and the variance of the predic-
tion error (which incorporates also the effect of 
the random error of the model and is employed in 
prediction interval construction; Weisberg 1985), 
the spectral dissimilarity of a sample to the model 
estimation data increased the estimated uncer-
tainty of the lignin content prediction (Fig. 6b). 
It did not, however, systematically influence the 
level of the prediction (Fig. 6a). Consequently, 
the uncertainty related to the lignin content pre-
diction was independent of the level of the pre-
diction, that is, large lignin contents were not 
predicted less precisely than small ones or vice 
versa (Fig. 6c). 

The predicted lignin contents were realistic 
with no highly deviating values and with the range 
and the variation of the same magnitude as in 
the model estimation data (Table 5; cf. Table 2). 
Also the estimated precision of the prediction can 
be regarded as satisfactory with 40/64 samples 
having the prediction standard error less than 1% 
and 45/64 samples having the standard error of the 
prediction error smaller than 1.25% (correspond-
ing to 2.5% approximate prediction interval).

3.3 Variation in Measured and Predicted 
Lignin Content

In Fig. 7a, the variation in the relative total lignin 
content in the combined data set consisting of 
measurements (24 samples from 12 trees) and 
predictions (64 samples from 32 trees) is presented 
with respect to site, clone and sample location 
(heartwood, sapwood). The heartwood lignin con-
tent varied from 24.80% to 28.48% and sapwood 
lignin content from 23.17% to 27.79% between 
the individual stems in this material. According 
to the ANOVA, the effects of site, clone and site-
clone interaction on the amount of sapwood lignin 
were statistically significant at risk levels of 0.001, 
0.01 and 0.01, respectively (Table 6a). The dif-
ferences in the sapwood lignin contents between 
the sites and between the clones were tested pair-
wise at p ≤ 0.05 level (Table 6b). The fertile site in 
Loppi produced rapidly-grown wood in which the 
mean sapwood lignin content (26.31 ± 0.62%, ± SD 
between stems) was significantly higher than that 
of wood grown in Imatra (24.91 ± 1.31%) and in 
Kangasniemi (25.01 ± 0.60%). The lowest sap-

Table 5. Summary of the prediction results in the 64 samples of the prediction data.

 Minimum 1st  Median Mean 3rd  Maximum Standard
  quartile   quartile  deviation

Predicted relative total lignin content (%) 23.2  25.3  25.8  25.8  26.6  28.5  0.97 
Standard error of prediction (%) 0.19  0.65  0.87  0.88  1.12  1.45  0.31 
Standard error of prediction error (%) 0.64 0.89 1.06 1.08 1.28 1.57 0.24
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Fig. 6. Prediction performance of the final model in the prediction data (n = 64): a) the pre-
dicted relative total lignin content versus the Mahalanobis distance of the sample from 
the model estimation data centroid in the 4-dimensional PC-space, b) the estimated 
uncertainty of the prediction expressed with the standard error of the prediction (lower 
set of points) and with the standard error of the prediction error (upper set of points) 
versus the Mahalanobis distance, and c) the standard error of the prediction versus the 
predicted relative total lignin content for the 64 samples in the prediction data.
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wood lignin content (24.86 ± 1.37%) was found 
in the clone B but depending on the site the clone 
B showed more variation than the clones A and 
C the sapwood lignin contents of which were 
25.84 ± 0.68% and 25.56 ± 0.97%, respectively. 
The mean lignin content was slightly higher in 
the heartwood (26.23 ± 0.80%) than in the sapwood 
(25.42 ± 1.10%) but there were not statistically sig-
nificant differences in the heartwood lignin content 
between the sites and between the clones. The 
random factor had significant (p ≤ 0.001) influ-
ence on both the heartwood and sapwood lignin 
because of the large variation between the indi-
vidual stems.

Variation in the predicted relative total lignin 
content of earlywood (45 samples from 9 trees) 
in one site (Loppi) is presented with respect to 
clone and year in Fig. 7b. The earlywood lignin 

content varied from 24.64% to 28.77% between 
the selected annual rings. The average earlywood 
lignin content was 26.26 ± 0.93% (± SD between 
rings). The annual variation in the amount of 
earlywood lignin was significant at the risk level 
of 0.01 (Table 6a). The differences in the early-
wood lignin contents between the annual rings 
were tested pairwise at p ≤ 0.05 level (Table 6b). 
The mean earlywood lignin content of annual 
ring 5 (27.14 ± 0.93%) in the heartwood was sig-
nificantly higher than that of the rings 1, 3 and 
4 (26.06 ± 0.49%, 25.95 ± 0.98%, 25.67 ± 0.78%) 
in the inner and outer sapwood. The earlywood 
density of annual rings studied varied between 
0.294–0.463 g cm–3 and the annual ring width 
between 1.3–5.4 mm (Raiskila et al. 2006b). No 
correlation was found between the lignin content 
and density of earlywood. (Fig. 7c). 

Table 6. Statistical analysis of the combined data of measured and predicted relative total lignin contents in the 
clones (A, B, C) growing in Loppi, Imatra and Kangasniemi and the predicted relative total lignin contents 
of earlywood in trees grown in Loppi. a) Analysis of variance and b) pairwise comparison. The statistically 
significant differences (p ≤ 0.05) between the clones, between the sites and between the annual rings have 
been marked with a and b. Ring 1 = year 1999, 2 = 1995, 3 = 1994, 4 = 1992 and 5 = 1987.

6a)
 F values

 Heartwood lignin Sapwood lignin Earlywood lignin

Intercept 45680.722 *** 56311.189 *** 
Site 0.031 17.845 *** 
Clone 0.928 7.517 ** 
Site-clone 1.115 4.578 ** 
Year   4.536 **

p ≤ 0.05 *, p ≤ 0.01 ** and p ≤ 0.001 ***

6b)
 Lignin % (SD)

 Heartwood Sapwood  Earlywood

Clone A 26.17 (0.53) a 25.84 (0.68) b Ring 1 26.06 (0.49) b
Clone B 26.08 (0.98) a 24.86 (1.37) a Ring 2 26.47 (0.76) ab
Clone C 26.45 (0.82) a 25.56 (0.97) b Ring 3 25.95 (0.98) b
Loppi 26.19 (0.89) a 26.31 (0.62) a Ring 4 25.67 (0.78) b
Imatra 26.27 (0.82) a 24.91 (1.31) b Ring 5 27.14 (0.93) a
Kangasniemi 26.21 (0.73) a 25.01 (0.60) b  
Mean 26.23 (0.80) 25.42 (1.10) Mean 26.26 (0.93)
Min. 24.80 23.17 Min. 24.64
Max. 28.48 27.79 Max. 28.77
Median 26.01 25.53 Median 26.20
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4 Discussion
4.1 Modelling

Type of spectrum (transmission vs. diffuse reflect-
ance) together with sample preparation is known 
to influence the reproducibility of the spectral 
measurements and the discernibility of the lignin-
related variation in the spectra (see e.g. Faix and 
Böttcher 1992, Martens and Næs 1989). In this 
study, transmission spectra were used because 
of their better quality in this setting; also dif-
fuse reflectance spectra were tried on both solid 
and KBr-mixed milled samples, but their quality 
was found too variable. In order to avoid extrac-
tion, which is the most laborious part of the 
wet chemical methods, spectra were recorded 
on unextracted samples; on the other hand, the 
amount of extractives in spruce wood is known 
to be fairly low (Saranpää 2002). Normalisation 
of spectra is in spectroscopy considered neces-
sary for quantitative analysis and may markedly 
affect the results of the analysis (see e.g. Gier-
linger et al. 2002). The methods may be divided 
into within-spectrum normalisations that utilise 
only the information in the spectrum itself and 
between-spectra normalisation that endeavour to 
harmonise a set of spectra from different samples; 
in both categories, the normalisations may be 
based on some reference bands or on the whole 
spectrum. Of the many of methods available, two 
such simple within-spectrum normalisations were 
chosen that can be applied entirely automatedly 
(they do not, for example, require a possibly com-
plicated and therefore often manually performed 
recognition of intensity differences between local 
minima and maxima (“peak heights” ) as the nor-
malisation used by Rodrigues et al. 1998).

Although using combinations of intensity values 
at only a few individual wavenumbers (bands) has 
sometimes been found to produce well-fitting 
lignin content models (Costa e Silva et al. 1999, 
Rodrigues et al. 1998), we considered it safer to 
employ large, often connected, parts of spectra 
(following e.g. Ferraz et al. 2000 and Meder et 
al. 1999) as they contain not only “pure” lignin-
related information but also that masked by other 
major wood constituents. In our study, restricting 
the range of 1350 wavenumbers (1850–500 cm–1) 
to the supposedly more lignin-related 13 regions 

containing 299 wavenumbers (Table 3) did not 
improve the fit but made the prediction perform-
ance with respect to model size more variable 
and more dependent of the preprocessing method 
(Fig. 2). Automated methods for wavenumber 
range selection have been proposed (Westad and 
Martens 2000), but they are somewhat heuristic 
and apparently still need to be complemented 
with some manual selection (e.g. Gierlinger et 
al. 2002) and were not therefore considered in 
this study.

In PLS, where the uncorrelated principal com-
ponents are formed by maximising the covariance 
between the lignin content and the linear combi-
nations of the intensity variables, model selection 
means just deciding the number of components 
to be included in the model. In PCR, model 
selection is more complicated: if the components 
are straightforwardly taken in the order of their 
accounted variance of the intensity variables, then 
also components with little explanatory power on 
the lignin content risk being included (this was 
probably the case in the PCR models of Ferraz 
et al. 2000). Therefore all-subset regression was 
carried out in this study and only models with all 
the parameters deviating statistically significantly 
from zero were taken into consideration. Charac-
teristically, the first PC accounting for most vari-
ance was not included in the final model. Model 
selection for prediction is a compromise between 
fit in estimation data and prediction capability in 
(independent) test data, which unknown future 
data are assumed to closely resemble. We chose 
to emphasise the role of the test data in the model 
selection, and as a result several candidate models 
fitted far better to the estimation data but none 
predicted in the test data as well as the one that 
was finally selected (Fig. 2).

Comparison of the results to those of some 
previous studies (Costa e Silva et al. 1999, Ferraz 
et al. 2000, Meder et al. 1999 and Rodrigues et al. 
1998) was somewhat complicated by methodolog-
ical problems: Model structure (number of com-
ponents) in PLS models was sometimes allowed 
to change in cross-validation (Ferraz et al. 2000) 
or in test set with measured lignin content values 
(Gierlinger et al. 2002). It is evident that such 
exercises provide hardly any information on the 
validity of the original models; it is also unclear 
what structure would then be used in prediction 
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when no measured lignin contents are available. 
For no obvious reason, PCR models were also 
sometimes estimated without the intercept term, 
which resulted in non-zero means of residuals 
referred to as “average prediction error” (in Costa 
e Silva et al. 1999 this was 0.89% and in Ferraz 
et al. 2000 0.3%). If the intercept is included, as 
in the models of this study, the residuals always 
sum to zero. Treating replicate spectral measure-
ments as independent observations (Ferraz et al. 
2000), and using the magnitude of F-test statistic 
(or the corresponding p-value) as support to the 
acceptance of a H0 hypothesis (Ferraz et al. 2000), 
although the distribution of the statistic is defined 
on the condition that H0 is true, are some further 
examples of methodological problems. 

Comparable results from the models of the 
previous studies mentioned above are collated in 
Table 7. Differences in material naturally set limit 
to comparisons: none of the studies dealt with 
Norway spruce, and one of them was based on 
biodegraded material. In terms of RMSE, the fit 
of our model in the estimation data appeared fairly 
similar to those in the other studies; proportioned 
to the lignin content variation in the estimation 
data, however, the random error variation was 
seen to be of a larger magnitude in our model 
than in the other studies, which was reflected 
in the lower R2 value. (Note that 60 of our 272 
candidate models had R2 larger than 0.95 in the 
estimation data, but their prediction performance 
in terms of especially RMSPE was judged far 
poorer than that of the final model). Only Meder 
et al. (1999) performed leave-one-out cross-vali-
dation; they reported results rather similar to 
ours, although their models fitted slightly better 
to their estimation data. Rodrigues et al. (1998) 
were the only ones to use independent test data: 
although superior in the fit, their model appeared 
to equal our model in the prediction performance. 
Only Costa e Silva et al. (1999) applied their 
model to the independent prediction data of 83 
samples with no lignin content measurements; 
they reported remarkably uniform standard errors 
of prediction between 0.86–0.97% (mean 0.89%, 
standard deviation 0.030 %), the uniformity prob-
ably stemming partly from the replicate nature 
of the data and partly from the small number of 
intensity variables (6) involved in the model; on 
average, our model predicted with similar mag-

nitude of estimated uncertainty (Table 4), but the 
variation on standard errors of prediction was far 
larger, apparently due to the far larger amount of 
spectral information incorporated in the model.

The model estimation and test data sets of this 
study were rather small, although not out of line 
with most of the other similar studies (Table 7). 
This naturally limits the range of usage of this 
kind of empirical model, which is not, however, a 
serious defect from our point of view: we did not 
pursue large variation in lignin content or in other 
chemical properties of the samples, because we 
only wanted to build a model for prediction in a 
limited kind of clonal data, that is, the model was 
intended to be applied only to samples that can be 
regarded very similar to those in the estimation 
data. The empirical modelling procedure pre-
sented here is, however, applicable to all kind of 
wood material, and a similar model could easily 
be built for e.g. natural or biodegraded samples.

4.2 Variation in Lignin Content

In this study Norway spruce trees from Loppi 
showed a higher sapwood lignin content than 
trees from Imatra or Kangasniemi. This may be 
due to the higher growth rate in Loppi (Raiskila 
et al. 2006b). The clone B the sapwood lignin 
content of which was the lowest had the slowest 
growth rate. The lignin content (23.17–27.79%) 
is slightly less than reported values for Norway 
spruce (27.5–28.9%) (Brolin et al. 1995, Anttonen 
et al. 2002). The lignin content has been found 
to be affected by the growth rate of trees e.g. in a 
fertilisation test (Anttonen et al. 2002). The lignin 
content is influenced by the growth rate possibly 
because of the changes in the relative amounts 
of cellulose rich secondary layers of cell wall 
and highly lignified middle lamella and by the 
relative amounts of earlywood and cellulose rich 
latewood (Anttonen et al. 2002). The purpose of 
cloning in the 1970’s was to increase the growth 
rate of trees. The three cutting clones (A, B, C) 
chosen for study were genetically uniform mate-
rial and have grown in the different environments. 
The growth sites Loppi and Imatra were nutrient 
rich old agricultural lands and Kangasniemi was 
a medium fertile Myrtillus-type forest (Cajander 
1926). The growth rate and wood properties of the 
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 Ŷ
m

ea
s c

oi
nc

id
e 

w
ith

 th
e 

re
si

du
al

s 
Y

m
ea

s –
 Y

pr
ed

 o
f 

th
e 

or
ig

in
al

 m
od

el
 a

nd
 th

us
 g

iv
e 

th
e 

sa
m

e 
R

M
SE

 (
be

ca
us

e 
th

e 
nu

m
be

r 
of

 th
e 

pa
ra

m
et

er
s 

ha
pp

en
s 

to
 b

e 
th

e 
sa

m
e 

in
 b

ot
h 

th
e 

m
od

el
s)

 a
nd

 R
2  

as
 th

e 
re

si
du

al
s 

of
 th

e 
or

ig
in

al
 m

od
el

; i
n 

th
e 

te
st

 d
at

a,
 h

ow
ev

er
, t

he
 r

es
id

ua
ls

 Y
m

ea
s –

 Ŷ
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clones are described in Raiskila et al. 2006b. 
In this study the effects of site, clone and site-

clone interaction on the amount of sapwood lignin 
were significant but not on the amount of heart-
wood lignin. The variation in the heartwood and 
sapwood lignin between individual stems was 
high. Several biotic and abiotic factors affect the 
growth of trees and thus, even the trees belong-
ing to the same clone showed a large variation 
in lignin content. The mean lignin content of 
heartwood (26.23%) was slightly higher than 
that of sapwood (25.42%) and our results are in 
accordance with earlier results. The lignin con-
tent has been reported to decrease significantly 
in the radial direction from heartwood (28.3%) 
to sapwood (27.7%) and to be the lowest in the 
transition zone (27.3%) (Bertaud and Holmbom 
2004). In earlier studies with 1-year-old plants 
and 9-year-old trees the lignin content did not 
vary significantly within and between full-sib 
families but was higher in trees than in plants and 
a standard error for the trees was lower than for 
the plants (Wadenbäck et al. 2004). The amount 
of lignin is also affected by the reaction wood 
formation (Barnett and Jeronimidis 2003) and the 
‘pseudo lignification’ during heartwood forma-
tion (Magel 2000).

The annual variation in the amount of early-
wood lignin was significant. The lignin content 
(24.64–28.77%) is slightly higher than reported 
values for earlywood (23–24%) (Gindl and Grab-
ner 2000). In the earlier studies with Norway 
spruce the earlywood lignin content (32.2%) has 
been found to be significantly higher than the 
latewood lignin content (29.8%) but no clear dif-
ferences between the annual rings were observed, 
however they studied only one stem (Bertaud 
and Holmbom 2004). One reason for the high 
variation between rings could be the selection 
of annual rings with very high and low weight 
density and variable ring width. However the 
earlywood lignin content did not correlate with 
the earlywood density. Also the annual variation 
in the growth and the weight density has been 
found to be significant and the growth increments 
did not correlate linearly with the weight density 
in this rapidly-growing clone material (Raiskila 
et al. 2006b).

5 Conclusions
A PCR-based method for predicting the relative 
amount of total lignin in clonal Norway spruce 
wood from FTIR transmission spectra was devel-
oped. Using some modelling practices (all-subset 
regression; model selection based on combination 
of RMSE and RMSPECV in the estimation data 
and RMSPE in the test data) that, despite being 
standard in statistics, have not been frequently 
applied in FTIR or NIR modelling studies, a model 
with no over-fitting in the estimation data and 
good prediction performance in the test data was 
obtained. For a set of samples representing the 
same three clones growing in the same three sites 
as the samples in the modelling data, the model was 
seen to produce realistic lignin content predictions 
with satisfactory estimated precision. 

By the analysis of the model estimation and test 
data pooled with the prediction data, site, clone 
and site-clone interaction were found to have a 
significant effect on sapwood lignin content. The 
model was also used to predict the lignin content 
in the earlywood of 45 individual annual rings; 
by the analysis of these predictions, the annual 
variation in the amount of earlywood lignin was 
significant and the variation between individual 
stems was large. 

The method requires only a simple sample prepara-
tion, and once the spectra have been recorded, it is 
fast and simple to use. A similar model, easily built 
by following the presented modelling procedure, 
could prove very advantageous when the natural 
genetic variation in lignin contents or variation 
caused by growth rate is determined e.g. in the 
extensive native stands of Norway spruce.
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