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This research aims to combine two different data sets with Bayesian statistics in order to 
predict the diameter distribution of trees at harvest. The parameters of prior distribution are 
derived from the forest management plans supplemented by additional ocular information. 
We derive the parameters for the sample data from the first trees harvested, and then create the 
posterior distribution within the Bayesian framework. We apply the standard normal distribu-
tion to construct diameter (dbh) distributions, although many other theoretical distributions 
have been proved better with dbh data available. The methodology developed is then tested 
on nine mature spruce (Picea abies) dominated stands, on which the normal distribution 
seems to work well in mature spruce stands. The tests indicate that prediction of diameter 
distribution for the whole stand based on the first trees harvested is not wise, since it tends to 
give inaccurate predictions. Combining the first trees harvested with prior information seems 
to increase the reliability of predictions.
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1 Introduction

The normal Nordic harvesting technique converts 
tree stems into smaller logs at harvest. Modern 
harvesters are equipped with information systems 
able not only to continuously measure the length 

and diameter of the stem but also to predict the 
profile of the unknown section. In normal imple-
mentation, the harvester head first feeds the tree 
through the measuring and delimbing device for 
a given length, where after the system predicts the 
rest of the stem profile and calculates the optimal 
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cross-cutting points for the whole stem (see e.g., 
Näsberg 1985, Uusitalo 2002).

The basic dilemma of tree bucking control is 
that optimization of the individual stem value 
tends to produce a log distribution that is not 
suitable for the sawmill, even where price lists 
are calibrated according to the demand for each 
saw-log category. System developers thus started 
to improve procedures in the early phase of devel-
opment in such a way that the needs of the indi-
vidual sawmill could be met more satisfactorily 
(Bergstrand 1990). Today, fine tuning of bucking 
optimization is carried out by calibrating the price 
list according to demand tables or by choosing 
close-to-optimal bucking alternatives that simul-
taneously satisfy both value and demand tables 
(e.g. Kivinen and Uusitalo 2002).

Efficient wood procurement and stand level 
allocation requires accurate prior information 
about the stand composition. Kivinen and Uusi-
talo (2002) have shown that the pre-harvest con-
trol of price matrices is beneficial in most cases 
provided that reliable stem-level information on 
the composition of stands is available. Several 
methods have been developed and tested to esti-
mate the composition of stand structure (Uusi-
talo 1997). Since the pre-harvest measurement 
methods already developed have proved to be 
expensive and inaccurate, they have not been 
adopted in actual forest operations.

Forest management plans are known to pro-
vide relatively accurate volumetric information on 
the proportions of various species and the mean 
characteristics of the stand (e.g mean diameter), 
but since they do not usually provide estimates 
of the diameter distributions of the trees, this 
needs to be estimated by using various theoretical 
distributions. Researchers have mainly applied 
the Weibull distribution (Bailey and Dell 1973, 
Kilkki et al. 1989, Maltamo 1997) but some 
other similar distribution methods such as beta 
(Päivinen 1980) and Johnson’s SB (Hafley and 
Screuder 1977, Siipilehto 1999) have also been 
tested with equal success.

Since the theoretical, parametric models have 
been observed to produce quite similar probability 
distributions in almost all conditions, researchers 
have more recently turned their attention to non-
parametric density functions such as the Kernel 
function (Droessler and Burk 1989, Uusitalo 

1997) and percentile based methods (Borders 
1987, Maltamo et al. 2000, Kangas and Maltamo 
2000b), which can take the various shapes of the 
distributions into account more precisely. The 
weak point of the non-parametric density function 
is that an additional inventory is often required 
in order to derive the distribution, although 
Kangas and Maltamo (2000a) have published 
general regression models predicting different 
percentile diameters. Provided additional stem 
data information is available, both parametric 
and non-parametric models can also be calibrated 
by the method presented by Deville and Särndal 
(1992) (Kangas and Maltamo 2000b, Kangas and 
Maltamo 2000c). Another way to predict diam-
eter distribution is to use a k-nearest neighbor 
regression method that utilizes identical stands 
for predicting the characteristics of the target 
stands (Moeur and Stage 1995, Haara et al. 1997, 
Maltamo and Kangas 1998). It has been suggested 
and demonstrated that stem banks collected by 
the harvester measurement system can be used 
in harvesting to predict the composition of a new 
stand (Tommola et al. 1999, Malinen 2003).

We have hypothesized that tree bucking control 
could probably be improved provided price lists 
were calibrated during harvesting, not simply 
according to the difference between output and 
demand matrices, but also according to the 
improved predictions about the stand structure. 
Basically, accurate information about the stand 
composition when harvesting is needed for two 
reasons. First, logging managers and harvester 
operators have to decide what kind and what 
amounts of various wood products are worth 
logging in each stand. It is well known that trans-
portation of small amounts of particular wood 
products from numerous stands is not very cost 
effective. Accurate prior knowledge gives manag-
ers a chance to log greater amounts of one wood 
assortment from one stand and another assortment 
from another stand so as to reduce total tree har-
vesting costs (Arce et al. 2002). The number of 
various, often very similar wood assortments has 
been growing rapidly recently, since sawmills and 
other mechanical factories are increasingly speci-
fying product-oriented wood products. Second, 
the current trend is to control tree bucking within 
one wood product according to specified diam-
eter-length distribution. The recent investigations 
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clearly demonstrate that utilization of accurate 
prior information improves bucking outcomes, 
even where bucking is controlled online by buck-
ing-to-demand procedures (Kivinen and Uusitalo 
2002).

Forest management plans provide relatively 
accurate predictions of mean diameter and, in 
many cases, good estimates of diameter distri-
butions can be derived from tree stems already 
harvested and measured. The maximum and 
minimum diameters that are quite easily esti-
mated by brief ocular estimation can be utilized 
in predicting the shape or at least the variance of 
diameter distribution. Bayesian statistics provides 
a promising basis for combining two different 
kinds of data sets. The basic difference between 
the frequentist and Bayesian schools of inference 
lies in whether we use only likelihood or whether 
we also use prior probabilities (Bernardo and 
Smith 1994).

The aim of this paper is to test the effect of 
combining two different data sets with the Baye-
sian statistics in order to predict the diameter 
distribution of trees at harvest. We apply the 
standard normal distribution to construct diameter 
(dbh) distributions, although many other theo-
retical distributions have proved better with dbh 
data available. The main reason for this is that 
derivation of parameters for the Weibull or beta 
function would require far more complicated, 
computer intensive calculation methods, such as 
the Gibbs sampler (Green et al. 1994) during the 
actual harvesting. Puustelli et al. (2002) have 
previously conducted some theoretical experi-
ments in applying the Bayesian approach to dbh 
distribution, but we discuss far more simplified 
models here and test them with real data sets. The 
theoretical properties of the normal distribution 
are well known and it is computationally feasi-
ble in a harvesting situation as well. The prior 
information provided by the forest management 
plans is also easily expressed in the form of the 
parameters of the normal distribution.

We first derive models of how data sets are com-
bined and unknown parameters estimated. Next 
we test our models in nine different study stands, 
comparing the results with distributions derived 
both without the Bayesian statistics and with 
distributions derived from prior information.

2 Methodology

2.1 Bayesian Prediction of dbh Data

When using the Bayesian approach to predict 
the dbh-distribution of trees at harvest, the data 
on the first trees harvested, say the first 30 to 120 
trees of the entire stand is assumed to be normally 
distributed with an expected value of θ and a 
variance of σ2. In the Bayesian framework θ is 
considered to be a random variable. In our study 
θ is also assumed to be normally distributed with 
an expected value of δ and a variance of η2. This 
distribution will be derived from the prior infor-
mation. The problem is to derive the predictive 
distribution of all trees to be harvested from the 
first trees harvested and the prior information.

Our assumptions are x | θ ∼ N(θ,σ 2) and θ ∼ N(δ,η2). 
From this it is easily seen that the conditional 
distribution of the mean dbh x  calculated from 
n first harvested trees is x N n| ~ ( , )θ θ σ 2 . Since 
conditional random variables x  and the future 
observation xn+1 are marginally normally distrib-
uted, their joint conditional distribution is bivari-
ate normal, i.e. ( , ) | ~ ( , , , , )x x BVN nn+1

2 2 0θ θ θ σ σ . 
The covariance is zero since these two variables 
are independent. We use basic statistical results 
(see e.g. Rohatgi 2003, p. 283, 286) to derive 
the unconditional expected values, variances and 
covariance, i.e.
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Since the joint conditional distribution of x  and 
xn+1 is bivariate normally distributed the joint 
distribution of x  and xn+1 is also bivariate normal 
distribution. This concludes the result

x x BVN nn, ~ ( , , , , )+ + +1
2 2 2 2 2δ δ σ η σ η η .
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Next we derive the posterior predictive distribu-
tion for the future observation conditional on 
the mean value of n first harvested trees. Basic 
statistical results of bivariate normal distribution 
(see e.g. Rohatgi 2003, p. 435) are used to find the 
expected value and variance for prediction, i.e.
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Since the joint marginal distribution of these two 
variables is bivariate normal also its conditional 
distribution is normal as follows in Eq. 1
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This is our posterior predictive distribution.

2.2 Frequentist Prediction of dbh Data

In the frequentist approach the dbh data is 
assumed to be normally distributed with a fixed 
expected value of θ and a variance of σ2 and all 
the observations are assumed to be independent. 
The distribution of a sample mean x  of n first 
harvested trees is also normal, with an expected 
value of θ and a variance of σ 2/n. When the future 
observation xn+1 is predicted the unbiased estima-
tor for the expected value is x. When calculat-
ing the variance of the prediction the estimating 
error of the expected value needs to be taken into 
account. It is of form

Var x x Var x Var x Cov x xn n n( ) ( ) ( ) ( , )+ + +− = + −
=

1 1 1

2σ ++ σ 2 n ,

since xn+1 and x  are independent. Now the predic-
tive distribution is

x N nn+ +( )( )1
2 1 1~ , /θ σ  (2)

where θ is estimated with x .

2.3 Estimation of the Unknown Parameters

We assume that the prior mean δ is known from a 
forest management plan, while the other param-
eters are unknown. If the sample is large, the 
population variance σ2 can be estimated using 
the sample variance s2 derived from the first trees 
harvested. The only parameter that still needs 
to be determined is the prior variance η2. The 
minimum and maximum dbh are known from the 
forest management plans. Since the normal dis-
tribution is used, it is known that approximately 
99.7% of the data lie between x ± 3σ . From this 
we estimate that

ˆ
max min

.σ 2
2

6
≈ −





 (3)

The prior variance can then be estimated as

ˆ
ˆ

ˆ
η σ2

2
≈

n
 (4)

where n̂  is the estimated number of trees in the 
entire area harvested.

2.4 Prediction of dbh Data with Prior 
Information

There is still one more prediction method that 
may be used along with Bayesian and frequen-
tist prediction. The final prediction method does 
not use any information from the data, only the 
prior information from forest management plans. 
Prediction in this method is simply based on the 
mean dbh and Formula 3, the predictive distribu-
tion being

x Nn+ ( )1
2~ , ˆδ σ . (5)
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3 Empirical Tests with Models

3.1 Material

The study material consisted of nine mature 
spruce (Picea abies (L.) Karst.) dominated stands 
from central Finland, close to the city of Mänttä 
(Table 1). The stands, scheduled for logging 
during Autumn 2000, were owned by Metsäman-
nut Oy. The stands had valid forest management 
plans that were based on earlier inventories and 
updates. Each stand was visited prior to logging 
and inventory data was supplemented by quick 
ocular estimation of the following characteristics 
of the spruces: minimum and maximum diameter 
at breast height (dbh) and stand density (trees/
ha). Logging was carried out using the Ponsse 
harvester that employs the PonsseOpti-tree meas-
urement and optimization system (Ponsse Oyj 
2002). Tree taper data for all trees in the stands 
was registered in the stm-format, (StandForD 
1997) in which tree diameter is registered to an 
accuracy of 1 mm every 10 cm from a given start-
ing point (usually 1.2…1.8 m from the butt) to the 
final cutting point. Since the harvester started to 
measure the taper 1.5 m from the butt, the dbh for 
each tree was derived by presuming that tapering 
from 1.5 m to 1.7 m is equivalent to tapering from 
1.3 m to 1.5 m.

Since the stems appear in the stm-file in the 
same order as they were originally logged, it is 
easy to derive a subset of the data from the first 

trees harvested. In our tests, the following subsets 
were derived: 30, 90, and 150 trees harvested first. 
To summarize our tests, parameters for the Eqs. 
1, 2 and 5 presented in the previous section were 
derived from the following sources:
– Prior mean (δ): forest management plan
– Prior variance (η2): Eq. 4; minimum and maxi-

mum dbh and stand density (ocular estimation)
– Sample mean ( x ): Mean of the first trees harvested 

(stm-files)
– Sample variance (s2): Variance of the first trees 

harvested (stm-files)

Since we are mainly interested in examining the 
significance of calibration of dbh distributions 
in the early phases of logging, we compared the 
following distributions: prior distribution derived 
from the inventory data; Bayesian distribution 
derived with prior information and the first 30, 
90 and 150 trees harvested; and frequentist dis-
tribution derived from the first 30, 90 and 150 
trees harvested

3.2 Results

Three examples of predicted spruce dbh distribu-
tions are illustrated in Figs. 1–3. Stands 2 and 3 
(Figs. 1 and 2) are examples of a dbh distribu-
tion of unimodal shape. It is apparent that in the 
cases where estimates of minimum and maximum 
values are available, the normal distribution fits 
the dbh data relatively well. In Stand 2 (Fig. 1) 
the prior mean is inaccurate, which means that 
the prior distribution gives relatively poor results. 
Since the first trees harvested fit the data quite 
well, the Bayesian method is able to improve the 
goodness of fit compared to the predictive distri-
bution derived entirely from the prior information. 
The frequentist approach gives a more accurate 
distribution than the Bayesian approach, since an 
inaccurate prior mean affects the Bayesian predic-
tive distribution. Stand 3 (Fig. 2) represents the 
reverse situation. The prior information is accu-
rate and the sample trees logged from one corner 
of the stand predict the distribution relatively 
poorly. The Bayesian method is markedly more 
accurate than the frequentist method.

Stand 9 (Fig. 3) illustrates the weakness of the 
parametric distribution. If the distribution has a 

Table 1. Mean characteristics of study stands according 
to forest management plans (1 complemented with 
quick ocular estimation (2. Other tree species than 
spruce were excluded.

No Area(1 Volume(1 Mean(1 Min(2 Max(2 No of
 ha of spruces dbh dbh dbh spruces(2

  m3/ha mm mm mm stems/ha

1 1.9 205 250 130 410 360
2 3.6 180 250 110 430 300
3 1.2 225 210 90 410 440
4 1.4 230 270 110 470 180
5 1.6 110 310 90 470 200
6 4.8 180 230 70 450 380
7 3.0 260 250 90 490 500
8 2.4 145 190 70 430 320
9 3.4 150 190 70 450 580



668

Silva Fennica 40(4), 2006 research articles

dbh, cm

 D
en

si
ty

 

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0.
00

0
0.

00
5

0.
01

0
0.

01
5

prior
freq30
freq90
bayes30
bayes90

dbh, cm

 D
en

si
ty

 

 7  11  15  19  23  27  31  35  39  43  

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

prior
freq30
freq90
bayes30
bayes90

dbh, cm

 D
en

si
ty

 

3 7 11 15 19 23 27 31 35 39 43

0.
00

0
0.

00
2

0.
00

4
0.

00
6

prior
freq30
freq90
bayes30
bayes90

Fig. 1. Histogram of the entire study stand 2 and predictive diameter distributions of spruce 
derived with different methods. Prior refers to prior distribution (Eq. 5), bayes 30 
and 90 to Bayesian distribution (Eq. 1) with 30 or 90 sample trees and freq 30 and 
90 to frequentist approach (Eq. 2) with 30 or 90 sample trees.

Fig. 2. Histogram of the entire study stand 3 and predictive diameter distributions of spruce 
derived with different methods. Prior refers to prior distribution (Eq. 5), bayes 30 
and 90 to Bayesian distribution (Eq. 1) with 30 or 90 sample trees and freq 30 and 
90 to frequentist approach (Eq. 2) with 30 or 90 sample trees.

Fig. 3. Histogram of the entire study stand 9 and predictive diameter distributions of spruce 
derived with different methods. Prior refers to prior distribution (Eq. 5), bayes 30 
and 90 to Bayesian distribution (Eq. 1) with 30 or 90 sample trees and freq 30 and 
90 to frequentist approach (Eq. 2) with 30 or 90 sample trees.
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marked bimodal shape, parametric distributions 
cannot provide accurate predictions.

Kolmogorov-Smirnov goodness of fit test (e.g., 
Rohatgi 2003) is used to test how well different 
prediction techniques work in all study stands. 
The test is based on the vertical deviation between 
the empirical cumulative density function and the 
cumulative density function under null hypothesis 
H0: F(x) = F0(x). The test statistic D is the larg-
est absolute deviation between the two. In other 
words, small values of the test statistics D and 
large p-values indicate a better fit. Results are 
shown in Table 2.

In all stands except one (Stand 2), and with 
almost all sample sizes, the Bayesian method 
was more accurate than the frequentist approach. 
The results also reveal that our prior information 
was very accurate, except in Stand 2. The prior 
distribution gave better results than frequentist 
approach with 150 sample trees in 6 cases out 
of 9, indicating that predictions based only on 
sample trees logged from one corner of the stand 
tend to be inaccurate. Combining sample trees 
with the prior information improved the accuracy 
fairly slowly, especially in those stands where the 
first sample trees gave poor results. The Bayesian 
method with 30 sample trees gave better predic-
tions than the prior information in 5 cases out of 
9, while the Bayesian method with 150 trees gave 
better results in 7 cases out of 9.

4 Discussion

Since the number of study stands is very small 
and represent only well-managed mature spruce 
forest in central Finland, one cannot draw general 
conclusions about the reliability or validity of 
the results. We received relatively accurate prior 
information about the stand structure, which is not 
always the case in real situations. Logging can be 
started from practically any point at the edge of 
the stand and the order of tree selection always 
varies from one harvester operator to another. 
There are still a couple of things that can be 
addressed, given these findings, however.

The normal distribution seems to work well 
in our mature, managed spruce stands. Provided 
we can obtain accurate estimates of maximum 
and minimum trees, that are used to give an esti-
mate of variance and mean diameter, the normal 
distribution fits relatively well in most similar 
well-managed spruce stands. We should recall 
that our intention is to predict the distribution in 
order to improve bucking. From our point of view, 
error with small trees is almost as bad as with big 
trees, whereas traditionally researchers in Finland 
in this area have converted diameter distribution 
into basal area distribution in order to stress the 
importance of big trees.

The normal distribution and the combination 
presented here do not however fit well in all 
kinds of forest. It is well known that most forests 

Table 2. The goodness-of-fit of diameter distributions of spruce in terms of Kolmogorov-Smirnov test value D. 
Prior information refers to prior distribution (Eq. 5), Bayes 30, 90 and 150 to Bayesian distribution (Eq. 1) 
with 30, 90 or 150 sample trees and Freq 30, 90 and 150 to frequentist approach (Eq. 2) with 30, 90 or 150 
sample trees. Mark “*” indicates that the p-value is between 0.001–0.01, mark “**” that the p-value is between 
0.01–0.05 and mark “***” that the p-value exceeds the probability of 0.05.

Stand Prior Bayes Bayes Bayes Freq Freq Freq
no information 30 90 150 30 90 150

1 0.0568** 0.1328 0.0815 0.0546** 0.1401 0.1177 0.0612**
2 0.2087 0.2084 0.1787 0.1617 0.1043 0.0626 0.0716
3 0.0681** 0.0398*** 0.0302*** 0.0821* 0.4238 0.2755 0.0786*
4 0.0849*** 0.0864** 0.0725*** 0.0627*** 0.203 0.0881** 0.0649***
5 0.0675*** 0.0974* 0.0402*** 0.0415*** 0.2506 0.1487 0.1263
6 0.0597 0.1104 0.0548 0.0299*** 0.2108 0.2105 0.2076
7 0.0585 0.0568 0.0778 0.0762 0.0783 0.0614 0.0575
8 0.1655 0.1262 0.1231 0.1282 0.2675 0.1895 0.1955
9 0.1194 0.0941 0.094 0.0797 0.1164 0.1003 0.1231
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though have skewed distribution. It means that 
applying this method leads to inaccurate results. 
It is therefore very important in the future to 
develop methods that are able to combine skewed 
distributions. Green et al. (1994) have suggested 
a way of combining the Weibull distributions 
within the framework of the Bayesian approach. 
This approach will certainly yield better results, 
but requires that both the prior information and 
the sample information be fitted with the Gibbs 
sampler technique, which is not feasible in our 
application. The models presented here are 
numerically exact and easy to calculate.

The normal distribution does not work well in 
bimodal shape stands, but this is the case with all 
parametric distributions. Taking into account our 
intention to apply diameter distribution predic-
tions, the non-parametric methods do not neces-
sarily improve the results. Prior distribution can 
be accurate in cases with unimodal shape if the 
prior mean estimate is accurate. On the other 
hand, basing the prediction on the first trees har-
vested from one corner is not wise, since they tend 
to give inaccurate predictions. In comparison, the 
Bayesian model produced the best diameter dis-
tribution estimates in almost all cases. Calibration 
seems to work in both directions. The Bayesian 
method seems to increase the reliability of diam-
eter distribution predictions, although there are 
certainly cases where the calibration of a sample 
with the prior information may even decrease 
accuracy.

The use of our findings in tree bucking control 
still needs more research. Logically, the accuracy 
of bucking outcomes (i.e. goodness of fit between 
the demand and output) should improve if we can 
incorporate better stand structure predictions into 
tree bucking control. The distribution of trees in 
a stand has considerable spatial variation, which 
makes on-line inference of the stand structure 
very complicated. However, nice recursive tech-
niques (Kalman 1960, Kalman and Bucy 1961) 
have been developed to estimate the parameters of 
the normal distribution when new data becomes 
available. At the same time we can smoothly 
diminish the effect of trees already harvested. 
In the next phase we are planning to test this 
Kalman filter and the methodology introduced in 
this study with more extensive data. We are also 
planning to investigate the use of skew-normal 

distribution (Azzalini 1985) within the Bayesian 
framework. The advantage of this distribution is 
that it has many of the appealing properties of 
the normal distribution. Skew-normal distribution 
cannot be used with a multimodal stand structure, 
but the advantage is that it fits skewed distribu-
tions well, which normal distribution does not. 
Skew-normal distribution might be a bit less flex-
ible than the Weibull distribution, but it is much 
more easy to operate with. Prior information is 
also easier to incorporate into the formulations. 
We are planning to make some tests to fit the joint 
distribution of diameter and height as well. This 
is simply done by generalizing our formulas into 
two dimensions. Furthermore, we are going to 
formulate this situation with skew-normal dis-
tribution.
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