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The aim of this paper is to investigate different mathematical approaches to buck-to-order 
log merchandizing. A new bucking-to-order planning model using mixed integer program-
ming was developed to determine the optimal production from a stand given different market 
constraints and forest inventory data. Three different approaches: market prices, target cutting 
patterns and adjusted price list were tested for generating cutting instructions to fulfill the 
plan created by the new planning model. The three approaches were evaluated in four test 
stands. The market prices approach simply applied the market prices to each stand. The target 
cutting patterns approach applied the sample cutting patterns generated from the planning 
model to the stand. The adjusted price list used a dynamic programming algorithm embed-
ded in a search heuristic to adjust both the prices and small end diameters of log products to 
achieve the production goals of the planning models. The results showed that developing a 
buck-to-order plan is important in obtaining good order fulfillment. The target cutting patterns 
and adjusted price list approaches certainly out performed the market prices approach. This 
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1 Introduction
The adoption of highly mechanized, timber har-
vesting systems is increasing worldwide (Ray-
mond 1988, Nordlund 1996, Godin 2000). With 
these systems, stems are delimbed, bucked and 
sorted by a single machine. There are a number 
of factors causing this shift from the traditional 
motor manual harvesting systems to mechanized 
harvesting systems. These include economic (the 
need to continually increase productivity) and 
social pressures along with the continuing need to 
improve the safety record of forestry operations. 
A sometimes overlooked aspect of economic 
improvement in harvesting is value recovery. 
Value or revenue can be lost in numerous places 
along the forest to mill value chain. One process 
that has been identified as having a large potential 
for value loss is the process of bucking trees into 
logs. Recent surveys of value recovery studies 
have shown that on average, manual log making 
systems were losing 11% and mechanical log 
making systems 18% of potential value (Murphy 
2003a, Marshall 2005). 

These kinds of figures have spurred signifi-
cant research in the area of optimal log bucking. 
Optimal bucking is an effective means of making 
informed decisions before mistakes are made that 
result in value loss. A number of mathematical 
formulations and computer models have been 
developed to optimize the value in each individual 
stem, this is commonly referred to as buck-to-
value (Pnevmaticos and Mann 1972, Briggs 1980, 
Geerts and Twaddle 1984, Sessions et al. 1989). 
The objective of buck-to-value optimal bucking 
is to obtain the maximum monetary value from an 
individual stem. A stem can be cut up into logs in 
numerous ways; each set of logs will yield a dif-
ferent financial return. However, there is, in many 
cases one unique bucking pattern that yields the 
maximum value. The value and logs cut using the 
optimal bucking pattern depends on the species, 
diameter, taper rate and quality of the stem plus 
the properties and relative market values of log 
grades being cut. 

The problem operationally is what is optimal 
for individual stems may not meet the market 
and operational constraints at a harvest unit or 
forest level. To maximize the value coming from 
a forest, these in-the-field bucking algorithms 

must be given log specifications which take into 
account market and operational constraints. Con-
straints can be in the form of the following: target 
volumes, minimum percentage of volume must be 
of greater than a certain length, minimum aver-
age small end diameter (SED) for a product, and 
minimum percentage of the volume must be of a 
certain grade. There may also be constraints on 
the amount of volume that can be bought from 
and sold to the open market. Buying volume 
from, and selling volume to, the open market may 
incur additional costs. In some cases, however, 
it may be economically better to produce excess 
volume of a high value product and sell it to the 
open market while under-producing a low value 
product. 

To account for these operational and market 
constraints a number of different buck-to-order 
procedures have been developed. The objective 
of buck-to-order optimal bucking is to maximize 
the monetary value at the harvest unit or forest 
level while meeting market and operational con-
straints. Although the majority of buck-to-value 
models were developed in the eighties, it has 
only been in recent years that these models have 
been implemented into large scale commercial 
harvesting operations (Boston 2001).

In the literature there are generally two 
approaches to developing the in-the-field cutting 
instructions for buck-to-order bucking:

Approach 1: Selecting cutting instructions either 
before or during the bucking process for each tree 
that will produce the required volume for each prod-
uct.
Approach 2: Finding the correct price list (in some 
cases the correct specifications) that will be applied 
to the stand of trees to produce the required volume 
for each product.

The first published optimal bucking formulation 
utilized Approach 1 (Smith and Harrell 1961). 
It solved the buck-to-order problem using linear 
programming (LP). However, as Pnevmaticos and 
Mann (1972) stated, the Smith and Harrell LP 
formulation was restricted by the requirement 
that all relationships be linear and by the limited 
number of cutting patterns available for each 
diameter class. 

The limited number of cutting patterns issue 
was solved by Näsberg (1985), Mendoza and Bare 
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(1986), Eng et al. (1986) and Laroze and Greber 
(1997), by using a two stage iterative formulation 
of the stand-level buck-to-order problem. Arce et 
al. (2002) applied a similar approach to solve the 
forest level bucking problem. The first stage, or 
master problem, uses LP to solve the constrained 
market problem and the second stage, or sub-
problem, uses dynamic programming (DP) or 
a network algorithm to solve the individual tree 
problem. The shadow prices from the master 
problem are used in the second stage to generate 
new cutting patterns. These are then used to form 
new columns in the master problem using column 
generation techniques. This general approach is 
theoretically correct and computationally efficient 
(Laroze 1993), but as many authors (Sessions et 
al. 1989, Laroze 1993 etc) have pointed out, the 
solutions produced are not particularly practical 
as they produce large numbers of cutting instruc-
tions. Sessions et al. (1989) also noted that the 
requirement of these techniques to subdivide the 
stand into stem classes makes these solutions hard 
to implement. 

Approach 2 does not suffer from the same prob-
lems, however, it can not guarantee theoretically 
that maximum revenue is gained from the bucking 
of the stand. Duffner (1980) is the first published 
work on adjusting the price list in a bucking algo-
rithm to meet market demands. There is, however, 
very little detail in the Duffner (1980) paper on 
exactly how he adjusted the prices. 

Sessions et al. (1989) developed a system to 
adjust the prices iteratively using a shortest path 
algorithm to solve the sub-problem and a binary 
search procedure to find the price multipliers 
which obtain the correct ratio of long logs to short 
logs. The formulation was designed to overcome 
the problem of producing too many short logs 
that plagued optimal bucking in areas where the 
Scribner volume scaling rules were used.

A number of other procedures have been tried, 
such as using an LP solution at the upper level, to 
adjust the prices in the DP lower level, or using an 
heuristic to find the correct prices so the demand 
constraints are met in the master problem (Laroze 
and Greber 1993, Pickens et al. 1992). 

Laroze and Greber (1997) used a rule-based 
stem bucking algorithm combined with a Tabu 
Search heuristic to generate easy to implement 
bucking rules that are applicable to the entire 

stand, while providing the best feasible solution 
given a set of log prices and market constraints. 
Laroze and Greber (1997) compared the solu-
tion from their algorithm with a LP/DP formu-
lation and found that it would lead to profits 
approximately 2.5% below those of the LP/DP 
algorithm. Laroze (1999) used the rule-based 
approach described above, in combination with a 
LP formulation, to solve the forest level bucking 
optimization problem. Laroze found that his for-
mulation consistently achieved efficiency levels 
of approximately 97% compared to the optimal 
solutions for all of the scenarios analyzed. 

Kivinen and Uusitalo (2002) developed a fuzzy 
logic controller to adjust the prices specifically for 
harvesters. The fuzzy logic controller is a set of 
rules which changes the price of a log type based 
on the disparity between the target proportion and 
the actual proportion in each log class and the 
rate of change in this error. Kivinen and Uusitalo 
found that for the four stands tested, the output log 
distribution derived by the fuzzy logic controlled 
production price matrix was within 92% of the log 
distribution produced by the desired (target) price 
matrix. Kivinen (2004) published another paper 
outlining a genetic algorithm that searches for 
price matrices at the forest level. He found similar 
results to Kivinen and Uusitalo (2002)

Murphy et al. (2004) developed a two level 
model where the upper level used a threshold 
accepting heuristic and the lower level used a 
DP bucking algorithm. The upper level heuris-
tic was designed to find the product prices and 
minimum SEDs that minimized the difference 
between the target and the actual log distributions 
while meeting length proportion and average SED 
constraints. This algorithm is discussed in more 
detail later in the paper.

The buck-to-order process can be split into 
three stages; buck-to-order planning, cutting 
instruction development and adaptive control 
during the harvesting. The aim of the research 
presented in this paper was to develop new, and 
test existing, algorithms for solving the first two 
stages of this process. The paper presents a new 
methodology for creating a buck-to-order plan 
and tests the effectiveness of the two approaches 
discussed earlier for creating buck-to-order cut-
ting instructions for implementation of the buck-
to-order plan. Three mathematical models have 
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been designed to optimise the returns to forest 
owners, selling into constrained markets. 

2 Methods

The methods section is divided into three parts. 
The first part describes a new mixed integer pro-
gramming (MIP) formulation for developing 
an optimal buck-to-order plan. The second part 
describes two buck-to-order approaches, along 
with a buck-to-value approach for implement-
ing the plan. The third part describes the metrics 
that were used to assess the effectiveness of the 
approaches described in the second part. 

2.1 Developing a Buck-to-Order Planning 
Model

An MIP model was used to maximize the market 
value of the stand while meeting the market con-
straints, the customer order book constraints and 
the spot market constraints. The volume of log 
products that should be cut from the stand was 
determined. The model optimizes the projected 
stand value, given the different market constraints, 
by determining the optimal bucking patterns for a 
sample of trees from the stand. The tree data for 
these sample trees would normally be collected as 
part of the pre-harvest inventory. The model sat-
isfies the customer order book constraints either 
by using the volume produced from the stand or 
buying volume from other sources at an additional 
cost. In cases where excess volume is produced 
from the stand the excess is reallocated to other 
markets at an additional cost. The mathematical 
formulation of the model is shown below: 
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where
p = the number of log products
s = the number of stems
bi = the volume demanded of each product (i) from 

the markets
xij = the volume cut of each product (i) from each 

sample stem (j)
yi = the volume of each product cut from the stand 

used to fulfill the demand constraints 
wi = the volume of each product “sold” to other 

markets. 
zi = the volume of each product “bought in” from 

other sources
ci = the market price for log-type i
di = the “sell off” price for log-type i 
ei = the “buy in” price for log-type i
UBi  = upper limit on volume that can be bought from 

other sources
USi = upper limit on volume that can be sold to the 

markets 
cutij  = a binary trigger variable, which has a value of 

0 if no log-type i logs are cut from stem j, and 
1 otherwise

BigN = a large number, for example 200
MinVij = the minimum possible volume for a single log 

of that log product in that stem (It is found 
by optimal bucking the stem using only that 
product and restricting the length of the logs 
to the smallest possible length for that log 
product)

pVij  = this is the maximum potential volume that can 
be cut from stem (j) of that product (i) (This 
value is found by bucking the stem using 
a dynamic programming bucking algorithm, 
using only the product specifications for that 
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product and waste, where waste has a value 
of zero in this model)

CVij = the maximum constrained volume; this is the 
maximum volume from a stem when all the 
products in a particular product’s “downgrade 
group” are used in the bucking algorithm. A 
“downgrade group” is defined as those prod-
ucts that can be downgraded based on quality 
and small end diameter specification into that 
product. Examples of product groups and their 
definitions are given in Table 1. 

The constraints shown above ensure that:
Eq. 2 The sum of the volumes cut from all the stems 

for each log product, is equal to the volume pro-
duced from the stand that is being used towards 
fulfilling the order, plus the volume being sold 
onto the open market. 

Eq. 3 The sum of the volume produced from the stand 
that is being used towards fulfilling the order, 
plus the “buy in” volume, is equal to the demand 
requirement for each log product.

Eq. 4 The amount of volume that can be sold on the 
open market is limited.

Eq.5 The amount of volume that can be bought from 
the open market is limited.

Eq. 6 A binary trigger is set to either 0 or 1. If xij is 
greater than zero then cutij must be 1. Combin-
ing this constraint with the constraint in Eq. 7, 
requires xij to be greater than MinVi. 

Eq. 7 The volume of log product (i) cut from a stem is 
greater than integer multiples of the minimum 
log product volume.

Eq. 8 The total volume of all logs of log product (i) 
cut from stem (j) is less than or equal to the 
maximum potential volume for that log product 
in that stem. 

Eq. 9 The total volume of the “downgrade group” 

is less than or equal to the maximum poten-
tial volume for that “downgrade group” in that 
stem. 

The MIP model was formulated in AMPL math-
ematical programming language and solved using 
CPLEX 8.0. The default CPLEX optimizing set-
tings were used. The model was solved on a 
Pentium 4 laptop with 1 GB of memory. Most of 
the models took less than one minute to solve. 

The solution provides projected volumes that 
should be 1) cut from the stand, 2) be sold on 
to the open market, and 3) purchased from the 
open market to satisfy the order book constraints. 
Solving the MIP formulation also creates cutting 
patterns for each of the sample trees included in 
the formulation. These cutting patterns, which are 
in the form of volume per product (xij) and the 
maximum potential volumes per product (pVij) for 
each tree, are used in the Cutting Pattern approach 
described in the next section. 

2.2 Methods for Implementing the Buck-to-
Order Plan

2.2.1 Approach 1: Market Price

In this approach the market prices were applied 
using an individual stem optimal bucking DP algo-
rithm. The basic formulation has been published 
by a number of authors in the past (Pnevmaticos 
and Mann 1972, Briggs 1980, Geerts and Twaddle 
1984 and others). This algorithm was develop by 
the first author of this paper and is similar to that 
described by Deadman and Goulding (1979). Its 
aim was to maximize the total value of each stem 
by determining the optimal allocation of the log 

Table 1. An example of downgrade groups.

Product Minimum small end Allowable Member of product downgrade groups
  diameter SED (mm) qualities

Pruned 350 A Pruned
Sawlog 1 200 AB Pruned, Sawlog 1
Sawlog 2 350 ABC Pruned, Sawlog 2
Sawlog 3 200 ABC Pruned, Sawlog 1, Sawlog 2, Sawlog 3
Pulp 150 ABCD Pruned, Sawlog 1, Sawlog 2, Sawlog 3, Pulp
Waste 10 ABCDE Pruned, Sawlog 1, Sawlog 2, Sawlog 3, Pulp Waste
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products on a stem. The log products are specified 
in terms of maximum and minimum SED (small 
end diameter) and LED (large end diameter), fea-
sible lengths and minimum quality requirements. 
The quality requirements were specified as a 
single character code which represents a combina-
tion of branch size and sweep characteristics. The 
algorithm was applied to all the trees in the stands 
using the product market prices given in Table 3. 
This is effectively a buck-to-value approach and 
will optimize the market value for each stem in 
the forest. The product volume for the stand is 
determined by adding up the volume for each 
product for all the trees in the stand.

2.2.2 Approach 2: Target Cutting Patterns 

This algorithm was formulated to solve the prob-
lem of determining which bucking pattern should 
be applied to each tree, by allocating the target 
cutting patterns to a tree using the maximum 
potential volume (pVij) of each log product. The 
theory is that two trees that are similar in terms of 
size and quality characteristics will have similar 
maximum potential volumes and hence should be 
bucked in a similar manner. 

The theory behind this formulation is that each 
of the target trees in the inventory sample rep-
resents the same proportion of trees in the total 
stand and the target cutting pattern will therefore, 
be applied to the same proportion of trees in the 
stand. The target cutting pattern to be used on 
the current stem is found by determining which 
of the sample trees is most closely matched in 
terms of maximum potential volumes. A simple 
distance function, as shown in Eq. 10, was used 
to determine the nearest neighbours:
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where
d = the distance between trees in terms of total 

potential volume for each product
i = products (1,…,n)
PTVi = the maximum potential target volume for 

product i
PAVi = the maximum potential actual volume for 

product i for the current stem.

Ponsse harvesters store information on the previ-
ous 80 stems harvested and use the “nearest” eight 
trees as the basis for predicting stem taper rather 
than the taper from the single closest tree. It is 
possible to use k-nearest neighbours to determine 
the best cutting pattern to apply to each tree in the 
stand. The same distance function (Eq. 10) was 
used to determine the k-nearest neighbours for 
the current candidate tree. Trials using different 
numbers of nearest neighbours (k) showed that 
no gains were made by using more than 4 of the 
closest trees (in terms of d) for this application.

The target volumes for each product are then 
calculated from the k-nearest neighbours. The target 
volumes are calculated in proportion to the distance 
each of the k-nearest neighbours is from the current 
stem. The following equation is used to calculate 
the target volumes for the current stem:
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where
i = products (1,…,n)
m = nearest neighbours (1,…,k)
d = the distance between trees in terms of total 

potential volume (as calculated in Eq. 10)
TVi = the target volumes for the current stem
TVim = the target volumes from the k-nearest neigh-

bours.

The target volumes for each product are then used 
in a heuristic allocation model that uses the same 
structure as a forward recursive DP algorithm to 
minimize the deviation from these target volumes. 
The decision whether to cut a product at a particu-
lar state in this problem depends on what products 
have been cut before, hence breaking the principle 
of optimality. The algorithm attempts, as closely 
as possible, to cut the same volumes out of the 
current tree as the sample cutting pattern. This 
is achieved by replacing the maximize revenue 
objective function with a minimize the weighted 
volume deviation from the target volume objec-
tive function. The minimize volume deviation 
requires the addition of i more state variables; 
where i represents the number of products. These 
new state variables contain the volume of each 
product that has already been cut at the state. 
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The volume deviations from the target of each 
product are weighted to encourage the algorithm 
to meet the targets for higher value products. This 
is done using the market prices for the products. If 
the current cut volume of that product at that stage 
is less than the target volume for that product, the 
market price for that product is used as the weight. 
However, if the current cut volume of that product 
at that stage exceeds the target volume then the 
market price list is applied in reverse. 

During the early testing of this algorithm it 
was found that the pulp and waste products were 
being over produced. In an attempt to reduce 
this, the target volumes for all the target cutting 
patterns for pulp and waste were set to zero. 
This changed the objective function of the algo-
rithm to minimize the volume deviation from the 
target volumes (for all products except pulp and 
waste) while minimizing the production of pulp 
and waste volumes. This change significantly 
improved the performance of the algorithm. 

2.2.3 Approach 3: Adjusted Price List

The adjusted price list algorithm that has been 
used in this paper is FASTBUCK. This was devel-
oped by Murphy et al. (2004). 

In this algorithm an individual stem optimal 
bucking DP procedure is imbedded within a 
threshold accepting algorithm which adjusts rela-
tive prices for log products to meet order book 
constraints. The threshold accepting algorithm 
is designed to optimize the order fulfillment, not 
the market value of the volume produced. The 
objective function is to maximize the apportion-
ment degree, which is a measure of how well the 
production meets the orders.

Apportionment degree (AD%) is defined as:

AD% 100 1 –= ⋅
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where
AD% = apportionment degree (goodness of fit 

between the demand and production vector/
matrix)

m = number of log grades
Ddi = target proportion demanded for the log grade
Dpi = actual proportion produced for the log grade.

A set of “good” relative prices is found through an 
iterative process of changing the relative prices. 
The DP bucking algorithm bucks each of the 
stems in the sample given a set of relative prices. 
The AD% is calculated for the resulting volumes 
generated from bucking the set of sample stems. 
If the AD% is better than, or within a certain 
threshold of, the current best AD%, the current 
set of relative prices is kept as the starting point 
for the next iteration. If the AD% is outside the 
threshold, the current set of relative prices is dis-
carded. Only one product’s price is changed at any 
one time. The product is randomly selected and its 
price changed by increments of $1. The process 
stops when a set number of iterations have been 
completed (Murphy et al. 2004).

In this paper the target proportion of the total 
volume for each product was determined using the 
results from the buck-to-order planning model. 
The projected volume production for each product 
was divided by the total projected volume. The 
FASTBUCK algorithm was first applied to the pre-
harvest inventory stem data. The resulting relative 
prices and minimum SED were then applied to the 
whole stand to simulate the harvesting process. 

2.3 Calculating the Effectiveness of the 
Approaches

The production from the simulated harvest from 
each approach was then adjusted using the pro-
jected “buy in” and “sell off” volume from the 
Buck-to-Order planning model. The effectiveness 
of the different approaches were measured using 
1) the level to which the orders were fulfilled and 
2) the monetary return from harvesting the block. 
The metrics that were used are described below:

2.3.1 Order Fulfillment 

To evaluate the goodness of fit between the 
demand and production vector/matrix the appoint-
ment degree (AD% in Eq. 12) was used. It was 
originally developed by Bergstrand (1989). This 
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is a commonly used measure for evaluating the 
fit between an actual output distribution of logs 
and the desired log distribution.

2.3.2 Monetary Return 

The monetary return is calculated by determin-
ing the gross value gained by harvesting the 
unit, given that the volume of the over produced 
products is sold on to the open market at a dis-
counted price (Table 4), and the orders that are 
undersupplied have to be fulfilled using volume 
bought from the open market at a inflated price. 
The monetary return (MR) is determined using 
the following equation:

MR Max= ⋅ + ⋅ + ⋅ − ⋅
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where the coefficients are the same as those 
defined for Eq. 1.

The formula gives the monetary return of the 
solution, given that the log demand distribution 
has been completely fulfilled, either from the 
stand, or from the planned sales and purchases 
from the open market. However, given that per-
fect information is not available, it is possible 
that additional volume will have to be purchased 
from the open market during or after the harvest. 
These purchases come at a significant cost to the 
company. In this paper, it has been assumed this 
cost will be 125% of the original market prices. 
Any volume produced in excess of the originally 
projected production is valued at the price of pulp, 
regardless of its original value. 

3 Materials

3.1 Test Stands 

Four stands were used to test and evaluate the per-
formance of the above buck-to-order planning and 
implementation approaches. The four stands were 
the same as those used in Murphy et al. (2004). 
All stands had been pruned and were of similar 
mean diameter at breast height (DBH), details of 
which are provided in Table 2. Only one of the 

four stands was a “real-world” stand; this stand 
(WHAKA) was a Pinus radiata plantation stand 
in the North Island of New Zealand. Every tree 
in this irregular shaped stand was located, meas-
ured and described using the MARVL inventory 
system (Deadman and Goulding 1979). 

The other three stands were virtual stands and 
were rectangular in shape (500 m × 200 m). These 
were based on growth and form characteristics of 
Pinus radiata and were generated to represent a 
variety of forest conditions. The lower limbs had 
been removed (pruned) from all trees to a height of 
approximately 6 m in the EVEN stand. Selection for 
pruning was uneven in the UNEVEN stand; 100% 
of trees were pruned in the middle of the stand 
decreasing to 70% at the edges of the stand. This 
mimicked situations where the pruning contract 
supervision or funds were inadequate to ensure 
all final crop trees in the stand were pruned. The 
EVEN and UNEVEN stands were generated to 
have diameter distributions which ranged from 
20 to 70 cm with a DBH of approximately 45 cm 
and standard deviation of 5.9 cm. 

The FROST stand mimicked a situation where 
there was a frost effect in the center of the stand; 
tree size was small in the center and increased 
toward the edge of the stand. All trees were 
pruned in the FROST stand.

Fifteen circular pre-harvest inventory plots 
were systematically located in each of the EVEN, 
UNEVEN, and FROST stands and five square plots 
were located in the WHAKA stand. The inventory 
plots occupied 3% of total area in each stand.

3.2 Product Requirements for Test Stands

The same product requirements were applied to 
all four test stands (Table 3). There were five 
log-types (Pruned Domestic Sawlogs, Unpruned 

Table 2. Characteristics of test stands.

 EVEN UNEVEN FROST WHAKA

Total area (ha) 10.0 10.0 10.0 1.9
Density (stems per ha) 375 375 375 249
Mean DBH (cm) 45.0 44.8 45.2 48.5
Total volume (m3) 5990 6136 6554 1066
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Export Sawlogs, Domestic Sawlogs #1, Domestic 
Sawlogs #2, and Pulp) plus waste. Most log types 
allowed multiple lengths; some in multiples of 
0.3 m, others in multiples of 0.1 m. A total of 51 
lengths were included in the analyses. Each log-
type had target proportions of total volume that 
were required. For example, the demand target 
proportion for Pruned Domestic Sawlogs was 
15%, of the total volume harvested. 

Three different prices were included in the 
specifications for each log type:
– The market prices, which were the prices for the 

volume of each log type with confirmed mar-
kets.

– The “sell off prices” that can be thought of as, 
either a transfer cost into log stocks, or the price 
received for selling excess volume on the open 
market. These prices were 5% less than the market 
prices rounded to the nearest dollar.

– The “buy in prices” can also be thought of as a 
transfer cost out of log stocks, or the price for 
buying volume from the open market. These prices 
were 10% greater than the market prices rounded 
to the nearest dollar.

Waste was given a negative “sell off” price of $1 
and positive “buy in” cost of $1 to represent the 
cost of handling under and over production of 
waste volume.

3.3 Market Scenarios

To test the robustness of the different approaches 
four different test market conditions were used:

1) Unconstrained Spot Markets (Unconstrained 
Spot)
This is the base scenario; it uses the prices in Table 
4. The scenario has no constraints on the volume 
that can be brought in from, and sold off to, the 
open (also referred to as “spot”) market.

2) High “Buy In” for “Unpruned Export Sawlog 12.2 
m” (Hi-Price Exp 12)
In this scenario the “buy in” price for the 
“Unpruned Export Sawlog 12.2 m” was increased 
from $107 to $147 which is greater than the “Sell 
Off” price of “Pruned Domestic Saw”. This is to 
simulate an increase in price on the spot market 
due to limitations in the supply of “Unpruned 
Export Sawlog 12.2 m”.

3) Spot Market Availability Constraints (Spot Con-
straints)
The volumes for EVEN, UNEVEN and FROST 
stands of “Unpruned Export Sawlog 12.2 m” and 
“Domestic Sawlog #2 Shorts” that was available 
on the spot market is limited to 575 m3 and 300 m3 
respectively. The available market for the surplus 
“Pruned Domestic Saw” volume was limited to 
175 m3. The numbers were reduced to 30, 13 and 
70 for the WHAKA stand. These volumes were 
chosen arbitrarily, solely to constrain the model. 

4) Minimize “Buy In” and “Selling Off” volume. 
(Buy/Sell Min)

To test the robustness of the model, the objective 
function of the buck-to-order planning model was 
changed from maximizing return to minimizing 
the amount of the volume that was brought in and 
sold off. To stop that model just producing lots of 
“Waste”, the objective function was formulated to 

Table 3. Market requirements and constraints for the four test stands.

Log-types Lengths Minimum Market  Sell off Buy in Target
  SED prices prices prices proportions

 (m) (mm) ($/m3) ($/m3) ($/m3) (%)

Pruned Domestic Sawlog 3.7–6.1 350 145 138 160 15
Unpruned Export Sawlog 12.2 m 12.2 260 97 92 107 20
Unpruned Export Sawlog 8.2 m 8.2 260 88 83 97 6
Domestic Sawlog #1 3.7–6.1 200 68 65 75 12
Domestic Sawlog #2 Longs 4.9–6.1 200 48 46 53 8
Domestic Sawlog #2 Shorts 3.7–4.6 350 46 44 51 7
Pulp 3.7–6.1 100 25 24 28 24
Waste 0.1–0.6 0 0 –1 1 8
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minimize the production of waste as well. 
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where y7 = volume of waste.

4 Results 

4.1 Buck-to-Order Planning Model

The buck-to-order MIP planning model was run 
on all four stands under the four market scenarios. 
Fig. 1 shows the projected maximum values for 
each stand and market scenario combination.

The constraint on “buy in” volume of Unpruned 
Export Sawlog 12.2 m had to be relaxed for 
the UNEVEN stand under the Spot Constraints 
scenario, as the model was infeasible with the 
original constraints. The chance of obtaining an 
infeasible solution will be significantly increased 
as the number of hard constraints that are placed 
on the amount of available “buy in” and “sell off” 
volume increases. 

The market value objective function shows the 
company’s operational planner and marketers 

the trade offs from placing more market con-
straints on a stand. For example, trying to mini-
mize the “buy in” and “sell off” volumes reduced 
the market value of the forest for the UNEVEN 
stand by 5% compared with the unconstrained 
spot market value. 

The effect on the volumes that are cut from the 
EVEN stand, under the four market scenarios is 
shown in Fig. 2. The graph shows the change in 
the proportion of the total stand volume that is 
projected to be cut for each product from the stand 
in comparison to the original order book targets 
given in Table 4. Increasing the “buy in” cost of 
the Unpruned Export Sawlog 12.2 m caused the 
model to cut more of that volume from the stand, 
reducing the volume of Pruned Domestic Saw 
log, and the overall return from the stand by 7%. 
Minimizing the amount of “buy in” and “sell off” 
volume was the most costly scenario of the four 
market scenarios for all four stands. 

4.2 Implementing the Buck-to-Order Plan

4.2.1 Order Fulfillment Effectiveness 

The AD% from simulating implementation of the 
different approaches to carrying out the plans for 
each market scenario is given in Table 4. All three 

Fig. 1. The projected objective function ($/ha) from the buck-to-order planning model for 
each stand under the different market scenarios.
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Fig. 2. The projected proportion of the different products being cut from the EVEN stand, under 
the different market scenarios.

Table 4. Apportionment degree for three approaches for implementing a buck-to-order plan.

Stand Scenario Approach

  Market Price Cutting Pattern Adjusted Price List

EVEN Unconstrained Spot 92.5% 93.6% 95.4%
 Hi-Price Exp_12 88.0% 92.1% 95.1%
 Spot Constraints 87.8% 91.6% 94.0%
 Buy/Sell Min 86.2% 94.1% 96.4%
UNEVEN Unconstrained Spot 94.6% 92.4% 92.4%
 Hi-Price Exp_12 90.0% 91.3% 95.2%
 Spot Constraints 90.0% 91.3% 96.0%
 Buy/Sell Min 89.5% 94.2% 95.2%
FROST Unconstrained Spot 91.0% 88.1% 90.5%
 Hi-Price Exp_12 82.4% 86.5% 88.0%
 Spot Constraints 82.4% 84.9% 89.4%
 Buy/Sell Min 84.8% 91.1% 86.6%
WHAKA Unconstrained Spot 59.0% 74.8% 80.5%
 Hi-Price Exp_12 57.6% 67.6% 75.2%
 Spot Constraints 52.0% 52.3% 77.8%
 Buy/Sell Min 65.3% 73.0% 81.5%

approaches did well in the unconstrained spot 
market scenario. The order book constraints can 
simply be fulfilled by buying in needed volume 
and selling off excess volume to the spot market. 
As additional market constraints were placed on 
how the order could be fulfilled, performance of 

the Market Price approach decreased while the 
other two approaches continued to produce high 
AD%. In the Market Approach there is no way 
to adapt the cutting instructions to take account 
of the additional constraints. 

Overall the three virtual stands produced sub-
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stantially better AD% than the small “Whaka” 
stand. This difference in AD% is probably as 
much a function of the small inventory sample 
size as a function of the algorithms.

The effect of the increased within-stand vari-
ation can be seen in all three approaches. The 
AD% is much lower in the FROST stand than the 
EVEN stand. The Adjusted Price List approach 
generally out performs the other two approaches 
(Table 5). It produced substantially better results 
in the WHAKA stand, although this may again be 
as much a function of the small inventory sample 
size as a function of the algorithms. 

4.2.2 Monetary Return

When monetary return is used as the metric for 
comparing implementation approaches, the Adjusted 
Price List approach did not consistently outper-
form the others. Having the highest AD% does 
not guarantee the highest monetary return from 
the stand. This is because the AD% metric treats 
every log product equally, however, rarely is the 
importance of fulfilling every order the same. 

Table 6 summarizes the monetary return results, 
showing which approach achieved the highest 
monetary return for each stand under the dif-
ferent scenarios. Using this metric to evaluate 
the performance of the different approaches, the 

Cutting Pattern approach generally outperformed 
the other approaches but may be stand and market 
scenario dependent.

The advantage, in terms of monetary return, 
of developing a buck-to-order plan is shown in 
Fig. 3. It shows, for the Buy/Sell Min market sce-
nario, the percentage improvement in return of the 
three different approaches when a buck-to-order 
plan has been developed compared with when no 
plan has been developed. Only the Adjusted Price 
List approach in the WHAKA stand does not 
produce a positive percentage increase in revenue. 
This is because, in order to maximize the AD%, 
the model under-produced the high value products 
and over-produced the low value products. In this 
case the two objectives, monetary return and order 
fulfillment, were in conflict with each other.

5 Discussion and Conclusions 

An optimal bucking policy can be produced for 
a single stem, a single stand, or a set of stands 
to be successively or concurrently harvested (a 
forest) (Kivinen and Uusitalo 2002). We have 
introduced three single-stand models that could 
be used in the planning for, and implementation 
of, bucking-to-order procedures on mechanised 
harvesters.

Table 5. The best approach in terms of apportionment degree for each market scenario and stand combination.

  Unconstrained Spot Hi-Price Exp_12 Spot Constraints Buy/Sell Min

EVEN Adjusted Price List Market Price Adjusted Price List Adjusted Price List
UNEVEN Market Price Adjusted Price List Adjusted Price List Adjusted Price List
FROST Adjusted Price List Adjusted Price List Adjusted Price List Cutting Pattern
WHAKA Adjusted Price List Adjusted Price List Adjusted Price List Adjusted Price List

Table 6. The best approach in terms of monetary return for each market scenario and stand combination.

  Unconstrained Spot Hi-Price Exp_12 Spot Constraints Buy/Sell Min

EVEN Cutting Pattern Market Price Cutting Pattern Cutting Pattern
UNEVEN Market Price Adjusted Price List Adjusted Price List Adjusted Price List
FROST Market Price Cutting Pattern Cutting Pattern Cutting Pattern
WHAKA Adjusted Price List Cutting Pattern Adjusted Price List Cutting Pattern
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The models were only applied to a single spe-
cies, Pinus radiata which, unlike Norway spruce 
(Picea abies), often exhibits considerable vari-
ation in quality along each stem. The models 
were tested in four stands of similar average size 
but differing levels of complexity in terms of 
stand treatment (thinning and pruning) and tree 
size distribution. Only one of these stands was 
a real-world stand and it was rather small, less 
than 2 ha. 

A single set of seven log-types and a single 
target distribution were applied to all four stands. 
In comparison with Scandinavian markets, where 
there are many log classes based on combinations 
of length and diameter, demand constraints were 
relatively few. Performance of the models was 
tested under four levels of market restriction, 
however.

In practice, modern harvesters are able to not 
only measure length and diameter but also predict 
the profile of the unknown part of the stem. In a 
normal operation, the harvester head measures 
and delimbs a portion of the stem length, then 
the harvester’s computer predicts the profile for 
the rest of the stem. An optimal solution is then 
calculated and a log is cut. The process is then 
repeated until the whole stem has been completely 
cut into logs. In our models we assume that 1) 

all stem measurements are error-free and 2) the 
entire stem, not just a portion of it, is measured 
prior to calculating an optimal bucking solution. 
Marshall (2005) and Murphy (2003b) have shown 
that both these assumptions are likely to result in 
log distributions that will differ from those found 
in practice. Rather than have to decide on what 
would be appropriate error distributions and scan-
ning lengths to use we decided to control these 
source of variability for this study.

Given the above limitations of this study we 
have been able to show that 1) significant gains 
can be made by first determining the optimal 
volume that should be cut from the stand; that is, 
buck-to-order planning, and 2) the Target Cutting 
Pattern and Adjusted Price List approaches will 
generally outperform the simple Market Prices 
approach for implementing the buck-to-order 
plan.

The buck-to-order planning model gives harvest 
planners the ability to analyze different market 
and operational conditions before harvesting the 
stand. It not only maximizes the value of the 
stand, given that market constraints exist, but also 
provides predictions of the surplus volume and the 
required extra volume before starting to harvest 
the stand. Having this information means that 
good markets can be found for the surplus volume 

Fig. 3. The percentage increase in return using the different approaches under the “Buy/Sell 
Min” marketing scenario.
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as well as potential sources for the volume that is 
going to be in short supply. Having to buy volume 
off the spot market can sometimes be extremely 
costly. Equally as costly is having surplus volume 
that can not be sold. Often, unsold volume has 
to be downgraded to a lower value product that 
can be sold. The buck-to-order planning model 
also enables the planner to determine the costs of 
forcing the stand to produce sub-optimal target 
distributions. 

The buck-to-order plan formulation presented 
in this paper is for a single harvesting/processing 
machine operating in a single stand. There are a 
number of possible extensions to the formulation 
that would better model the opportunities that 
may be available to real-world planners. Kivinen 
(2004) reports that simulations carried out by 
Imponen (1999) have shown that harvesters linked 
through mobile communications and sharing data 
can more rapidly achieve a high AD% than the 
same harvesters without this real-time connec-
tion. Kivinen (2004) also indicated the outputs 
from multiple stands may complement each other 
and facilitate meeting market constraints. Since 
not all logging crews have the same production 
capabilities, there is the potential to also inte-
grate the crew scheduling concepts presented in 
Murphy (1998) and Mitchell (2004). These exten-
sions to the buck-to-order problem, that is taking 
into consideration multiple machines, multiple 
stands and crew scheduling, could be added to 
our formulation. They would, however, increase 
the problem size dramatically, and may require 
the use of column generation techniques to solve 
the planning problem.

Implementing the buck-to-order plan is not 
easy. We have shown that using market prices will 
generally not result in the best implementation of 
the plan. In some companies, harvest schedulers 
adjust the market prices without the use of com-
puter aids to take into account market constraints. 
Although the basic idea behind the adjustment 
process is quite obvious, Kivinen and Uusitalo 
(2002) report that “there have been marked differ-
ences in bucking results between regions, contrac-
tors, and harvester types” in Finland from using 
such an approach.

We found that the Adjusted Price List model 
seems to out perform the Cutting Pattern model 
when AD% is used as a metric. Although not 

entirely unambiguous, it seems that this is reversed 
when the monetary return is used as the metric of 
performance. This is largely due to the objective 
functions in the two algorithms. The Cutting Pat-
tern model weights the volume deviation to place 
a high importance on cutting the higher value 
products, whereas the Adjusted Price List model 
simply tries to maximize the AD%. 

AD%s for the three virtual Pinus radiata stands 
ranged between 84.9 and 96.4% and depended on 
both market scenarios and stand conditions. These 
are similar to those reported by Malinen and Pal-
ander (2004) for seven virtual, spruce-dominated 
stands and by Kivinen and Uusitalo (2002) for 
four real-world, mature Norway spruce stands. 
Malinen and Palander used DP and a “near-opti-
mum” approach for selecting cutting patterns for 
each tree. Kivinen and Uusitalo (2002) used DP 
and fuzzy logic to adapt the price list used for 
cutting trees within each stand.

The AD%’s for the real-world WHAKA stand 
ranged between 52.3 and 81.5%. We believe that 
the low AD%s for this stand are probably, more a 
function of the small sample size of the inventory 
(14 trees in total), than the cutting instructions 
and targets generated by the buck-to-order plan. 
Further work is required to determine the optimal 
sample size for generating the buck-to-order plan 
and the cutting instructions for fulfilling the plan. 
The buck-to-order problem is relatively easy to 
solve with perfect information on all the trees in 
the stand, however obtaining this information can 
be extremely costly.

Further improvements to both the Adaptive 
Price List and Cutting Pattern models are undoubt-
edly possible. Malinen and Palander (2004) have 
demonstrated, for example, that using a flexible, 
penalty-segmented AD% metric can lead to over-
all improvements in the AD%. It would also allow 
weighting of higher value products and may lead 
to higher monetary return values – although we 
have not tested this. We were able to show, how-
ever, that significantly better order fulfillment was 
achieved for all four market scenarios by the Cut-
ting Pattern model when pulp and waste volume 
targets were set very close to zero. It is difficult 
to know, without further testing, whether this is a 
universal rule or just applies to the stands/market 
scenarios used in this paper. 

Many harvesters on the market have adaptive 
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buck-to-order systems installed. These systems 
adjust the cutting instruction while working 
through the stand. For example, the Ponsse’s 
computer uses an adaptive-price–list where the 
value of each log grade is changed, as the harvest-
ing progresses through the stand, in accordance 
with how well the demand for each product is 
being met (Sondell et al. 2002). Other harvester 
computer manufacturers, such as Dasa4, Tim-
bermatic 300, Valmet and Motomit, have imple-
mented an approach called “close-to-optimal”, 
where a cutting solution is selected from the 
top 5 % of the buck-to-value solutions that best 
fulfills the demand requirements (Sondell et al. 
2002, Kivinen and Uusitalo 2002). Sondell et 
al. (2002) report AD%s of slightly over 80% for 
these systems. 

Our three models used pre-harvest inventory 
data for each stand to develop the buck-to-order 
plan, targets, adaptive price, and target cutting 
patterns. Other stem data sources could also be 
used. Kivinen and Uusitalo (2002) found that 
using inventory data in their fuzzy logic model to 
find the adaptive price list gave the highest AD% 
for only one of the four spruce stands tested. In the 
other three stands, using only data from previous 
stems harvested to adjust the prices produced the 
best AD%. Similarly, Murphy et al. (2004) found 
that using pre-harvest inventory data from four 
Pinus radiata stands resulted in AD%s that were 
0.7 to 7.6 points lower than when using recently 
harvested stem data.

Order book constraints that constrain the total 
volume of the different log products are not the 
only type of market constraints. Other log mix 
constraints, such as minimum average SED and 
percentage long logs within a product group are 
required by some customers. These types of con-
straints were not included in the analysis carried 
out in this paper. However, the FASTBUCK algo-
rithm (Murphy et al., 2004), was developed so 
that these types of constraints could be included. 
It is feasible, yet not tested, that these constraints 
could be included into the formulation of Cutting 
Pattern model. The minimize volume deviation 
objective function in the dynamic programming 
algorithm could be penalized if a particular log 
caused the constraints to be violated. 

Three models for bucking-to-order were 
described in this paper; one for buck-to-order 

planning and two for buck-to-order implementa-
tion. The buck-to-order planning and implementa-
tion models were shown, in four test stands and a 
range of market scenarios, to yield log distribu-
tions that more closely met target distributions 
than would be found when using market prices 
alone. Further testing of these models in a wider 
range of stands, species and market conditions is 
required. Recent work in Scandinavia, USA and 
New Zealand indicates that further development 
of models such as these is both possible and likely 
to further improve their utility. 
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