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for processing RS forest images are encouraging. This paper summarizes such results. 
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1 Introduction
Forests cover approximately 40% of the global 
land surface (Westoby 1989) and are one of the 
most important ecosystems on earth. Because of 
their economic and environmental importance 
forests are the subject of intensive monitoring and 
studies. Field measurements are one of the most 
exact ways to collect detailed information about 
forest attributes. However, these measurements 
are expensive, time consuming and impractical 
for large areas. Satellite remote sensing (RS) 
is an efficient and relatively inexpensive way 
to perform forest studies in a timely and con-
sistent manner over large areas. This method 
allows acquisition of accurate data that can be 
easily integrated with geographical information 
systems (GIS). RS technique is the most suitable 
for large-scale forest inventories. It may also 
give important forest and ecosystem information, 
especially to assess biophysical parameters such 
as leaf area index (LAI), biomass or net primary 
productivity. 

An important limitation of RS measurements is 
that data are usually collected at a single spatial 
resolution, appropriate, for instance, for general 
land cover observation and analysis, while the 
forest structure possesses many different scales 
of variation connected with specific objects. To 
obtain more detailed results using RS on forest 
ecosystems, higher spatial resolutions are neces-
sary. Aerial photography can provide data at a 
variety of spatial resolutions, but such measure-
ments are expensive. The expected availability 
of high-resolution or multi-resolution RS data in 
the near future (e.g. Abiodun 1998; Aplin et al. 
1999; Atkinson 1999) undoubtedly will increase 
the role of RS in forest investigations. 

Studies involving RS data are based on analy-
sis of both spectral and textural properties of RS 
images. The use of spectral information has been 
studied extensively and is the primary basis for 
estimating properties of the forest and its structure. 
Up to now, because of the relatively low resolution 
of RS instruments, texture has been utilized in RS 
as ancillary information. However, information at 
pixels of RS images is usually not independent 
of their neighbors, but rather spatially correlated 
with them. This correlation may be quantified and 
used within a classification scheme. 

The progress in high-resolution RS makes 
the role of textural information more and more 
important. The growing number of high ground 
resolution satellite sensors has made spatial infor-
mation on forest properties less expensive and 
more accurate. The spatial resolution of small 
satellites has become comparable with single tree 
canopy diameters. This allows for exact recogni-
tion of trees and broad vegetative types as well 
as detailed characterization of forest ecosystems 
and stand types at a local level. Textural informa-
tion is essential when spectral characteristics of 
different forest stands are similar. The same is 
true when spectral characteristics of individual 
stands are highly variable. In such situations, 
it is advisable to combine spectral and textural 
information from an image to characterize or 
classify forest stands. 

Many techniques for the investigation of RS 
images have already been developed to take 
advantage of texture-based information (e.g., Har-
alick and Shapiro 1992; Schaale et al. 2001). Of 
particular importance are geostatistical methods 
which provide the most flexible approach to spa-
tial correlation analysis. This paper summarizes 
the use of geostatistical methods for RS studies of 
forest ecosystems. Because the texture of the for-
ests can be highly complex and can exhibit higher 
variability than other RS entities, such as geologi-
cal deposits, sea temperature, etc., the results from 
the application of geostatistical models for RS of 
forest communities are often more complicated 
than for other phenomena. Three closely related 
topics are reviewed in this paper: 1) specific prop-
erties of geostatistical measures of spatial vari-
ability calculated from RS images of forest areas, 
2) determination of biophysical forest parameters 
using semivariograms, and 3) forest classification 
methods based on spatial information.
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2 Specific Properties of 
Geostatistical Measures 
of Spatial Variability 
Calculated From RS Images 
of Forested Areas

2.1 Geostatistical Measures of Spatial 
Variability 

Geostatistics comprises many methods for eval-
uating the autocorrelation of spatial data. The 
central tool of geostatistics is the semivariance 
function (semivariogram), which is a measure of 
spatial continuity. The application of the semi-
variogram requires that the data meet the intrinsic 
hypothesis for a regionalized variable (Journel 
and Huijbregts 1978). This hypothesis states that 
the expected value of the difference in data is zero 
for all vectors h separating any two points in the 
region of interest, and that the covariance in the 
data is a function only of the vector h between 
samples (Isaaks and Srivastava 1989). 

The experimental semivariance for a vector of 
separation h is derived by calculating one-half 
the average squared difference in data values 
for every pair of data locations separated by h. 
Semivariances can be calculated separately for 
different directions or combined to produce an 

omnidirectional semivariance. These values are 
then plotted against the distances between data 
pairs. Such a plot is also commonly referred to 
as a semivariogram or variogram. The following 
formula is the most frequently used for the semi-
variance calculations: 
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where xi is a data location, h is a lag vector, Z(xi) 
is the data value at location xi, and N is the number 
of data pairs spaced a distance and direction h 
units apart. A common form of the semivariogram 
is shown in Fig. 1.

Semivariance functions are usually character-
ized by three parameters: 
– Sill – the plateau that the semivariogram reaches. 

The sill is the sum of total variation explained by 
the spatial structure and nugget effect (described 
below). 

– Range (range of influence or correlation) – the 
distance at which the semivariogram reaches the 
sill, or at which two data points are uncorrelated. 

– Nugget effect – the vertical discontinuity at the 
origin. The nugget effect is a combination of sam-
pling error and short-scale variation that occurs at 
a scale smaller than the closest sample spacing. 

Fig.1. A common semivariogram form.
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The obtained experimental semivariogram is used 
to fit an appropriate theoretical model, such as 
the spherical, exponential, etc. (McBratney and 
Webster 1986). This model allows us to calculate 
semivariance values for any h that are necessary 
for other geostatistical calculations and analyses 
such as kriging or cokriging.

Semivariance calculations can also be per-
formed with data from RS images. The semi-
variogram is calculated from the raster images 
using digital numbers (DN) as data values Z(xi). 
A semivariogram with classic form can be an 
efficient tool in the analysis of RS images. For 
example, it can be used for estimating appropriate 
spatial resolution because its range determines the 
distance above which ground resolution elements 
are not related (Curran 1988). 

Another important measure of spatial correla-
tion is the cross-semivariogram:
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where xi is a data location, h is a lag vector, 
Z(xi) and W(xi) are the DN values at location xi 
for different bands, and N is the number of data 
pairs separated by length of the vector h. The 
cross-semivariogram quantifies the joint spatial 
variability (similar to cross-correlation) between 
two radiometric bands. A similar, but simpler 
measure of joint spatial variability is the pseudo-
cross-semivariogram: 
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Other measures of spatial variability are described 
in detail by Deutch and Journel (1998).

2.2 Semivariograms of Forested Areas 
Estimated from RS Data

2.2.1 Typical Forms of Experimental Semi-
variograms and Their Interpretation

The classic semivariogram form (shown in Fig. 1) 

often results when analyzing RS images of forest 
areas. Such semivariograms are useful for deter-
mining a vegetation community structure (Curran 
1988). Their range indicates the distance at which 
pixel properties are no longer correlated, and 
therefore provides a measure of the size of the 
elements embedded within the image as expressed 
by the semivariogram. The range is also often 
related to the size, or scale, of the largest elements 
in the scene that produce the correlation structure 
(Jupp et al. 1988, 1989). It provides a measure of 
the distance around a point at which spatial inter-
polation or processing is valid. In the case of RS 
data, it indicates the optimal spatial resolution for 
characterizing the elements embedded within the 
image or optimal window size at which to apply 
textural measures to the image data (Treitz and 
Howarth 2000). 

The sill provides a measure of the variability 
of the reflectance values across the RS image of 
the stand at distances where there is no spatial 
dependence between the reflectance values. The 
sill has been associated with the complexity of 
the image data and, hence, with the complexity of 
the target surface (i.e., forest canopy). The nugget 
effect represents spatially independent variabil-
ity that generally arises from measurement error 
(Huijbregts 1975), and short-scale variations that 
occur at a scale smaller than the closest sample 
spacing (pixel size). 

The investigation of RS images of forests 
requires detailed knowledge of internal and exter-
nal factors affecting their optical properties. The 
main external factors are: sun elevation and azi-
muth, atmospheric scattering, properties of the RS 
instrument. The main internal factors are: stand 
type, species of trees, canopy geometry, tree row 
orientation, distances between trees, underbrush, 
leaf litter and optical properties of the back-
ground. The terrain geometry and the season of 
the year in which measurements are made are 
essential for the correct interpretation of results. 
Guyot et al. (1989) and Civco (1989) discuss this 
problem in detail. 

The semivariograms calculated from RS images 
of complex forest objects can be much more 
complicated than the classic ones. They strongly 
depend on the above-mentioned factors affecting 
optical properties of images. Semivariances also 
depend highly on ground spatial resolution of the 
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RS (Atkinson 1993), leading to issues of scale. 
Decrease of the spatial resolution has the follow-
ing effect on semivariogram: 1) the height of the 
sill decreases, 2) the range of influence increases, 
and 3) the height of the semivariogram at the 
first lag increases relative to the sill (Woodcock 
et al. 1988a). Marceau et al. (1994a, b) describe 
in detail problems of scale in forestry. The scale 
problem refers to the fact that results computed 
from the same data depend on the size of the units 
of analysis, and therefore a variety of different 
results may be obtained from the same data. 

Different forms of semivariogram were 
observed in practice, such as common (classic), 
periodic or non-spatial ones (Curran 1988). This 
first type of semivariogram appears when repeti-
tive patterns are studied, and the second type 
appears when random patterns are investigated. 
In the case of spatial resolution from 20 to 30 m, 
the periodic behavior of the semivariogram is con-
nected mostly with either forest stands or a group 
of tree properties (Strahler et al. 1986). In the case 
of spatial resolutions below 5 m, the periodic 
behavior of the semivariance is connected rather 
with individual tree observations. There are also 
often observed “unbounded” forms of semivari-
ograms (especially, when spatial resolution above 
20 m was used). The unbounded semivariogram 
represents a situation in which either a trend 
or many different-range spatial correlations are 
observed or correlation is maintained beyond the 
sampled area. Atypical semivariogram forms have 
been reported and described in detail by Curran 
(1988). They are much more difficult to model 
and interpret. Semivariograms often show many 
scales of correlations existing in studied forests. 
In relatively simple cases, such semivariograms 
can be fitted using a few different models (“nested 
structures”, see Journel and Huijbregts 1978). 
The ability to derive information about multiple 
scales of variation in images from semivariograms 
is one of the most attractive features of semivari-
ograms. On the other hand, the usefulness of com-
plex semivariograms forms for analyses of forest 
attributes or classification is usually considerably 
less because of severe difficulties in their param-
eter estimation and interpretation. 

2.2.2 The Effect of Spatial Resolution and 
Optical Wavelength on Semivariograms 
with Forest Data

The spatial resolution of RS images is an essential 
factor that must be taken into account when ana-
lyzing semivariograms produced from RS forest 
data. Spatial resolution refers to the smallest 
object on the ground that can clearly be “seen” by 
the sensor (Lillesand and Kiefer 1979). In terms 
of RS data, one can think of it as the ground area 
covered by one pixel. According to Strahler et al. 
(1986), RS data is considered “low-resolution” 
when the ground area covered by one pixel is 
larger than the actual objects on the ground. Oth-
erwise, it is considered to be “high-resolution”. 
Problems of spatial resolution and level of plant 
recognition typical in forest applications were 
discussed in detail, e.g. by Wulder (1998), Lefsky 
and Cohen (2003), Tomppo et al. (2003). Accord-
ing to the latter author, in terms of global forest 
assessments, image resolution is considered to be 
low if the pixel dimensions are greater than 1000 
meters, medium if between 100 m and 1000 m, 
high if between 10 m and 30 m, and very high 
if below 5 meters. The high resolution Landsat 
satellites are particularly useful for environmental 
research because their spatial resolution (e.g., 30 
meters for Landsat TM) usually corresponds well 
with the scale at which the environmental system 
of interest operates. This is referred to as the 
“operational” scale (Sabins 1978). The very high-
resolution satellites, such as QuickBird (Digital-
Globe), OrbView, and IKONOS (ORBIMAGE), 
having spatial resolutions as low as 61 cm, make 
possible the evaluation of individual trees.

Measurements in RS are not point-specific, but 
are integrated over some area, referred to as the 
unit of regularization, which is equal to the field 
of view of the sensor. The resulting semivari-
ogram is referred to as regularized and is different 
from the one obtained using point measurements. 
Usually the resolution – cell size of the RS image 
– is taken as the unit of regularization. In many 
cases the effect of regularization on point-based 
semivariograms can be determined analytically, as 
described in detail in the geostatistical literature 
(Webster and Olivier 1990; Isaaks and Srivastava 
1989; Journel and Huijbregts 1978; Jupp et al. 
1988, 1989). However, in the case of RS images, 
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the relationship between the regularized and point 
semivariogram is much more complicated due 
to the effect of noise and non-uniform sensor 
response arising e.g., from geometric distorsion 
of RS imagery (Atkinson 1993). The problems 
of regularization of the semivariograms obtained 
from RS images have been thoroughly discussed 
in the literature (Woodcock et al. 1988a, 1988b; 
Woodcock and Harvard 1992; Atkinson 1993, 
1997, etc.). Atkinson examined the behavior of 
the experimental semivariogram with the spatial 
resolution as a means of inferring the relation of 
spatial resolution to information (structural varia-
bility) and measurements error (nugget effect). He 
stated, that measurement error must be identified, 
removed from the semivariogram, and regularized 
separately from the underlying variation.

An important consequence of the regulariza-
tion process is that the semivariogram calculated 
from RS images within a given cover class is 
only characteristic of that class for a specified 
sensor system. Variation at a scale finer than the 
scale of regularization cannot be detected and 
variations less than two to three times the scale 
of regularization cannot be reliably characterized 
(Woodcock et al. 1988a).

Another fact to remember is that spatial vari-
ations of reflectance observed on RS images are 
strongly dependent on wavelength due to the 
effects of many phenomena on reflectance of 
forest areas. Green plants strongly absorb vis-
ible electromagnetic radiation and strongly scatter 
near-infrared radiation (Curran 1980). Therefore, 
different semivariograms can be obtained observ-
ing the same area with constant spatial resolution 
for different wavelengths. Typically, response of 
green vegetation is generally higher in the infra-
red portion of the wavelength spectrum when 
compared to the visible portion. Therefore, the 
infrared-based semivariogram gives much more 
information on forest structure than a semivario-
gram calculated from the visible light reflectance. 
One approach is to calculate the semivariograms 
from vegetation indices such as the Normal-
ized Difference Vegetation Index (NDVI) as in 
Rouse et al. (1973). The NDVI index has been 
found to be a sensitive indicator of the pres-
ence and condition of green vegetation (Tucker 
et al. 1986). There are many different vegeta-
tion indices that are appropriate for investigating 

different forest characteristics (see e.g., Elvidge 
and Chen 1995). However, because of nonlinear 
dependencies between vegetation indices and 
biophysical parameters, the usefulness of these 
indices is sometimes limited (Wulder et al. 1996). 
For the above-mentioned reasons, the parameters 
derived from cross-semivariograms that describe 
multi-band spatial correlations can be interesting 
alternatives to vegetation indices (Chica-Olmo 
and Abarca-Hernandez 2000; Jakomulska and 
Clarke 2001).

3 Determining Biophysical 
Forest Parameters and 
Characterization of Forest 
Ecosystem Structure at a 
Stand Level

Forest biophysical parameters are numerical char-
acteristics that enable the calculation of compli-
cated forest properties using a single measure. 
The most common forest biophysical parameters 
are: leaf area index, biomass, and net primary 
productivity (NPP), (e.g. Wulder 1998; Kennedy 
2000; Tomppo et al. 2002; Cohen et al. 2003; 
Nilsson et al. 2003; Wulder and Franklin 2003; 
Butson and Fernandes 2004; Jensen and Binford 
2004; Ingram et al. 2005; Verbyla 2005). In the 
past, the investigation of biophysical parameters 
was limited by the technical capabilities of low-
resolution RS or required the use of digitized 
aerial photography (e.g., Poso et al. 1987; Tokola 
et al. 1996; Nilsson 1997; Tuominen et al. 2003). 
The high spatial resolution of new satellites pro-
vides greater accuracy in determining biophysical 
forest parameters. We present here some impor-
tant recent work making use of geostatistical 
methods for RS based forest investigation at dif-
ferent spatial resolutions.

3.1 Empirical Studies 

Analyses of RS images texture of forest stands 
are often connected with simultaneous ground 
measurements, especially when a supervised clas-
sification is considered. An intensive fieldwork 
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must be conducted to determine parameters of 
observed stands. Some parameters such as illu-
mination conditions are difficult to control and 
isolate during analysis. Observations and inter-
pretations of real forest stand features are neces-
sary. Hereafter, we present the most meaningful 
results. 

Cohen et al. (1990) used semivariances to 
exploit spatial information inherent in RS imagery 
for different coniferous forest stands in the Pacific 
Northwest region in the USA. The semivariances 
calculated using DN of digitized aerial video-
graphy at a nominal 1 m pixel size were used to 
evaluate the potential utility of results obtained 
using SPOT HRV and Landsat TM satellites for 
canopy structure analysis. The calculations of sem-
ivariances were repeated after the video images 
were spatially degraded to 10 and 30 m pixel 
sizes, for SPOT HRV and Landsat TM, respec-
tively. The particular objective of this study was 
to evaluate RS utility for distinguishing among the 
stands having different canopy structures, which 
included even- and uneven-aged young, even- 
and uneven-aged mature, and old growth stands. 
The authors found that at 1 m spatial resolution 
the sills corresponded to the presence of vertical 
layering in the canopies and to percent canopy 
cover, while the ranges of the semivariograms 
were closely related to the mean tree canopy sizes 
of the analyzed stands. Therefore, they concluded 
that at 1 m resolution the sills of the semivariances 
are good discriminative parameters for different 
types of forest stands. Semivariances based on 
10 and 30 m pixels contained significantly less 
useful information. However, calculations by the 
above-mentioned authors were limited only to 
the red band of the images and did not combine 
multiple-band textural information, which could 
have potentially improved their results.

Treitz and Howarth (2000) examined high-reso-
lution data collected at the stand level. Differ-
ent mono-specific or mixed forest stands using 
the Compact Airborne Spectrographic Imager 
(altitude of 600 m, spatial resolution 0.73 by 
5.36 m) were studied by means of semivariances. 
It was concluded that semivariograms calculated 
from high-resolution data are closely related to 
some forest parameters. Among other conclu-
sions drawn are the following: a) range estimates 
differ between various forest ecosystem classes, 

and appear to be related to the crown diameters; 
b) range estimates vary as a function of wave-
length, i.e., contrasting estimates were derived 
for the visible and near-infrared wavebands; c) a 
direct relationship exists between percentage of 
understory cover and semivariance; d) although 
the semivariance is related to the density of trees 
in natural ecosystems, it is more closely related 
to the whole density of all layers of vegetation. 
The obtained site-specific results were applied 
to choosing an optimal spatial resolution for a 
landscape-scale (1:20 000) forest ecosystem clas-
sification.

Wallace et al. (2000) obtained similar results 
from ground measurements of vegetation commu-
nities in the Mojave Desert of California. Fitted 
semivariogram models revealed that different 
vegetation communities have distinctive spatial 
properties, according to the model parameters. 
It was concluded that spatial pattern information 
produced by ground measurements can improve 
significantly broad-scale vegetation classifications 
produced by low-resolution RS systems. 

Franklin and McDermid (1993) analyzed Dig-
ital Compact Airborne Spectrographic Imager 
(CASI) data and SPOT satellite HRV multi-spec-
tral imagery data in order to establish empiri-
cal relationships between RS data and a variety 
of forest stand and individual tree parameters. 
Another task was to discriminate between such 
forest characteristics as volume, density and 
canopy coverage beyond the scope of tradi-
tional medium-scale aerial photo-interpretation 
by exploiting the specific advantages offered by 
high-resolution RS imagery. The authors replaced 
each pixel with the mean of a local window for 
smoothing. The size of the window was deter-
mined using the semivariance. Selecting a proper 
size both for derivation of texture and for filtering 
was critical. The window size was customized for 
specific stands. The authors concluded that analy-
ses of forest stands based on custom windows 
produced at least a five percent improvement over 
any combination of static window sizes.

Wulder et al. (1998) showed that inclusion of 
texture, which acts as a surrogate for forest struc-
ture, into the relationship between LAI and the 
normalized difference vegetation index (NDVI) 
can greatly increase the accuracy of modeled 
LAI estimates. Compact airborne spectrographic 



606

Silva Fennica 39(4) review articles

imager (CASI) data were used for this study (at an 
elevation of 700 meters with 1 m spatial resolu-
tion and five user-selected spectral bands). First-
order and second-order moment texture values 
(Peddle and Franklin 1991) as well as semi-
variance moment texture (SMT) values calculated 
from DN of RS images were examined for their 
relationship with LAI. SMT values were extracted 
from unidirectional semivariograms calculated 
within a moving window. The nugget, sill, range, 
slope of semivariance, and mean semivariance 
were used as surrogate measures of image texture 
due to the characterization of spatial variability 
in DN. The ability to increase the accuracy of 
LAI estimates was demonstrated over a range of 
forest species, densities, closures, and succes-
sional regimes. Deciduous stands, spanning an 
LAI range from about 1.5 to 7, exhibited a mod-
erate initial relationship between LAI and NDVI 
with a correlation coefficient of 0.42. Inclusion of 
additional texture statistics into the relationship 
between LAI and NDVI further increased this 
correlation coefficient to 0.61, representing an 
increase in the ability to estimate hardwood forest 
LAI from RS imagery. Mixed forest stands, which 
were spectrally diverse, had an insignificant ini-
tial correlation coefficient of 0.01 between LAI 
and NDVI, which was improved to a significant 
correlation coefficient of 0.44 with the inclusion 
of the semivariance moment texture. Empirical 
models for the estimation of LAI using STM at a 
high resolution may then be used to provide new 
information to increase the accuracy of estimates 
at a lower resolution (Wulder et al. 1996; Frank-
lin et al. 1997). For example, the LAI estimates 
derived from CASI imagery at a high resolution 
may be used to provide additional information 
to assess the sub-pixel characteristics of lower 
resolution data such as Landsat TM. 

Wallerman et al. (2002) demonstrated a new 
kriging method (the so-called edge model) for 
prediction of forest stem volume. This method 
incorporates spatial information derived by an 
edge-detection algorithm to increase the predic-
tion accuracy and was applied to Landsat TM 
data. The basis of the edge model is to use knowl-
edge of present edges to select only the neighbor-
ing plots on the same side of the closest edges as 
the unobserved point to be predicted. The results 
were compared with global (using the data from 

the complete forest area) and stratified kriging 
(using the data from pre-selected strata). Predic-
tion based on the new edge model was superior to 
prediction using the global kriging and almost as 
accurate as the stratified prediction method.

Lévesque and King (1999) studied the forest 
structural damage at an Acid Mine Site in Ontario, 
Canada, using an airborne digital camera. The 
principal objective of the study was to check 
whether semivariance statistics from very high-
resolution (0.25, 0.5 and 1.0 m) imagery could 
be used to model forest canopy and individual 
tree crown structural variations related to various 
degrees of pollution-induced damage. Sampling 
was conducted over the forest canopy as well as 
within individual tree crowns. The semivariance 
analysis identified several significant relation-
ships between image and forest parameters that 
are neither evident in single band raw spectral 
data nor in simple first-order image texture. The 
authors found that the range and sill of omnidirec-
tional semivariograms were well correlated with 
a visual tree-stress index. The ranges of isotropic 
semivariances were correlated with height and 
were sensitive to tree crown size and canopy 
closure. The semivariances extracted from 0.5 m 
pixel images were suitable for mapping structural 
and textural information related to forest damage 
at the canopy level, while the semivariograms 
extracted from 0.25 m pixels depicted information 
at the tree crown level.

Several other authors have also used semi-
variograms calculated from RS data to extract 
information about forest damage. For example 
Bowers et al. (1994) used semivariogram statistics 
(range, sill, and nugget) derived from SPOT HRV 
panchromatic and multispectral data to reveal and 
model Balsam fir damage caused by the woolly 
adelgid.

3.2 Model-based Studies

The major limitation of approaches based on 
analyses of RS images of forest areas arises from 
the fact that it is impossible to control all the fac-
tors of forest properties influencing RS images. 
For this reason, it is not an easy task to inter-
pret RS images and their texture parameters. 
This is why model-based studies of forests are 
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intensively carried out. The results obtained from 
models are verified empirically and appropriately 
calibrated.

Woodcock et al. (1988a) undertook a detailed 
model-based study to identify dependencies 
between spatial characteristics and modeled 
images of forests. They used a simple scene 
model of randomly located overlapping discs on a 
continuous background. They related directly tex-
ture information to parameters that characterize 
the discs (e.g., size, density, area of background). 
The authors also studied the influence of differ-
ent spatial resolutions on spatial statistics. They 
additionally modeled a coniferous forest scene 
comprised of four kinds of differently lighted 
objects: illuminated canopy, shadowed canopy, 
illuminated background, and shadowed back-
ground. Important findings included the follow-
ing: a) the sill is related to the proportion of the 
area covered by objects; b) the range is related to 
the size of the objects in the scene; c) the shape 
of the semivariogram and the range of influence 
are more closely related to the area of objects than 
to their shape; d) the shape of a semivariogram 
is related to the overall variance in the scene; e) 
reducing the spatial resolution result in a lower 
sill and larger range of influence, as well as in 
faster increase of the semivariogram height at the 
distance of the first lag. 

St-Onge and Cavayas (1995) studied the influ-
ence of tree size and density on the spatial struc-
ture of high-resolution images of forest stands. As 
a first step they simulated artificial images with 
the help of a three-dimensional canopy model 
and a geometrical¯optical model (Granberg 1987). 
Thus, they could analyze the influence of these 
parameters on image texture and determine pre-
diction equations for crown diameter, tree height, 
and stand density, based on image texture. They 
predicted a stand structure by using a set of three 
functions to relate the directional range param-
eters to the forest structure parameters. The direc-
tional semivariograms proved to be an effective 
tool for studying structure of the modeled forests. 
To check the modeled results they used very high-
resolution (36 cm) airborne images. Good results 
were obtained for such attributes as tree height, 
crown diameter, and stand density. The authors 
also tested the influence of spatial resolution 
on semivariograms. They decreased the resolu-

tion from 0.36 to 2.16 m by averaging the pixel 
values in 6 by 6 pixel squares. In this case, good 
results were obtained for tree height and stand 
density. The authors concluded that it might be 
possible to establish an absolute spatial signature 
of forest stands, which cannot be attained in clas-
sical spectral RS. They also concluded that good 
prediction of forest inventories could be achieved 
by combining a segmentation algorithm with their 
method based on the directional semivariograms 
at a lower spatial resolution of 2 m.

Bruniquel-Pinel and Gastellu-Etchegorry 
(1998) thoroughly studied the sensitivity of tex-
tural information from high resolution RS images 
of a forest pine plantation in Les Landes, France 
to a number of biophysical parameters: crown 
diameter, distance between trees and rows, tree 
positioning, leaf area index, and tree height. 
They also investigated the influence of acquisi-
tion parameters such as spatial resolution, spec-
tral domain, spectral viewing, and illumination 
configurations. The authors calculated semivari-
ograms from simulated images generated using 
the discrete anisotropic radiative transfer (DART) 
model. This model provides realistic simulations 
of images of 3-D scenes under any viewing and 
illumination configurations (Gastellu-Etchegorry 
et al. 1996). Image texture sensitivity to forest 
parameters was analyzed in the visible (green) 
and near-infrared domains, with a “reference 
parcel” of which biophysical parameters were 
varied, and optical parameters were kept con-
stant. Results indicated a complex dependence of 
semivariogram characteristics (range, sill, ampli-
tude of oscillations) on biophysical and acquisi-
tion parameters. The authors tested theoretical 
results against high-resolution airborne data 
(1.67 m resolution) and they found that the sill 
and the oscillation amplitude of semivariograms 
increase strongly as LAI increases in visible light. 
These two textural parameter values increased 
considerably for LAI values between 1 and 4 for 
horizontal variograms (those computed in the 
direction parallel to tree rows), and between 1 and 
5 for vertical variograms (those computed in the 
direction perpendicular to rows). The influence 
of LAI was also tested in the case of a so-called 
“natural forest”, a forest where trees are randomly 
distributed in the scene. Similar to the case of pine 
stands, sills of the natural forest increased with 
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LAI increases, whereas the range did not show 
any clear tendency. The sills of the natural forest 
were larger than those of pine plantations with the 
same LAI, due to larger radiometric variability. 
Important differences in texture parameters also 
existed between simulated and real RS images. 
These differences were attributed to the atmos-
pheric diffuse scattering and associated environ-
mental effects, RS instrument characteristics, and 
variability of understory characteristics. 

4 Review of Large-Area 
Classification Methods Based 
on Spatial Information

As we already mentioned, the spatial resolution of 
the RS instrument is essential for the information 
content of RS images. Low-resolution RS is the 
most appropriate for large-scale forest classifica-
tion. American Landsat and French SPOT satel-
lites still provide the majority of RS images in use 
today. Correct classification methods based on 
spectral information from Landsat TM images can 
discriminate between classes having sufficiently 
different spectral characteristics. For example, it 
is relatively easy to discriminate between water, 
field, hardwood and coniferous forests, estimate 
LAI (e.g., Chen and Cihlar 1996) or observe 
some forest changes (e.g., Woodcock et al. 2001). 
Today the 30 m spatial resolution of the Landsat 
satellite is considered to be the upper limit that is 
suitable for forest observations (Fazakas and Nils-
son 1996; Wulder 1998). Because it is not pos-
sible to observe and analyze objects smaller than 
the spatial resolution of the sensor, the amount 
of spatial pattern information in semivariograms 
calculated from low-resolution RS forest images 
is limited. Landsat TM data combine different 
spectral contributions within a pixel representing 
e.g., trees, underbrush and leaf litter. All these 
contributions can influence semivariances and 
other spatial measures of correlation. Therefore, 
studies applying geostatistics in low-resolution 
RS imagery for forest observations are relatively 
rare. The earlier empirical study by Cohen et al. 
(1990) suggested limited applicability of geosta-
tistical methods for Landsat TM forest image 
analysis. An example of forest inventory com-

bining the field data and those from Landsat TM 
images was given by Lappi (2001).

High-resolution RS data are still expensive and 
time consuming for computer processing. How-
ever, the results calculated from high-resolution 
data give precise information on forest properties 
for smaller areas. Undoubtedly, the high-resolu-
tion orbital sensor will play a significant role 
in large-area classification in the future. How-
ever, this will demand different image processing 
approaches. Hereafter, we summarize the texture-
based classification methods, focusing mainly on 
the recent achievements in this field.

There are many methods that use statistical and 
spatial information for classification. Such meth-
ods usually fall into three broad categories: 
– Methods based on non-spatial statistical informa-

tion
– Non-geostatistical methods that exploit spatial 

autocorrelations
– Methods based on geostatistical measures of spa-

tial variability.

4.1 Methods Based on Non-Spatial 
Statistical Information 

The most popular methods of this type are based 
on adding some statistical information as new 
(ancillary) layers of RS images. Additional layers 
contain statistical information that is extracted 
from radiometric bands using appropriate filters. 
The most common are calculations of the mean, 
median and variance in a local moving window. 
The size of the moving windows is usually of a 
few by a few pixels. The ancillary data become an 
additional feature of each pixel and can be used 
for classification purposes (see e.g., Arai 1993; 
Chen et al. 1997; Haralick and Shapiro 1992; 
Woodcock and Harvard 1992). 

4.2 Non-Geostatistical Methods That Exploit 
Spatial Autocorrelations 

There are also many methods based on spatial 
autocorrelations, which do not employ semi-
variance analysis. For example, Labovitz and 
Masuoka (1984) studied the influence of spatial 
autocorrelations in signature extraction during 
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pixel classification. Goodchild (1986) studied 
spatial correlations using Moran’s “I“ and Geary’s 
“c” statistics for analyzing raster images. Anselin 
(1995) developed a local indicator of a spatial 
association (LISA) technique. LISA indicates 
significant local spatial clustering, significant 
outliers, and local instability, e.g. local deviations 
from a global pattern of spatial autocorrelation. 
Hay et al. (1996) introduced a new structural 
image-texture technique, termed the triangulated 
primitive neighborhood (TPN) method. This tech-
nique was employed to investigate the spatial 
characteristics of high-resolution forest data from 
the Compact Airborne Spectrographic Imager 
(CASI). Wulder (1998) summarized many such 
methods.

4.3 Methods Based on Geostatistical 
Measures of Spatial Variability 

Below we describe the applicability of geostatisti-
cal methods to RS forest classification, focusing 
on the most recent results. 

4.3.1 Methods Based on Pixel by Pixel-
Derived Measures of Spatial Continuity 

Classification, or clustering, is the process of 
sorting pixels into a finite number of individ-
ual classes or categories of data based on their 
attributes. If a pixel satisfies a certain set of cri-
teria, it is assigned to the class that corresponds 
to these criteria (ERDAS Field Guide 1990). 
The most recent and effective methods that use 
textural information are based on computing a set 
of textural measures of spatial variability (TMSV) 
using a moving window. Because the choice of an 
appropriate moving window size is an especially 
important issue when spatial measures of the 
image are calculated and modeled, we discuss this 
problem at the beginning of this section. 

Most applications presented in the literature 
use a fixed window size. This is the most straight-
forward and the fastest technique, but it is not 
always precise. A trade-off exists between moving 
window sizes. On the one hand, a window that is 
too large risks encompassing several classes in 
one window. On the other hand, a window that is 

too small does not contain enough information for 
accurate computation (and eventually modeling) 
of a semivariogram. Often the moving window 
size is chosen experimentally during the train-
ing phase (e.g., Miranda et al. 1992; Miranda 
and Carr 1994; Miranda et al. 1996; Chica-Olmo 
and Abarca-Hernandez 2000). However, the most 
promising strategy is to determine the moving 
window size and shape based on the actual image 
variability. Such a window is often referred to as 
a geographic window (Merchant 1984; Dillworth 
et al. 1994). Merchant (1984) proposed using geo-
graphic windows for Landsat TM image classifi-
cation. In order to automate determination of the 
optimal geographic window size, some authors 
(e.g., Franklin and McDermid 1993; Franklin 
et al. 1996) employed semivariances. This type of 
moving window was also applied in forestry for 
LAI estimation (Wulder et al. 1998), and recently, 
for assessing forest landscape structure (Ricotta 
et al. 2003).

Two different approaches were proposed for 
combining geostatistical methods with the moving 
window methodology. The first consists of calcu-
lating and accurately modeling the semivariogram 
in a moving window, and then using some of 
the modeled semivariogram parameters for class 
identification. Ramstein and Raffy (1989) were 
the first to use this approach in analyzing a few 
distinct surface cover classes (forest, fields, and 
various urban areas) using isotropic semivari-
ograms of Landsat TM images at a 30 m spatial 
resolution. They concluded that the sill of a semi-
variogram is not appropriate for classification and 
proposed a one-parameter texture classification 
based on the range of the semivariogram. The 
experimental semivariograms were fit using an 
exponential model. In order to reduce comput-
ing time, the semivariogram parameters were not 
obtained from a traditional least-squares proce-
dure, but were calculated from the formulas con-
taining the means of DN and the means of squares 
of DN as well as the values of the semivariances 
at the first lag. It was found that the optimum 
moving window size was 11 by 11 pixels. The 
classification levels for the range of semivari-
ograms calculated using the Landsat TM red 
channel were: a < 1.8 for urban areas, 1.8 < a < 3.1 
for fields, and a > 3.1 for forests. 

In the second and more common geostatis-
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tical approach to classification semivariograms 
calculated in moving windows are not mod-
eled. Because of the complicated forms of 
semivariograms calculated from forest areas, 
the approaches based on accurate pixel-by-
pixel modeling of semivariograms in a moving 
window are not very useful. Large amounts of 
RS data sources make accurate semivariogram 
modeling computationally unreasonable. Instead, 
a set of semivariance-derived measures is used 
(e.g., semivariance values at consecutive lags, 
slopes of semivariances for consecutive pairs of 
lags, mean semivariance, some measures of semi-
variance shape, etc.). This method was used by 
Miranda et al. (1992), Miranda and Carr (1994), 
and Miranda et al. (1996) by employing a semi-
variance textural classifier (STC) algorithm. In 
the STC algorithm semivariances for the first six 
consecutive lags have been used as an additional 
input layer to image classification. For example, 
the semivariances were calculated from Shuttle 
Image Radar-B (SIR-B) data (Band L-23.4 cm 
wavelength) in order to discriminate vegetation 
in Borneo (Miranda et al. 1992). Four classes 
of surface cover type were selected: water, tidal 
forest, coastal lowland forest and swamp. The 
classification process consisted of two major 
steps: training and classification. The training 
was performed using a 22 by 22 pixel window for 
each class. During classification, semivariances 
were calculated within a moving window of 7 by 
7 pixels. The results of texture analyses based on 
classification using the STC algorithm agreed 
well with the results attained by Ford and Casley 
(1988) through visual interpretation of the same 
SIR-B dataset. 

Similar methods were applied (Miranda et al. 
1996) for vegetation discrimination in north-
western Brazil using JERS-1 (Japanese Earth 
Resources Satellite 1, renamed to Fyuo-1 in 1993) 
synthetic aperture radar data with an 18 m spatial 
resolution. The following classes were investi-
gated: water, open vegetation, dense vegetation 
and flooded vegetation. Classification accuracy 
was assessed in a confusion matrix built for the 
training sites. The classification accuracy was 
0.58, 0.60, 0.67, and 0.68 for water, flooded veg-
etation, open vegetation, and dense vegetation, 
respectively. Carr (1996) presents two computer 
programs (MXTEXT and MXMULT) that use 

minimum-distance-to-mean or Bayesian maxi-
mum likelihood algorithms for spectral classifi-
cation, allowing classification of image texture 
based on the local semivariograms calculated in 
moving windows. 

A similar method for texture-based image 
classification was developed by Chica-Olmo 
and Abarca-Hernandez (2000) for RS data clas-
sification of two different geological deposits. 
Although no forests were classified in this study, 
it seems reasonable to consider this method here. 
In their study the TMSVs were calculated from 
the principal components (PC) on the radiomet-
ric Landsat TM5 bands. Six Landsat TM bands 
(all except TM6) were divided into two groups 
(visible and infrared). The most representative 
principal components of each group, namely PC1 
and PC3, were calculated. Then a madogram 
and semivariogram as well as a cross-semivari-
ogram and pseudo-cross-semivariogram for the 
two above-mentioned PC’s were calculated in 
moving windows of 7 by 7 pixels for the first lag 
only. As a result, a geostatistical texture image of 
six TMSVs was obtained (semivariograms and 
madograms for each PC and cross-semivariogram 
and cross-pseudo-semivariogram between PC1 
and PC3. Additionally, variances for each PC 
and four fractal dimensions along two perpen-
dicular directions for each PC were calculated 
in a moving window. Different combinations of 
the above variables were studied to improve clas-
sification accuracy with a likelihood decision 
rule using ERDAS software with the radiometric 
information (ERDAS Field Guide 1990). Two 
important conclusions were reached: 1) the tex-
tural information improved classification accuracy 
(by 19.7%), and 2) multivariate measures, such 
as cross-semivariances, pseudo-cross-semivari-
ances and madograms, played an important role in 
increasing classification accuracy (by 11.6%). 

St-Onge and Cavayas (1997) developed a set 
of algorithms designed for large-scale inventory 
of forest structure parameters from high-resolu-
tion imagery (≤ 1 m). Texture information was 
first derived by measuring the range of the semi-
variogram that was calculated from monochro-
matic images in three different directions using 
a moving window. The semivariogram ranges 
were then used to predict crown diameters, stand 
density, and crown closure through regression 
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equations on a per-pixel basis. A region-growing 
algorithm was applied to these three regression-
estimated images to identify the limits of the 
forest stands. Calibration of the prediction equa-
tions was made using artificial images created 
by a geometrical-optical process. It was found 
that forest stand boundaries can be adequately 
identified on artificial images and that average 
forest structure estimates within each delineated 
stand are close to the actual values. Preliminary 
use of the proposed method yielded good seg-
mentation and per stand structure estimates when 
applied to real images acquired with the MEIS-II 
(Multi-detector Electro-optical Imaging Scanner) 
airborne sensor. 

Jakomulska and Clarke (2001) performed a 
texture-based classification of chaparral vegeta-
tion using data from the Airborne Data Acquisi-
tion and Registration System 5500 with a 2.5 m 
ground resolution. They chose green, red and 
infrared bands to analyze six different cover types. 
Experimental semivariances, cross-semivari-
ances and pseudo-cross-semivariances between 
three studied bands were calculated for each 
image pixel using a technique that incorporated 
a moving window of a changeable size. The 
following sets of indices were calculated in a 
moving window for each pixel image: 1) indi-
vidual parameters (semivariogram values for dif-
ferent lags); 2) global parameters such as the sum 
of the semivariances/cross-semivariances, mean 
semivariogram, sum of the absolute differences 
between semivariance models and experimental 
semivariogram, and sum of the absolute differ-
ences between semivariograms and cross-semi-
variograms; 3) parameters connected with the 
range or sill (difference between semivariogram 
and cross-semivariogram at a range, ratios of sills 
for band pairs and range values); and 4) measure 
of semivariogram shape (e.g., ratio of sill and 
range). To evaluate the discriminative power of 
the above-mentioned texture indices, a set of 
training samples from studied classes were used. 
Due to the large number of derived parameters, 
the selection was made through principal compo-
nents and correlation analyses. It was found that 
the best discriminative parameters were the sills 
of the semivariogram and cross-semivariogram, 
the mean semivariance and cross-semivariance, 
the sum of absolute differences between spherical 

semivariograms and semivariograms at lags up to 
the range, and the pseudo-cross-semivariogram 
at lag 0 and lag equal to range. The overall accu-
racy using both spectral and textural information 
versus only spectral information was 81.7% and 
67.5%, respectively. This means that the overall 
classification accuracy increased by nearly 15% 
thanks to the inclusion of textural information. 
It was also found that discrimination between 
classes found in shaded areas is possible if tex-
tural parameters are used.

Cokriging techniques are also promising in 
forest inventory. Integration of different types of 
RS information (e.g., multisensor data) can be of 
even further use. For example, Hudak et al. (2002) 
integrated the lidar and Landsat data for estimat-
ing and mapping forest canopy height in western 
Oregon. Land detection and ranging (lidar) data 
provide detailed information on canopy structure 
in the vertical plane, but over a limited spatial 
extent (Lefsky et al. 1999). Landsat data provide 
extensive coverage of generalized forest structural 
classes in the horizontal plane but are relatively 
insensitive to variation of forest canopy height. 
Spatially continuous lidar coverage was sampled 
in eight systematic patterns to determine which 
lidar sampling strategy would optimize lidar–
Landsat integration. The following five non-spa-
tial and spatial methods were tested for predicting 
canopy height: regression, kriging, cokriging, and 
kriging and cokriging of regression residuals. 
The authors concluded the integrated models that 
kriged or cokriged regression residuals are the 
most suitable strategy for estimating and mapping 
canopy height at locations not sampled by lidar, 
and that a 250 m discrete point sampling strategy 
was most efficient for an intensively managed 
forested landscape in western Oregon.

4.3.2 Approaches for Classification Not 
Based on Moving Windows Techniques

Some geostatistically based RS image classifica-
tion methods are not performed on a per-pixel 
basis. For example, Dungan (1998) studied the 
applicability of geostatistical methods for spa-
tial prediction of vegetation quantities, such as 
biomass, canopy cover, stems per area unit, etc., 
derived from radiance of pixels of RS images 
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using a synthetic example constructed on the basis 
of RS data. Three geostatistical methods: krig-
ing, cokriging, and stochastic conditional simu-
lation were compared with a traditional linear 
regression model. The RS data at a 20 m spatial 
ground-resolution came from the Airborne Vis-
ible/Infrared Imaging Spectrometer (AVRIS) in 
Oregon, USA. A sample of 300 pixels was taken 
at random from an image representing 36 km2. 
The 21st AVRIS band was selected to represent a 
true image. Seven other wavebands in the visible 
region were selected to represent RS images. The 
RS images obtained in these bands were treated as 
ancillary data. The linear correlation coefficients 
between the values of pixels from band 21 and 
the values of corresponding pixels from bands 7, 
9, 10, 12, 13, 15, and 22 were 0.45, 0.55, 0.61, 
0.75, 0.79, 0.88 and 0.94, respectively. Cokriging 
was applied to the 300 samples with each of the 
seven ancillary images.

Without RS data, kriging would be one way to 
interpolate values between vegetation samples on 
the ground. By adding a second RS ancillary vari-
able to a kriging analysis, it is possible to increase 
the accuracy of the interpolation with cokriging 
(Webster and Olivier 1990). The cokriging pre-
dictor at an unsampled location has the standard 
form:
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where ˆ( )p x0  is the prediction at location x0, p(xj) 
is the jth nearby sample value weighted by λj, and 
a(xl) is the ith nearby covariate value weighted 
by ωi. N1 and N2 are, respectively, the numbers 
of nearby sample values and nearby covariate 
values.

The accuracy in the spatial prediction of vegeta-
tion quantities was measured using the root mean 
square error (RMSE) between the predicted and 
the true image. In the case when the correlation 
coefficient between sample and ancillary data did 
not exceed 0.89, the lower RMSE was obtained 
using cokriging. When this coefficient exceeded 
0.89, regression gave a more accurate predictor.

De Bruin (2000) presented a geostatistical 
method for modeling spatial uncertainty in esti-
mates of the area extent of land-cover types. He 

used a sequential indicator simulation technique 
that enables the generation of multiple maps that 
take into account the available data and allows 
spatial patterns and uncertainties in the maps to 
be inferred (Deutch and Journel 1998). The area 
estimates were based on exhaustive but uncertain 
(“soft”) RS data and a sample of reference (“hard”) 
data. Using sequential indicator simulation, a set 
of equally probable maps was generated from 
which uncertainties regarding land-cover patterns 
can be inferred. Collocated indicator cokriging 
was also employed for estimation of the real 
extent of land-cover types. This method explicitly 
accounts for the spatial cross-correlation between 
hard and soft data using a simplified model of co-
regionalization. The method was illustrated using 
a case study from olive tree plantations in south-
ern Spain. Demonstrated uncertainties concerned 
the spatial extent of a contiguous olive region and 
the proportion of olive vegetation within large 
pixel blocks. Because the image-derived olive 
data were not very informative, conditioning on 
ground-truthed data had a considerable effect on 
the area estimates and their uncertainties. For 
example, the expected area of the contiguous 
olive region increased from 65 ha to 217 ha when 
conditioning on the reference sample. 

Conventional classification techniques require 
ground truth information, use only the spectral 
characteristics of classified pixels, rely on a 
Gaussian probability distribution for the spectral 
signature, and work at a pixel level without allow-
ing classification of larger or smaller areas. To 
overcome these drawbacks, van der Meer (1996) 
proposed use of a non-parametric geostatistical 
technique based on indicator kriging. This method 
has the following advantages: 1) it can use spec-
tral information from laboratory studies to train 
the classifier instead of requiring ground infor-
mation, which is difficult to obtain or not always 
available; 2) through the kriging estimation vari-
ances, an estimate of uncertainty is derived; 3) 
it incorporates spatial aspects through the use of 
local estimation techniques; 4) it is distribution 
free; and 5) it may be applied to different supports 
if the data are corrected for support changes. 
Although van der Meer applied this technique 
to the problem of calcite-dolomite mineral map-
ping, this method could be promising for forestry 
applications assuming that reflectance spectra of 
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the classified species type are well known and 
high-resolution data are used. 

5 Conclusions

Geostatistical measures of spatial variability pro-
vide unique structural information on RS images. 
However, application of these measures for clas-
sification of complicated forest communities is 
not a trivial task. One of the most important 
shortcomings with the use of semivariograms is 
that it should be calculated only from sufficiently 
large and homogenous areas. Progress in RS 
technology allows for separate trees or their parts 
to be observed in the forests. The role of textural 
information could be therefore essential when 
analyzing RS images. The results obtained up 
to now are encouraging and the use of textural 
information significantly improves classification 
in the case of high-resolution RS data.
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