
201

Silva Fennica 39(2) research articles

Comparison of Randomized Branch 
Sampling with and without  
Replacement at the First Stage

Jorge Cancino and Joachim Saborowski

Cancino, J. & Saborowski, J. 2005. Comparison of randomized branch sampling with and 
without replacement at the first stage. Silva Fennica 39(2): 201–216.

Randomized Branch Sampling (RBS) is a multistage sampling procedure using natural 
branching in order to select samples for the estimation of tree characteristics. Usually, 
sampling units are selected with unequal probabilities. Conventional RBS uses sampling 
with replacement (SWR) for repeated sampling on the first stage, and the sample size 
equals 1 on all subsequent stages, thus resulting in n so-called sample paths. When the 
sampling fraction is large multiple selections of first stage units are likely. Sampling 
without replacement (SWOR) at the first stage is an alternative that is expected to increase 
efficiency of the procedure. In this case, the second stage sample size m must be larger 
than 1 to enable unbiased variance estimation. In the present study, a theoretical and an 
empirical comparison of the conventional RBS and the SWOR variant was accomplished. 
Requiring a certain precision of the RBS estimation, the conventional RBS method is 
mostly more time-consuming than the variant with SWOR at the first stage. Only if m = 1 
is chosen as second stage sample size for the SWOR RBS, this is often more time-con-
suming. In those cases, conventional RBS is up to 5% cheaper. In general, the larger m 
is, the more expensive is conventional RBS compared with the variant with SWOR at 
the first stage. The smaller the ratio of the variance between the primary units to the total 
variance of the estimate, the larger is the advantage of the SWOR variant. Generally, it 
can be shown that the gain of efficiency by SWOR is larger in case of weak correlations 
between auxiliary and target variable.
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1 Introduction

RBS uses the natural branching within the crown 
in order to take samples to estimate one or more 
parameters of individual trees (see e.g. Jessen 
1955, Valentine et al. 1984, Williams 1989, Valen-
tine et al. 1994, Raulier et al. 1999, Good et al. 
2001, Mundson et al. 1999, Xiao et al. 2000). It 
requires the definition of nodes (points at which 
a branch or part of a branch ramifies into subor-
dinated branches), segments (parts of a branch 
between two consecutive nodes; see Fig. 1a), 
and paths (series of successive segments between 
the first node and a final segment; i.e. a segment 
without a node at its end).

The selection of a path begins at the first node 
by drawing one of the adjacent segments. This 
segment is traced until another node is encoun-
tered where the selection procedure is repeated. 
The path is terminated when a final segment 
is selected. The target variable such as needle 
weight or branch biomass is measured whenever 
it occurs at a path segment. RBS allows the selec-
tion of segments with probability proportional to 
an auxiliary variable. Although, in principle, any 
segment characteristic can be defined as an aux-
iliary variable, it is advantageous in terms of pre-
cision of the final estimate to select an auxiliary 
variable closely correlated with the target variable 
(Jessen 1955, Grosenbaugh 1967, Valentine et al. 
1984, Cancino 2003).

Classical RBS uses SWR at the first node (see 
e.g. Gregoire et al. 1995, Parresol 1999, Good et al. 
2001, and Snowdon et al. 2001), which can result 
in a loss of efficiency. Therefore, Saborowski and 
Gaffrey (1999) suggested SWOR at the first node. 
Their approach is based on the well-known fact 
that, with simple random samples, SWOR is more 
efficient than SWR (Cochran 1977). The authors 
developed a sampling strategy which incorporates 
the method of Sampford (1967) for the selection 
of sampling units with unequal probabilities and 
without replacement in the well known multistage 
sampling estimator (Rao 1975, Saborowski 1990). 
It combines SWOR with unequal selection prob-
abilities on the first stage and unequal probability 
SWR on the second and all subsequent stages. 
On the second stage, sample sizes larger than 
one are possible and even necessary if unbiased 

variance estimation is required. On the third and 
all subsequent stages sample size equals 1. So, 
sampling beginning with the third stage is actually 
classical RBS and the SWOR method differs from 
pure classical RBS only on the first stage and, if 
the second stage sample size is larger than one, 
on the second.

In the present paper we compare the classical 
RBS and the SWOR variant in a case study and 
by additional theoretical considerations. The com-
parison is focussed on the precision of estimates 
and on the time required to achieve a particular 
level of precision.

2 Classical RBS in  
the Multistage Sampling 
Framework

For the comparison of conventional with SWOR 
RBS it is necessary to embed conventional RBS 
in the general theoretical framework of multistage 
sampling. The segments emanating from the first 
node, usually the lowest node at the stem, can be 
seen as the primary sampling units of a multistage 
sampling procedure in a population of N primary 
units, Mi secondary units in the ith primary unit 
and Kij tertiary units in secondary unit j of primary 
unit i and so on. Accordingly, the conditional 

Fig. 1. a) Scheme of a tree with 7 nodes and 16 seg-
ments. b)–d) Subordinated crown partitions: a pri-
mary (i), a secondary (j), and a tertiary segment 
(l), the corresponding target variables fi, fij, and 
fijl at these segments, and the cumulated values 
Fi, Fij, and Fijl.
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selection probabilities of the units in SWR are 
denoted by qi, qij and qijl.

Following the notation of standard textbooks 
on sampling techniques (e.g. Cochran 1977), the 
total of the target variable be F F

ii

N
=

=∑ 1
 where 

F F
i ijj

Mi=
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 and F f
ij ijll
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 and, merely for nota-
tional convenience, we confine to a three stage 
design. Note that we use f for the target variable in 
order to accord with the RBS notation of Gregoire 
et al. (1995) where f reminds of the amount of 
foliage but may also represent biomass or other 
typical characteristics of interest.
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with Vark denoting the conditional variance given 
the sample selection on stage k – 1. Finally,
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is an unbiased estimator for Var F̂ .
The conditional selection probabilities of seg-

ments usually are proportional to the values of an 
appropriate auxiliary variable x that is measured 
or assessed at each segment of a node. Choosing 
the first node (stage) as an example, the condi-
tional selection probability of the ith segment is 
given by q x xi i ii

N=
=∑/

1 .
Apart from two additional restrictions, conven-

tional RBS can be seen as a special case of this 
multistage sampling framework with mi = 1 and 
kij = 1. The restrictions are that with the standard 
multistage design variables of interest are meas-
ured only on the last stage (fijl) and that all paths 
of the tree under study must be of equal length. 
With RBS, units on all stages may principally 

contribute to the totals F, Fi and Fij and the 
number of stages encountered may vary among 
different paths. Therefore, we have to redefine 
the totals as follows
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where fij is the biomass of secondary segment j 
emanating from primary segment i of node 1 and 
f the biomass of the stem below the first node (see 
Fig. 1b–d). Unbiased estimators of these totals 
are now given by
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and with mi = 1, kij = 1 this yields
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Summation over j and l has vanished because 
mi = kij = 1 for all i and j, and Qi = qi, Qij = qiqj 
and Qijl = qiqijqijl are the unconditional selection 
probabilities of segments i, ij and ijl, respectively. 
Thus, apart from f, the contribution of the stem, 
F̂  according to Eq. 4 coincides with the classical 
RBS estimator F̂  given in Gregoire et al. (1995). 
It is based on n paths each of which yields an 
unbiased estimate
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of the total biomass F (see F̂
i
 in Gregoire et al. 

(1995)).
From Eq. 2, with mi = 1, we obtain the vari-
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and from Eq. 3 the well known unbiased RBS 
variance estimator
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Although these results are already proven by our 
derivation from well-known multistage sampling 
theory, we additionally show the equivalence 
of Eq. 2’ with Jessen’s variance formula V X( ˆ ) 
(Jessen 1955) in the appendix.

Whereas formulas (Eq. 1’ to Eq. 3’ and Eq. 4) 
can obviously be extended to an arbitrary number 
of stages, it must be explained how varying path 
lengths are covered by the multistage approach 
given above. In a given tree, the number of stages 
may vary among the n primary units selected 
(Fig. 2) up to a maximum number. This can 
easily be handled in the multistage framework if 
one assumes just one artificial segment on each 
of the missing stages with conditional selection 
probability 1 and “foliage” 0. If, e.g. secondary 
segments are missing for primary segment i, then 
define Mi = 1 with qi1 = 1, fi1 = 0 implying Fi = fi. 
So, the second and subsequent stages neither 
contribute to Eq. 4 nor to the variance Eq. 2’ and 
all results given above remain valid.

Of course, one can only speculate about why 
classical RBS sampling as described above has 
been so popular in the past. Probably, the sim-
plicity of the variance estimator (Eq. 3’) and of 
the calculation of selection probabilities yield-
ing inclusion probabilities πi = nqi are the most 
important reasons. The discussion in Cochran 
(1977) reveals how difficult it is to define selec-
tion procedures without replacement and with 
inclusion probabilities πi proportional to the size 
of an auxiliary variable. Different methods have 
been suggested for the computation of πi and πii' 
(see e.g. Grundy 1954, Fellegi 1963, Hartley and 
Rao 1962). Sampford (1967) states that with most 
of these methods, in particular the determination 
of the joint inclusion probabilities πii', necessary 
for variance estimation, is “almost impossibly 
severe for sample sizes larger than 2” (Sampford 
1967, Stevens 1958; see also Yates and Grundy 
1953, Durbin 1967, Brewer and Hanif 1970). He 

generalized the procedure of Durbin (1967) (see 
Cochran 1967, p. 261–262) to samples of size 
n > 2 and proposed selection procedures that real-
ize the desired inclusion probabilities πi. Contem-
porary hard- and software equipment now allows 
for convenient application of his computationally 
extensive methods.

3 RBS with SWOR on  
the First Stage

Saborowski and Gaffrey (1999) proposed the 
SWOR variant of the classical RBS method. They 
recommended to draw n units WOR on stage 1, 
mi ≥ 1 units WR on stage 2 in primary unit i, and 
1 unit WR on all following stages. Selection of 
units on the first stage and calculation of inclusion 
probabilities πi and πii' for unit i and both units i 
and i´, respectively, being in the sample is accom-
plished by the method of Sampford (1967).

With this method, πi is proportional to qi, i.e. 
πi = n · qi. In the general multistage setting, this 
leads to the unbiased estimator F̂  according to 
Eq. 1 with variance
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Eq. 8).
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with the variance according to Eq. 5 and Var F
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ˆ  
as given in Eq. 2 but with fi + Fij / qij instead of 
Fij / qij. The unbiased variance estimator (Eq. 6) 
is finally obtained with
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This follows from the fact that the sampling pro-
cedure beginning on the second stage is identical 
to conventional RBS, so Eq. 8 is merely a copy 
of Eq. 3’.
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Two details are worth mentioning. 1) Since πi is 
a probability, it must be assured that 0 < n · qi ≤ 1. 
Moreover, Sampford’s (1967) procedures require 
n · qi < 1 for the calculation of the conditional 
selection probabilities. That means that the maxi-
mum sample size for SWOR is determined by 
the maximum selection probability according to 
n < 1/max(qi). The restriction of this condition can 
be lessened by selecting segments having extreme 
selection probabilities with probability 1, what 
means that they can be deleted from the crown 
structure and segments emanating from them are 
attached to the node preceding the deleted seg-
ment (Cancino 2003). 2) Unbiased variance esti-
mation requires mi > 1 for the second stage sample 
size, as shown in Eq. 6 and Eq. 8 in comparison 
with Eq. 3’.

4 Theoretical Considerations 
on the Efficiency of  
RBS Methods

4.1 Comparison of SWR and SWOR RBS

Repeated selection of single units on the first 
stage, which can occur with SWR more or less 
frequently, is expected to make SWOR more effi-
cient than SWR. From the following ratio of the 
variances (Eq. 2’ and Eq. 5) (f = 0 for convenience 
and mi = 1 for both methods)
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it is obvious that the gain in precision of SWOR at 
the first stage is the smaller the larger the second 
stage variances Var F

i2
ˆ  are, compared to the vari-

ances between first stage units (see also Cochran 
1977). From Eq. 9, it follows (Cancino 2003) that 
SWOR RBS is more efficient if
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If exact proportionality exists between the selec-
tion probability and the cumulated target variable 
of a primary unit, both Fi / πi and Fi' / πi' are error 
free estimators of F / n, so that the expression 
in Eq. 10 with π π
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(Cochran 1977) equals zero. I.e., only in case of 
a weaker relationship between yi and πi SWOR 
RBS will be more efficient than conventional 
SWR RBS.

4.2 Optimal Allocation of Sampling Units  
to Stages (SWR)

Without taking account of costs, the most efficient 
combination of primary (n) and secondary (mi) 
sample size for SWR on both stages can easily 
be deduced from the following analysis. Let λ be 
a factor that describes the enlargement and the 
reduction, of n and mi, respectively, so that an 
increase of n to λn is compensated by decreas-
ing mi down to mi / λ, keeping the total number 
of measured segments constant (divisibility sup-
posed). Then, in case of a two-stage procedure 
with unequal selection probabilities and SWR at 
both stages (see Eq. 2), for the variance ratio of 
both settings it holds
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because λ reduces the primary variance compo-
nent in the numerator while the secondary one 
remains unchanged. Apparently, it is recommend-
able to include more primary and, correspond-
ingly, fewer secondary units in the sample. As 
long as costs are not regarded, the most efficient 
option is the application of the procedure with 
mi = 1.

For multistage procedures with SWOR on the 
first and SWR on the second stage and with 
unequal selection probabilities, the corresponding 
ratio of the error variances (Eq. 5) with sample 
sizes λn and mi / λ for the numerator and n and mi 
for the denominator should be discussed. But, we 
were not able to reveal a similar effect of λ on the 
efficiency of RBS. Therefore, case studies might 
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be helpful to understand the effects of a trade-off 
between n and mi.

4.3 Optimization of the Multistage SWR 
Procedure Considering Costs

In order to compare both RBS procedures in 
case studies with realistic costs or, equivalently, 
time consumption for field measurements, it will 
be necessary to determine optimal sample sizes 
n and mi for RBS with SWR on all stages. For 
convenience, we use the abbreviations
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be attained. The sample size n depends on which 
function, Eq. 11 or Eq. 12, is used as the restric-
tion in G, thus we have
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where VareF̂  is the pre-determined variance of 
F.

From Eq. 13, we recognize that the classical 
RBS (m = 1) is always optimal when the vari-
ability among primary units per cost unit (σ1

2 / c1) 
is equal to the variability per cost unit within the 
paths beginning at a secondary segment

σ i

ii

N

q
cRest

2

1
2

=
∑









/ .

Classical RBS is inefficient when 
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q
cRest
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=
∑ /  is 

larger than σ1
2 / c1, because then the same preci-

sion (higher precision) could be achieved with 
lower costs (the same costs). The larger the opti-
mal sample size m, the more classical RBS devi-
ates from the optimum, and the more time must 
be spent for the required precision.

5 Alternative Variance 
Estimators for SWOR RBS 
(mi = 1)

In Chapter 4.2 it was shown that mi = 1, i.e. the 
classical RBS, is the optimal choice among all 
two-stage sampling procedures with SWR on 
both stages, if costs are ignored. If we choose 
mi = 1 as well for the SWOR RBS then there is 
no unbiased estimator for VarF̂ . Three alterna-
tive ad hoc variance estimators are discussed in 
this paragraph and will be further examined in 
the case studies.

The first choice, Vswr, could be the variance 
estimator (Eq. 3’), which is unbiased in case of 
the classical RBS but biased if SWOR is applied 
on the first stage instead of SWR. The gain in 
precision of the SWOR RBS compared with clas-
sical RBS depends on the variance components 
and on the relationship between the cumulated 
target variable and the selection probability of 
the primary units (see Chapter 4.1). Particularly, 



207

Cancino and Saborowski Comparison of Randomized Branch Sampling with and without Replacement at the First Stage

there is no gain if that relationship is exactly 
proportional. Therefore, Vswr should give reliable, 
although conservative, estimates of the variance 
whenever the relationship is close to proportional-
ity. Remarkable over-estimation can be expected 
to occur for trees with only weakly related Fi and 
πi. One might try to reduce this over-estimation by 
means of a correction factor that plays the role of 
the finite population correction (1 – n / N) in simple 
random sampling. It is derived from the uncondi-
tional selection probabilities of the selected paths 
as follows in the next paragraph.

If we consider each path as a singular unit, the 
SWOR of n primary units and mi = kij = … = 1 
units at the subsequent stages approximately cor-
responds to SWOR of n from a population of 
NPaths paths with inclusion probability πp = n · QRp 
for path p. Since QRp corresponds to 1 / N, the 
selection probability in simple random sampling, 
1

1
−

=∑ QRp

n

p
 is used instead of (1 – n / N), hence

V F K V F K Q
corr swr R

p

n

p
( ˆ ) ( ˆ )= ⋅ = −

=
∑with 1

1

 (14)

The third variance estimator is obtained if we 
assume each path a sampling unit with inclusion 
probability πp = n · QRp and F̂

p
, the estimator of 

the total in that crown compartment which begins 
with primary segment p, a fixed measurement. 
The resulting estimator formally coincides with 
the Sen-Yates-Grundy variance estimator in a 
one-stage sampling design.
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In order to compute Sampford’s (1967) πpp' for 
the selected paths, NPaths as well as the prob-
abilities of all NPaths paths must be known. 
Therefore, we need estimations of NPaths and the 
NPaths – n unknown selection probabilities QRj, 
j = n + 1,…,NPaths.

In sampling with unequal probabilities, 1 / qi 
represents the number of units on the first stage 
for the estimation of the total by F̂ q

i i
, such as 

NY
i
ˆ  in simple random sampling. Similarly, the 

reciprocal of the selection probability of each path 
supplies an estimation of the total number of paths 
of the tree, i.e. an ad hoc estimator of NPaths could 
be N̂

n QPaths
Rp

n

p

=
=

∑1 1

1

. Further, the unknown prob-

abilities QRj, j = n + 1,…,NPaths, are substituted 
by the average
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6 Database for Case Studies

Data of complete trees of three different species 
were available for the analysis: spruce (Picea 
abies (L.) Karst.), European mountain ash (Sorbus 
aucuparia L.), and Monterey pine (Pinus radiata 
D. Don) (Table 1, Fig. 2a).

The data for the young spruce trees were col-
lected in the Solling mountains (Lower Saxony, 
Germany) by the plant-modelling working group 
of the Institute of Forest Biometry and Informat-
ics of the University of Goettingen. One tree was 
completely measured and the other trees only 
sampled. The missing values of the target variable 
“needle biomass” were estimated by regression. 
The base diameter of each segment is available.

The eight pine trees come from two pure, even-
aged (14 and 29 years old) stands in Cholguán 
(VIII Región, Chile). For each tree, the position of 
the branch (height above ground), its length and 
base diameter, as well as the total weight of each 
fifth branch were measured. The missing weights 
were determined by regression, and branches 
located between two whorls were assigned to the 
nearest whorl or to an additional node.

Moreover, a time study was carried out during 
the field measurements of 9 additional European 
mountain ashes in Bärenfels (Sachsen, Germany). 
Diameter and leaf biomass were measured for all 
sampled segments of a tree by a working team 
of three people. Sampling was done by classical 
RBS with multiple stages as well as by SWOR 
RBS (mi = 1) at each tree.

At each node, individual time consumption for 
two different working units was measured; i.e. the 
working time at the node (counting of segments, 
measurement of the auxiliary variable, selection 
of segments, marking of selected segments) and 
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Fig. 2. a) Two-dimensional representation of spruce 4 
with and b) without stem.

Table 1. Tree characteristics.

Tree Age DBH Height Biomass Number Number of Number of
 (years) (cm) (m)  of nodes segments paths

Norway spruce
1 14 – 0.4 16.6 a 11 598 337
2 16 – – 41.6 29 623 318
3 12 – – 99.6 50 901 456
4 11 – – 11.2 34 233 119

Young Monterey pine
1 14 25.5 14.4 186.6 b 27 164 138
2 14 18.6 14.2 81.8 23 114 92
3 14 14.8 16.4 25.9 7 52 46
4 14 14.2 14.4 31.5 13 84 72

Old Monterey pine
1 29 51.5 37.6 249.8 b 45 184 140
2 29 51.2 33.2 1035.9 56 198 143
3 29 40.7 37.9 146.6 31 147 117
4 29 36.8 40.2 277.7 53 235 183

European mountain ash
1 16 2.3 4.5 106.9 c 23 54 28
2 16 4.0 4.7 351.3 32 156 79
3 26 4.5 6.9 234.8 25 114 58
4 19 7.8 7.8 386.4 32 274 138

a Dry weight of needles (g); b Fresh branch biomass (kg); c Dry weight of leaves (g)

at the selected segments (gathering leaves). These 
times were recorded on all stages and later used 
to compute time consumption (costs) for simu-
lated samples in the completely measured trees 
(Table 1).

Field measurements, simulation of the RBS 
procedures and calculation of time consumption 
(costs) for simulated samples were accomplished 
with the program BRANCH (Cancino et al. 
2002), the latter according to Eq. 12. BRANCH 
computes C based on all sampled units of a tree, 
the average time for each path by c0 = C/(nm) 
and c2 by

c c
c

m2 0
1= −  (16)
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7 Experimental Results and 
Discussion

All experimental comparisons of SWR and 
SWOR RBS are based on multistage sampling, 
the number of stages encountered depending on 
the tree under study. Both methods are identi-
cal (pps with sample size 1) on the third and all 
subsequent stages, differing only in the sample 
selection method for the primary units and in the 
second stage sample size m of the SWOR RBS 
(m = 1 for SWR RBS). With both methods paths 
are sampled sequentially from node 1 onwards, 
but only with SWOR RBS repeated sampling of 
the same primary unit is avoided. As for the sam-
pling frame they equally require measurement of 
the auxiliary variable x at all segments emanating 
from a node.

For the simulations, the stem was always 
excluded from the crown structure as exempli-
fied in Fig. 2b, resulting in a large number N of 
primary segments and therefore allowing for a 
larger range of sample sizes n in the study. With 
the stem included, N and the related efforts to 
measure the auxiliary variable would be equally 

reduced for both RBS procedures. Additionally, 
the conditions would be even less favourable 
for conventional RBS because the probability of 
repeated sampling of the same primary unit would 
increase considerably.

In practice, stems are usually excluded when 
stratified RBS is applied to crown sections (strata) 
where e.g. whirls or groups of adjacent whirls are 
used as nodes. If the stem were used as a segment 
in such cases, the correlation between auxiliary 
and target variable would remarkably be reduced 
because of the usually extreme dimensions of 
the stem among the segments of the node and 
the relatively small total of the target variable 
in the paths above the stem segment. Only those 
branches above the stem segment which belong to 
the same stratum contribute to the total, instead of 
the entire crown partition above a stem segment 
in unstratified RBS. If unstratified RBS is used, 
inclusion of the stem leads to low precision of 
the estimator F̂ .

Of course, this is only a case study supposed 
to show that there are tree species and crown 
structures where SWOR RBS is superiour to 
conventional RBS, due to the observed variance 
components of the multistage setting.

7.1 Optimum Allocation of Sample Sizes for 
SWOR RBS, if Time Is Not Considered

For 6 trees (Table 1, Norway spruces 1, 3, 4, and 
European mountain ashes 2, 3, 4) with increasing 
variance ratios

σ σ
σ
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2
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2

2
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+





=
∑ i

ii

N

q
Rest  (17)

from 0.09 to 0.49, the coefficients of variation 
were calculated based on Eq. 6 and with the stem 
removed from the crown structure, so that all 
segments emanating from the stem are attached 
to a virtual node 1, similar to Fig. 2b). The total 
number of 6 primary and secondary sampling 
units was realized in three different combinations 
of n and m. The empirical results, linearly inter-
polated, reveal the same tendency as it was found 
in 4.2 for SWR on both stages, as it could have 
been conjectured but was not generally proved 
for SWOR (Fig. 3). The precision of the SWOR 
RBS increases with decreasing m and is highest 

Fig. 3. Interpolated relative coefficients of variation of 
the biomass estimate from SWOR for different 
combinations of sample sizes (nm = 6), and for 
6 trees without stem and with different variance 
ratios (0.09–0.49). The value for n = 2 and m = 3 
was considered 100% for each tree.
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for m = 1. Finally, the reduction of precision by 
larger second stage sample sizes is highest for the 
largest variance ratio. The coefficient of variation 
for n = 6 and m = 1 is below 70% of that for n = 2 
and m = 3.

7.2 Relative Precision of SWOR and 
Classical RBS, if Time Is Not Considered

With trees without the stem and m = 1 for both 
procedures, the SWOR estimates were always 
more precise than the classical RBS estimates 
(Fig. 4). The larger the sample size, the larger 
is the gain in precision, independent of tree and 
species. But only for 5 out of 16 trees and larger 
sample sizes, it exceeds 10%.

Within the species, greater gains were achieved 

for the trees with weaker relationships between 
target variable and selection probabilities of the 
primary units, in accordance with the results of 
4.1. The larger the variance ratio (Eq. 17) the 
greater is the increase of precision.

7.3 SWOR vs. Classical RBS Considering 
Time Consumption

The results presented in Fig. 5 were derived as 
mean time consumptions of 10 000 simulations 
of samples for each combination of n and m 
(n = 1…,6; m = 1,…6), based on the time study 
of the 9 European mountain ashes (see Chapter 
6). According to Eq. 13 and that time study, the 
optimal second stage sample size is m0 = 1 for 
the European mountain ash which is studied in 

Fig. 4. Ratio of the coefficients of variation of SWOR (numerator) and classical RBS (denomina-
tor) with m = 1 and different primary sample sizes n; trees without stem, each line represents 
a tree (auxiliary variable: cross section).
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Fig. 5. In this case, with n ≤ 6 time consumption 
is slightly smaller for SWR than for SWOR RBS 
(compare lower-right and upper-left graph of Fig. 
5). But this changes with increasing m. With m = 2 
and n = 6 time consumption is clearly below that 
of SWR RBS with n = 12. Please, note that this is 
a purely time-related comparison of both methods 
for equal numbers of paths n · m (SWOR) and n 
(SWR) without considering the sampling errors 
achieved.

Additionally, the analysis was done assuming 
m0 = 2 and m0 = 3 yielding even higher advantages 
of SWOR RBS compared to the according time 
consumption for classical RBS. A larger m0 is 
either the result of higher relative costs for first 
stage units, c1, or of a smaller variance ratio (Eq. 
17) in Eq. 13. Although it is quite logical that 
higher values of m0 imply larger times (costs) for 
the primary units, Fig. 5 reveals that the increase 
of time consumption due to the enlargement of 
m0 is larger with classical than with SWOR RBS. 
With increasing m0 time consumption for classi-
cal RBS using n = 36 increases by a factor 3 from 

about 95 to about 285, whereas for SWOR RBS 
with n = m = 6 this factor is about 2.4. Classical 
RBS becomes less effective with higher stage 
1 costs and with smaller variability among first 
stage units.

Total time consumption of SWOR RBS is an 
increasing linear function of the primary sample 
size n. This linearity is the result of SWOR, which 
ensures the repetition rate 1. SWR on the second 
and all following stages tolerates repeated selec-
tion of units causing a decreasing slope of time 
consumption with increasing secondary sample 
size m. The larger m, the larger is the repetition 
rate and the smaller is the contribution of each 
additional unit in the (nominal) sample size m 
to total time consumption (Fig. 5). With classi-
cal RBS, this behavior can be observed also for 
increasing first stage sample size n (Fig. 5).

Another effect of the enlargement of m0, 
observed in Fig. 5 with SWOR RBS, is a change 
in the dependence between n and m for a given 
expenditure of time (e.g. 25 minutes for the Euro-
pean mountain ash). When m0 becomes larger, 

Fig. 5. Time consumption for the SWOR and the classical RBS with different 
sample sizes n and m and optimal secondary sample sizes m0 = 1,2,3 for 
European mountain ash 2 without stem, according to Table 1.
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an increasing number of secondary units have 
the same effect on the expenditure of time as one 
primary unit.

A result which SWOR RBS could benefit from 
is depicted in Fig. 6. The decrease of the standard 
error achieved by sample size m = 2 instead of 
m = 1 is rather large. This holds for all Norway 
spruces and European mountain ashes. E. g. with 
n = 6, that enlargement of the secondary sample 
size yielded a decrease of the standard error by 
16.4% (spruce 4) up to 27.2% (spruce 3). For the 
European mountain ashes, the decrease varied 
between 20.9% (tree 2) and 23.4% (tree 3). The 
smaller the ratio of the variance between the 
primary units, the larger is the effect of m on the 
standard error.

Finally, we discuss the ratio of the times needed 
for the attainment of a certain precision (15% to 
25%) by classical RBS (m = 1) and by SWOR 
RBS (Fig. 7) with different sample sizes m. 
The according first stage sample sizes n are not 
reported but limited above by the total number of 
primary segments at the first node. The primary 
sample size n depends on the required precision 
for SWR RBS and additionally on m for SWOR 
RBS. Again, all results were obtained by 10 000 
simulated samples for each realizable combina-
tion of n and m. The resulting standard errors for 
each m were interpolated by cubic splines over 
a range of n’s in order to fix the sample sizes n 
and m necessary for the actually required preci-
sions 15%, 20% and 25%. Thus n may be frac-

Fig. 6. Standard errors for SWOR and classical RBS with different sample sizes for trees without 
stem (right). The black lines on the left represent classical RBS without (continuous) and 
with stem (broken), the gray lines different secondary sample sizes for SWOR RBS (m = 1: 
highest; m = 6: lowest) and the trees without stem: European mountain ash 2, Norway spruce 
3; auxiliary variable: cross section.
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tional what is unrealistic in practice but serves to 
avoid uncontinuities in the functional relationship 
between time ratio and m. The results for a tree 
with m0 = 1, the most advantageous situation for 
classical RBS, are depicted in Fig. 7. The curves 
for different precisions have different ranges. A 
precision of 15% can not be achieved with m < 2 
in case of the SWOR RBS, because the primary 
sample size n is limited above by N. The time ratio 
for a required precision of 25% can be given only 
for m ≤ 2, for larger m, precision would be higher 
than 25% with SWOR RBS.

With m0 = 1, the optimal second stage sample 
size for SWR RBS in case of the tree under study, 
classical RBS is less time consuming than SWOR 
RBS only if the latter is also carried out with 
m = 1. In this case, achievement of a predefined 
precision using classical RBS is not more than 2% 
cheaper. But with m ≤ 2 SWOR RBS outperforms 
classical RBS by up to 8%.

The advantage is even more pronounced when 
the optimal secondary sample size m0 is assumed 
to be larger, a situation occurring whenever costs 
per primary unit are larger or variance among 
primary units is relatively smaller (see Eq. 13). 
Thus, m0 could be considered to be an indicator of 
the lack of efficacy of classical RBS. With m0 = 3, 
for example, classical RBS (m = 1) for the Euro-
pean mountain ashes was up to 60% more time 
consuming than SWOR RBS. The smaller the 
proportion of the variance among primary units, 
the greater is the advantage of SWOR.

The large decrease in the standard error caused 
by sample size m = 2, as mentioned above, com-
pared with m = 1, in conjunction with the small 
amount of time taken for the inclusion of an 

additional secondary unit into the sample, implies 
a large advantage of the SWOR over classical 
RBS regarding costs. The value m = 2 proved to 
be optimal for two of the trees in the analysis 
(European mountain ashes 2 and 3).

Working with larger trees than studied in this 
paper may require cutting off and ordering the 
branches (primary units) before the measurement 
can be done. This additional expenditure of time 
at the primary units would lead to an even larger 
m0. Moreover, long distances between first stage 
units along the stem would also enlarge c1 and 
thus m0. Therefore, particularly for older trees, 
classical can certainly be expected to be more 
costly than SWOR RBS.

The efficiency of classical RBS is further 
reduced if trees are sampled with stem. Then 
the repetition rate is remarkably increased by the 
lower number of primary units at the first node, 
as well as by the usually extremely large selection 
probability of the stem segment compared with 
the adjacent branch segments.

8 Estimating the Variance of 
the SWOR RBS Estimator 
with m = 1

With second stage sample size m = 1 there is no 
unbiased variance estimator, because the variance 
between the secondary units cannot be estimated. 
The three variance estimators proposed in Chapter 
5 generally have a positive bias (Fig. 8), and the 
larger the sample size, the larger is that bias. The 
only exception is Norway spruce 3.

Fig. 7. Ratio of time consumption of the classical (m = 1) to SWOR RBS with different sample sizes and required 
precisions (15%−25%) for European mountain ash 2 without stem, auxiliary variable: cross section.
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The variance estimated by the formula of the 
classical RBS was most biased and exceeded the 
true variance by almost 30% (see European moun-
tain ash 3, Fig. 8). For this tree, however, SWOR 
at the first stage yielded clearly more precise 
estimates of the total of the target variable, with 
a variance 10% less than that of classical RBS. 
The increment in bias with increasing sample size 
is a result that could have been expected, because 
efficiency of SWOR in comparison with SWR 
also increases with the sample size, the same 
tendency as it can be observed for the bias of the 
classical RBS variance estimator.

The corrected classical variance estimator is 
much less biased, the largest observed bias being 
below 15%. However, some neglectable under-
estimations arose.

The Sen-Yates-Grundy-like estimator achieved 
the best results amongst the three alternative vari-
ance estimators. In the worst case, the bias hardly 
exceeds 10% (see European mountain ash 4, Fig. 
8) and usually it is below 5%. As with the cor-
rected estimator, some little under-estimations are 
to be mentioned.

The three variance estimators yielded the worst 
results when both the relationship between the 
target variable and the unconditional selection 
probabilities of the segments is weak and the ratio 
of the variance between the primary units to the 
entire variance is large; i.e. the bias of the alter-
native variance estimators was largest in those 
cases in which the strongest gain in precision of 
the SWOR can be observed.
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Fig. 8. Ratio of the average values of the variance estimates to the true variance of the estimate for SWOR on the 
first stage and m = 1 on stage 2; trees without stem. Continuous, dark line: classical RBS variance estimator; 
broken, dark line: classical RBS variance estimator with correction (Eq. 14); gray line: Sen-Yates-Grundy-
like estimator (Eq. 15); auxiliary variable: cross section.
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Appendix

It is sufficient to prove the equivalence of formula (Eq. 2’) and Jessen’s variance formula (Jessen 
1955), which is given there for one path (n = 1), for a two stage RBS procedure. In our notation and 
with F0 := F – f, his formula turns out to be
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The two stage version of the variance (Eq. 2’), with Fij = fij and F f f
i i i
= + • , can be expanded 

according to
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This completes the proof of the equivalence.


