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Detection of low level infestation in forest stands is of principle importance to determine 
effective control strategies before the attack spread to large areas. Of particular concern is 
the ongoing mountain pine beetle, Dendroctonus ponderosae (Hopkins) epidemic, which has 
caused approximately 14 million hectares of damage to lodgepole pine (Pinus contorta Dougl. 
ex. Loud var. latifolia Engl.) forests in western Canada. At the stand level attacked trees are 
often difficult to locate and can remain undetected until the infestation has become established 
beyond a small number of trees. As such, methods are required to detect and characterise low 
levels of attack prior to infestation expansion, to inform management, and to aid mitigation 
activities. In this paper, an adaptive cluster sampling approach was applied to very fine-scale 
(20 cm) digital aerial imagery to locate mountain pine beetle damaged trees at the leading edge 
of the current infestation. Results indicated a mean number of 7.36 infested trees per hectare 
with a variance of 18.34. In contrast a non-adaptive approach estimated the mean number of 
infested trees in the same area to be 61.56 infested trees per hectare with a variance of 41.43. 
Using a relative efficiency estimator the adaptive cluster sampling approach was found to be 
over two times more efficient when compared to the non-adaptive approach. 
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1 Introduction
1.1 Mountain Pine Beetle 

Infestation by the mountain pine beetle, Dendro­
ctonus ponderosae (Hopkins) is of particular 
importance in western Canada due to the wide-
spread damage to pine forests and continues to be 
the leading cause of mortality across the region 
(Westfall and Ebata 2008). Infestations typically 
initiate in individual trees or small groups on the 
landscape that expand rapidly to large areas. In 
1999, attack was estimated to cover an area of 
164 000 hectares (Westfall and Ebata 2008), and 
by 2008 this area increased to over 13 million 
hectares (Westfall and Ebata 2009). In British 
Columbia, beetles have attacked the lodgepole 
pine (Pinus contorta Dougl. ex. Loud var. latifolia 
Engl.) forests that dominate much of the south-
ern and central interior region of the Province. 
Infestation has continued to spread east into the 
pine forests of Alberta, some of which histori-
cally have been unaffected by the mountain pine 
beetle. In Alberta, the beetles have the potential 
to transition from lodgepole pine to jack pine 
(Pinus banksiana Lamb.) and infest the boreal 
forest should annual temperatures remain favour-
able for colonisation, emergence, and dispersal 
(Logan and Powell 2001, 2003, Carroll et al. 
2004, 2006). 

Expansion has occurred because previous limi-
tations to infestation have relaxed, allowing large 
populations of mountain pine beetles to affect 
areas with no historical record of attack. Infesta-
tion has spread rapidly due to two factors, the first 
being favourable periods of weather sustained 
over long periods of time (Safranyik 1978) and 
more recently, alterations in climatic thresholds 
(Raffa et al. 2008) that historically caused mortal-
ity of beetles (minimum temperatures less than 
–40 °C) which have enabled larvae to survive 
cold winters, therefore increasing the size of the 
attacking population. Secondly, the abundant pine 
forests in the interior forests of British Columbia 
and western Alberta provide large areas of highly 
suitable host material for attack by the beetles 
(Safranyik 1978, Taylor and Carroll 2004).

1.2 Forest Health Monitoring

In western Canada, forest health surveys locate 
trees attacked by forest pests and monitor the 
spread of diseases and insect damage, and pro-
vide information to guide mitigation activities. 
Typically, control of infestations is implemented 
by detecting mountain pine beetle killed trees. 
Approximately one year after attack trees exhibit 
red foliage (known as red attack) which indicates 
the locations of infestation. Ground crews are 
dispatched to these locations and the infested 
trees in close proximity to the red attacks are 
located, felled, and burned (Maclauchlan and 
Brooks 1998). By removing infested trees the 
beetle population is decreased and future infes-
tations will decline or remain stable because the 
number of attacking beetles available the follow-
ing year is reduced. Given the nature of mountain 
pine beetle infestations to infest trees close to 
previously attacked trees it is possible that trees 
missed during surveys will be detected on the 
ground and the potential for future infestation 
expansion is further reduced (Carroll et al. 2006, 
Coggins et al. 2008).

Surveys record the cause of the damage, and 
assess the severity and extent of mortality within 
forest stands (Westfall and Ebata 2008). Mountain 
pine beetle attack information is collected using a 
variety of survey techniques, ranging from coarse 
(regional) to fine-scale (operational), with each 
used differently depending on the survey scale 
and the requirements of the end-user (Wulder 
et al. 2006a). Aerial overview surveys provide 
regional data and are completed by flying over the 
Province in fixed-wing aircraft to identify forest 
stands affected by pests and diseases, this regional 
information then guides finer-scale surveys over 
select portions of the land-base which record the 
damaging agent, number, and geographic location 
of infested trees. 

Digital remotely sensed data can also be used 
to identify areas of forest pest and disease (Ciesla 
2000). Historically, Landsat imagery (30-m spa-
tial resolution) has been used to identify mountain 
pine beetle infestations, with detection accuracies 
ranging between 70% and 85% (Franklin et al. 
2003, Skakun et al. 2003, Wulder et al. 2006b). 
Franklin et al. (2003) identified infestations within 
a 2-ha area on a single image acquired from the 
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TM sensor at an overall red attack detection 
accuracy of 73.3% ± 6%, p = 0.05 (Franklin et 
al. 2003). Skakun et al. (2003) processed a time 
series of Landsat TM data to identify and confirm 
red attack damage in forest stands. This approach 
produced an accuracy of 76% (± 12%, p < 0.05) for 
groups of 10 to 29 infested trees, and 81% (± 11% 
for groups of 20 to 50 infested trees). Multi-date 
Landsat scenes were also utilised by Wulder et al. 
(2006c) to monitor forest change due to mountain 
pine beetle infestation and reports an 86% accu-
racy (± 7%). High spatial resolution imagery has 
also shown ability to detect infestations. White 
et al. (2005) utilised IKONOS imagery (4-m 
multispectral spatial resolution) with an unsu-
pervised clustering approach to identify infes-
tations near Prince George, British Columbia. 
Light infestations (1% to 5% of the trees infested 
within a forest stand) were detected with an accu-
racy of 71% and moderate infestations (> 5% 
to < 20% of a forest stand) with 92.5%. Coops 
et al. (2006) used imagery from the QuickBird 
satellite (2.44 m multispectral spatial resolution) 
to detect red attack damage. The imagery was 
classified into attacked trees and healthy trees and 
the number of red pixels counted. The relationship 
between the number of red attack pixels and red 
attack crowns observed in forest health surveys 
was found to be significant (r2 = 0.48, p < 0.001, 
standard error = 2.8 crowns). Very high spatial 
resolution digital aerial imagery (as fine as 5 cm) 
also has the potential to identify mountain pine 
beetle attack. Imagery is usually acquired in the 
visible portion of the electromagnetic spectrum 
(e.g. blue, green, red, approximately 0.4–0.7 μm) 
and has similar characteristics to aerial photo-
graphs. Coggins et al. (2008) utilised 10-cm spa-
tial resolution digital aerial imagery to extract 
information including mountain pine beetle red 
attack, which was defined with an accuracy of 
80.2% when compared to field plots. 

1.3 Role for Sampling 

A limitation of high spatial resolution satellite and 
digital aerial imagery is the small image extent, 
causing large area acquisition to be costly and 
resulting in the need for much image processing 
prior to analysis. The limited extent of very high 

spatial resolution airborne imagery is however, 
well suited to a sampling approach where imagery 
can be acquired over several smaller areas and 
integrated into a sampling scheme, from which 
forest health variables can then be defined. This 
technique offers a lower-cost solution to obtain 
accurate data over large areas in a statistically 
sound manner. Sampling for infestation in its 
simplest form can consist of conducting a simple 
random sample on a remotely sensed image with 
observations recorded in sample plots selected 
at random locations over the entire area of the 
image. Estimates of the mean, variance, and con-
fidence limits for the number of red attacked 
trees are determined using simple random sample 
estimates. This method however, can provide high 
variability and a wide confidence range. Adap-
tive cluster sampling has been demonstrated to 
determine rare and elusive populations that are 
spatially clustered (Thompson 1990) and can 
provide estimates of population densities over 
large areas. Previous studies have utilised adap-
tive cluster sampling for a variety of applications 
including for example, providing estimates of low 
density mussel populations (Smith et al. 2003), 
estimating the density of wintering waterfowl 
(Smith et al. 1995), and estimating stock size of 
fish in estuarine rivers (Conners and Schwager 
2002). In a forestry context this adaptive cluster 
sampling approach has also been utilised to assess 
the presence of rare tree species in Nepal (Ach-
araya et al. 2000), in combination with probability 
proportional to size sampling to predict forest 
inventory variables in the United States (Roesch 
1993), and to inventory sparse forest populations 
in Finland (Talvitie et al. 2006).

1.4 Objectives 

The goal of this paper is to demonstrate an 
approach for using samples of airborne imagery 
to produce robust estimates of population wide 
estimates of low level mountain pine beetle attack. 
To meet this goal, the primary objective is to 
determine the location and number of individual 
red attack trees within large areas by utilising 
an adaptive cluster sampling approach in a line 
transect design. To define areas of infestation 
an automated object-based classification system 
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(Bunting and Lucas 2006) was employed, and 
sites located along the transect lines. The mean 
number of infested trees and the variance was 
then calculated and compared to estimates of sta-
tistics derived from a conventional non-adaptive 
approach. A relative efficiency estimator was used 
to demonstrate the utility of the adaptive cluster 
approach to determine the number of mountain 
pine beetle killed trees over the landscape. 

2 Materials and Methods

2.1 Site Description 

This research was conducted in forests situated on 
the western slopes of the Canadian Rocky Moun-
tains near the town of Tumbler Ridge, British 
Columbia, Canada (54°38´N, 120°41´W) (Fig. 1). 
This location is representative of economically 
valuable forest stands on the border between Brit-
ish Columbia and Alberta. The topography around 

the study area consists of high-elevation (1800 m) 
mountainous regions, mid-elevation forests (1200 
m), and some low-elevation prairie land (900 m). 
The forests are dominated by mature lodgepole 
pine occasionally mixed with black spruce (Picea 
mariana (Mill.) BSP) which grow on valley sides. 
Sub-alpine fir (Abies lasiocarpa (Hook.) Nutt), 
western larch (Larix occidentalis Nutt.), and black 
spruce grow in flat areas, around swamps and on 
river banks.

Typically in this area, lodgepole pine natu-
rally regenerates after fire which has resulted in 
even-aged, pine dominated, stands that grow to 
uniform dimensions (Moir 1965). The lodgepole 
pine present in the area are considered to be 
susceptible to mountain pine beetles due its prox-
imity to the infestation spreading north and east 
across British Columbia and due to trees being 
larger than 12.5 cm. When combined with eleva-
tion and stand age these conditions are favourable 
to continue spread of the infestation (Shore and 
Safranyik 1992, Shore et al. 2000).

Fig. 1. The study area, situated near the town of Tumbler Ridge. The 20-cm spatial resolution 
digital aerial image is provided also to give context to the size of the sample area.
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2.2 Data 

2.2.1 High­Spatial Resolution Digital Aerial 
Imagery 

High-spatial resolution digital aerial images were 
acquired with a Canon EOS-1Ds Mark II camera, 
with a f1.8 Canon lens fitted with a Bayer pat-
tern filter, mounted on a fixed wing aircraft. The 
camera uses a complementary metal–oxide–semi-
conductor (CMOS) sensor which provides an 
effective resolution of 16.7 megapixels. Imagery 
was acquired during August 2007 from an alti-
tude of 2200 m with a focal length of 85 mm to 
produce a spatial resolution of 20 cm. Illumina-
tion variation was reduced over each scene by 
acquiring imagery as close to solar noon as pos-
sible. Imagery was georectified to a QuickBird 
multispectral (2.44-m spatial resolution) image 
projected to UTM North American Datum 83. 
Image coordinates were supplied by an onboard 
GPS coupled with an inertial navigation system 
to assist accurate georectification. Imagery was 
acquired over an area of 40 km2 (10 km × 4 km or 
50 000 × 20 000 pixels) and mosaicked together to 
form a continuous image. Imagery was recorded 
in 3 channels representing the spectral ranges 
which approximate to: 0.4–0.5 μm (blue), 0.5–0.6 
μm (green), and 0.6–0.7 μm (red). 

2.3 Phase 1: Individual Tree Crown 
Delineation on 20 cm 

Individual tree crowns can be delineated on high-
spatial resolution imagery using object-based 
classification techniques and can be further classi-
fied according to species or health status. Bunting 
and Lucas (2006) successfully utilised Compact 
Airborne Spectrographic Imager remotely sensed 
data to define individual tree crowns in Aus-
tralian forests with accuracies of approximately 
70% (range 48%–88%) for clusters and indi-
vidual trees. Tree crowns were also successfully 
delineated on 10-cm spatial resolution digital 
aerial imagery in forests in western Canada with 
accuracies between 50% and 100% (mean 80.2%) 
when trees delineated on the imagery were cor-
rectly identified and compared with field meas-
ured trees (Coggins et al. 2008). Following crown 

delineation, stem diameter and stocking density 
were estimated from the image derived crowns 
and also compared to field measurements using 
t-tests (stocking density: r2 = 0.91, se = 506.65, 
p  < 0.001; stem diameter: r2 = 0.51, standard error 
(se) = 2.63, p  < 0.001).

Both these studies provide significant confidence 
in the approach and demonstrate that object-based 
classification has the ability to accurately define 
individual trees on remotely sensed data. With the 
methodology previously demonstrated we applied 
the same technique to delineate individual red attack 
tree crowns on the 20-cm spatial resolution imagery 
using Definiens Developer version 7 (Definiens AG 
2007). The object-based classification algorithm 
(Fig. 2) first identified individual trees within the 
image; secondly, determined the number of red 
attack trees; and finally, generated estimates of the 
total number of all trees and calculate crown areas. 
A mask was first created to differentiate between 
forest and non-tree vegetation such as bare ground 
and roads. The role of the mask was critical as it 
defined the outer boundaries of tree crowns and 
aimed to remove shadowing and ground vegeta-
tion from the segmentation procedure (Gougeon 
and Leckie 1999, Pouliot et al. 2002, Bunting and 
Lucas 2006). Secondly, all non-forested areas in 
the image were classified by identifying features 

Fig. 2. Flow chart of the crown delineation and indi-
vidual tree object-based classification algorithm.
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with bright pixels, e.g. roads, recent clearcuts, 
and oil and gas landings. Thirdly, all remaining 
objects were classified as forest and a delinea-
tion algorithm was created to define individual 
tree crowns. To begin the delineation process the 
brightest objects in the forest class were used to 
identify as individual tree crowns (Bunting and 
Lucas 2006). Following identification, bordering 
objects with similar features were defined and the 
algorithm was programmed to merge and reclassify 
these objects into individual tree crowns. Follow-
ing delineation, tree crowns were classified using 
four shape criteria, area, roundness, elliptical fit, 
and the ratio of object length to width, each of 
which has been proven to be useful when used to 
classify tree crowns (Bunting and Lucas 2006). 
Red attack trees were distinguished from healthy 
trees by applying thresholds to the mean of the red 
band, the mean of the green band, and red ratio 
criteria. Every red tree was identified and was 
used to provide an estimate of the population of 
mountain pine beetle attacked trees over the area 
in the image.

2.4 Phase 2: Adaptive Cluster Sampling 

Of the possible sampling options (e.g. simple 
random, systematic, stratified), adaptive cluster 
sampling with a line transect approach was uti-
lised in this study. The adaptive cluster sampling 
is initiated by placing a sample grid over the area 
of interest from a random starting point. Transect 
lines are placed at random within the grid and 
initial sample units are chosen within them where 
the object of interest (yi) is detected (Fig. 3a). 
With adaptive cluster sampling the area sampled 
is increased, from the initial sample unit contain-
ing one or more objects of interest  by adding 
additional units at the cardinal directions around 
the initial sample unit (Fig. 3b). The object of 
interest in this study is the number of red attack 
trees present in each of the networks. Sample 
units continue to be added according to a prede-
termined condition of interest C, if for example 
C > 1 then all units adjacent to the initial unit in 
the cardinal directions are added to sample and 
the number of units increases in a similar fashion 
until C is no longer satisfied, the final collection 
of sample units is known as the sample network 

(Fig. 3c). The units at the periphery of the sample 
network which do not satisfy C are also included 
and are colloquially referred to as edge units 
(Fig. 3d; Thompson 1990) so the sample has a 
number of units at the centre that contain the 
object of interest and are surrounded by a number 
of blank units.

With adaptive cluster sampling the initial sample 
size is determined using a simple random sample 
estimator (Thompson 1990), and lines are placed at 
random on a square grid throughout an image. The 
number of line transects were chosen at random 
using a simple random sample estimator:

samplesize= ×t

E
M

2

2
1

var
/ ( )

where t is the t-value for a 98% confidence level, 
E is the acceptable error, in this case 5%, M is 
the number of grid squares in each transect line 
(secondary units), and the variance (var) was 
taken from a study performed within the area 

Fig. 3. An example of an initial sample unit located 
within a grid square in an adaptive cluster sampling 
design (a). Additional sample units positioned at 
the cardinal directions of the initial sample unit 
(b). The final sample network (c) and the edge 
units which contain no instances of the object of 
interest (d). The presence of red attack in cells is 
indicated by RA.



295

Coggins, Coops and Wulder Improvement of Low Level Bark Beetle Damage Estimates with Adaptive Cluster Sampling 

(Wulder et al. 2009). Variance is calculated using 
the equation:

variance
RA RA

=
−( )max min

( )

2

4
2

where RAmax is the highest number of red attack 
trees that exist within the study area, and RAmin 
the lowest number of red attack trees.

To initiate the adaptive cluster sampling 
approach a square grid comprising of grid squares 
60 m × 60 m was overlaid on the digital aerial 
image (Fig. 4a). The grid squares correspond to 

the size of field plots used during a reconnaissance 
of the study area in 2008. Furthermore, mountain 
pine beetles are known to disperse within a 30-m 
radius from previously attacked trees (Safranyik 
et al. 1992). Therefore, this plot size was thought 
to be suitable to locate mountain pine beetle 
infestation over the landscape. 

Transect lines (primary units) were positioned 
at random intervals on the sample grid after which 
mountain pine beetle damage was located within 
each line (Fig. 4a). Initial sample units were 
located at each point where mountain pine beetle 
attack occurred, following which sample networks 

Fig. 4. The initial sample grid of 60 m × 60 m overlaid on the digital remotely 
sensed imagery with the transect lines shown in solid colour (a). The 
randomly placed transect lines positioned within the sample area with the 
sample networks (b) and the resulting red attack crown delineation within 
the sample networks and transect lines (c).

A

B

C
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were built around each sample unit (Fig. 4b). The 
number of red attack trees in each sample network 
was obtained using an object based classifica-
tion technique to first delineate all tree crowns 
within the sample network and then was trained 
to focus on the red attack trees only. Estimates of 
the mean, variance, and confidence limits were 
calculated using the number of red attacked trees 
in each network. To estimate the mean and the 
variance a Horvitz-Thompson estimator (Horvitz 
and Thompson 1952) is used, which provides an 
unbiased estimate by dividing each y-value by 
the probability that unit is included in the sample 
(Thompson 1991a). For the line transect method 
this probability is estimated by determining which 
primary units are likely to intersect network k in 

the initial sample. This probability is given by:

π k
kN x

n

N
n

= − −















1 3/ ( )

where N is the number of primary units available 
within the sample grid, n is the number of sample 
transects used for the study and xk is the width of 
the network at the point where the initial sample 
unit is located within the line transect sample. 

This probability is calculated for each network 
over the sample area, following which the prob-
ability that one or more of the primary units that 
intersect network k and j is included in the initial 
sample (Thompson 1991a):

π kj
k j k j kjN x

n

N x

n

N x x x

n
= − −







 +
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
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
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




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

















/ ( )N

n
4

Where xk and xj refer to the width of each net-
work in a pair, and xkj refers to the number of 
primary units that intersect both networks k and 
j (Thompson 1991a). 

The probabilities calculated by the equations 
are used to provide unbiased estimates of the 
mean and variance:

µ
πacs =

=
∑1

5
1MN

yk

kk

K

( )

Varacs = −










==
∑∑1

1 6
2 2

11M N

y yk j

kj

kj

k jj

K

k

K

π
π

π π
( )

where all variables remain the same as previously 
described, k is any given network within the popu-
lation and K is the total number of networks.

The variance estimator can be used to provide 
estimates of the standard deviation by calculat-
ing the square root of the variance estimator. 
The standard deviation can be used to calculate a 
range for a confidence interval around the mean. 
These equations are the basis which provides 
estimates of the number of red attack trees within 
a landscape using an adaptive cluster sampling 
approach. 

2.5 Phase 3: Non-Adaptive Approach 

In order to assess the efficiency of the adaptive cluster 
sampling a non-adaptive approach was also utilised, 
whereby the sample size corresponded to the number 
of sample units used for the adaptive cluster sampling 
approach. The sample units were also 60 m × 60 m 
in size which were randomly placed throughout the 
sample grid and all these units were run through an 
object-based classification algorithm to extract the 
number of red attack trees. To calculate the number 
of red attacked trees within the landscape using 
a non-adaptive sampling technique an unbiased 
estimator of the mean was used: 

µ =
=
∑1

7
1Mn
Yi

i

n

( )

where Yi is the number of red attack trees in the 
sampling unit and all other variables are described 
previously. An unbiased estimator of the variance 
is:

var ( )SRS = −N n

M Nn
s

2 1
2 8

where 

s
n

Y Mi
i

n

1
2 2

1

1

1
=

−
−( )

=
∑ µ



297

Coggins, Coops and Wulder Improvement of Low Level Bark Beetle Damage Estimates with Adaptive Cluster Sampling 

As for the adaptive sampling technique, the 
mean, variance, standard deviation and a confi-
dence range were calculated for the non-adaptive 
approach.

2.6 Phase 4: Relative Efficiency

Lastly, the relative efficiency of adaptive cluster 
sampling compared with a non-adaptive approach 
was calculated. The relative efficiency is calcu-
lated by comparing the variance estimates of one 
sampling technique to the other (Kohl et al. 2006). 
In this study, the variance of the adaptive cluster 
sampling approach (varACS) was compared to the 
variance of the non-adaptive approach (varSRS):

RE ACS

SRS
= var

var
( )9

High values indicate the numerator is more 
efficient than the sampling technique used for 
the denominator. Comparatively, a value close 
or equal to 1 suggests there is little difference 
between one sampling method over the other 
(Kohl et al. 2006).

3 Results 

The adaptive cluster sampling approach was con-
ducted on a 20-cm digital aerial image mosaic 
covering an area of 40 km2. With a 60 m × 60 m 
sample plot size the total number of primary units 
(N) available was 162, with 69 secondary units (M) 
contained within each transect line (Table 1). The 
total number of sample units possible for the area 
is N * M = 11 178 sample units. To obtain a sample 
size using equation 1, the maximum number of 
red attack trees was 155 and the minimum was 
assumed to be 0, which estimated the variance 
(from equation 2) to be 1501.56. The number of 
transect lines (primary units) estimated to provide 
accurate results was 5 (n). The number of sample 
units used for the non-adaptive approach was 192, 
the same number of units utilised in all networks 
in the adaptive approach.

The object-based classification algorithm indi-
cated red attack tree locations on each transect 

line. Initial sample units were positioned over 
each occurrence of mountain pine beetle damage, 
in total 37 initial sample units were positioned 
within the transect lines. Sample networks were 
then built around the initial sample units and the 
red attack trees were identified within each net-
work by the object-based classification algorithm 
(Fig. 4c). The total number of red attack trees 
defined in the networks was 29 635.

The mean number of red attacked trees per 
hectare located using adaptive cluster sampling 
was 7.36 trees. The variance was 18.34, and 
a standard deviation of 4.28 trees per hectare. 
The confidence limit at the 95% level ranged 
from –12.45 to 27.18 (the confidence range was 
39.63) with t 0.05/2, 5–1 = 2.776. The non-adap-
tive approach had a mean of 61.56 red attack 
trees per hectare, with a variance of 41.43, and 
a standard deviation of 6.44 red attack trees. 
The confidence interval ranged from 40.53 to 
82.59 (the confidence range was 42.06) using a 
t-value of 1.96 (t 0.05/2 192–1). Only 164 red attack 
trees were delineated in the sample units for the 
non-adaptive approach. The relative efficiency 
of the non-adaptive approach compared with the 
adaptive cluster sampling approach demonstrates 
the latter gives (varSRS / varACS = 2.26) more than 
twice the efficiency when estimating the number 
of red attack trees on the landscape.

Table 1. A summary of input variables and estimates 
provided by adaptive cluster sampling and the 
non-adaptive approach.

Variables Adaptive Non-adaptive
 cluster sampling approach

N 162 192
M 69 N/A
n 5 N/A
Number of red attack 29 635 164

trees located
Networks 34 N/A
Mean 7.36 61.56
Variance 18.34 41.43
Standard deviation 4.28 6.44
Confidence limit –12.45, 27.18 40.53, 82.59
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4 Discussion
Adaptive cluster sampling is well suited to locate 
low level infestations and estimate the number 
of mountain pine beetle attacked trees over large 
areas. Results indicate the mean and variance 
for the adaptive technique (7.36 mean and 18.34 
variance) are considerably smaller than those esti-
mated by the non-adaptive technique (61.56 mean 
and 41.43 variance). Similar results were found 
by Thompson (1991a) who used adaptive cluster 
sampling with line transects. The high relative 
efficiency value is caused by the low number of 
red attack trees determined within the sample 
units in the non-adaptive technique. Out of 192 
sample units only 27 contained red attack trees, 
the random placement of sample units resulted 
in areas that were sampled without red attack 
damage, or were very close to red attack trees 
but did not encapsulate them. Comparatively to 
the non-adaptive approach, once initial sample 
units were determined for the adaptive approach, 
sampling was concentrated over areas containing 
mountain pine beetle attack. Therefore, many red 
attack trees were defined and estimates from these 
sample networks are less variable than from the 
non-adaptive approach.

Despite the apparent advantages of cluster sam-
pling to provide estimates of low-level mountain 
pine beetle attacks there are a number of cave-
ats. First, the final sample size cannot be fully 
determined prior to sampling because networks 
are grown during the sampling process. Second, 
due to the nature of the calculations it is difficult 
to perform adaptive cluster sampling over very 
large areas if small area sample units are required. 
Therefore, the sample unit size must be chosen 
carefully before sampling is initiated. If however, 
sample unit sizes are too large, an object of inter-
est will always be contained with the unit, con-
sequently very large areas are sampled and there 
would be little benefit from conducting adaptive 
cluster sampling.

Adaptive cluster sampling can be easily applied 
in combination with most conventional sampling 
designs, for example this paper used adaptive 
cluster sampling in conjunction with line transect 
sampling, where the initial sample points (pri-
mary units) are lines. Each line is equally divided 
into square secondary units and sampling starts 

with all squares that contain the object of interest 
(Thompson 1991a). Other examples of varia-
tions on adaptive cluster sampling have included; 
systematic adaptive sampling where the primary 
sample plots are placed throughout an image or 
area at a fixed distance apart (Thompson 1991a); 
double sampling with adaptive cluster sampling 
where samples are selected in two phases, first 
an inexpensive first phase sample is selected 
using adaptive cluster sampling design, then the 
networks are used to select an ordinary one- or 
two-phase subsample of units (Felix-Medina and 
Thompson 2004); stratified adaptive cluster sam-
pling has been used whereby the population is 
stratified and then networks containing a object of 
interest are built in each strata following sample 
plot placement (Thompson 1991b).

The ease by which adaptive techniques are 
used in conjunction with other sampling designs 
suggests it would be relatively simple to scale the 
number of red attack trees from very high spatial 
resolution imagery to larger areas, using a 2-phase 
stratified sampling design. This approach could 
be employed to predict the number of red attack 
trees over very large areas. Very fine scale (i.e., 
< 20-cm spatial resolution) imagery could be used 
as sample plots within strata in a much larger 
area and adaptive cluster sampling performed in 
these images and then extrapolated up to the strata 
level and finally to the landscape level. Thereby, 
accurate estimates of the number of infested trees 
could be provided over very large areas. At the 
landscape level, inferences could be made regard-
ing the location of red attacked trees and the 
severity of the attack over the landscape.

The information provided by adaptive cluster 
sampling can be utilised to provide additional 
data for mitigation crews, the results from this 
approach has the potential to provide an approxi-
mate number of infested trees per hectare that 
can be expected. For the purpose of this discus-
sion, detection of infested trees by surveys or 
through sampling methods implies these trees 
will be removed during ground surveys. The mean 
number of infested trees per hectare provides an 
estimate of the severity and extent of the infes-
tation, the variance around the mean however, 
provides an indication of the number of trees per 
hectare that are potentially infested. In this study, 
the adaptive cluster sampling approach generated 
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a variance of 19 trees per hectare, which indicates 
that a further 11 infested trees per hectare could 
exist. If results from adaptive cluster sampling 
were utilised, mitigation could be completed on 8 
infested trees per hectare if strictly following the 
mean. The trees left undetected and unmitigated 
will provide a source of beetles to attack and 
continue infestation the following year. Ground 
surveys will lessen the potential for infestation to 
continue, however forests should be monitored 
in subsequent years to ensure infestations are 
detected and controlled to keep populations stable 
or in decline.

Adaptive cluster sampling has the potential 
to be beneficial when estimating small clusters 
of mountain pine beetle damage at the leading 
edge of the infestation. In areas such as western 
Alberta where the beetle affects trees in small 
groups adaptive cluster sampling could be used 
to identify areas of special concern where attack 
is starting to expand and return statistically sound 
estimates of the levels of attack and their loca-
tions. The spatial locations of attack are especially 
important as mitigation crews can be guided by 
this information to help slow the eastward spread 
of attack. Other advantages to consider when 
using remotely sensed data in conjunction with 
this sampling technique include, digital process-
ing of remotely data to enhance and locate all red 
attack trees, and the ability to extract other data, 
such as the volume of timber attacked. In areas 
other than the leading edge, the aerial overview 
surveys currently utilised are sufficient to gather 
data on the progress of the infestation. Besides 
which, these areas generally contain high levels 
of infestation which would preclude the use of 
adaptive cluster sampling and also do not require 
fine-scale estimates of forest health data.

Lastly, adaptive cluster has the potential to 
determine other rare and clustered events. This 
approach has been used to idenitify rare tree spe-
cies (Acharaya et al. 2000), and sparse forest pop-
ulations (Talvitie et al. 2006) and to predict forest 
inventory variables (Roesch 1993). The method-
ology used in this study is applicable to forests 
globally, to detect rare and clustered populations 
on the landscape that may be easily identified on 
remotely sensed imagery. The object of interest 
could be defined as windblow, root disease, old 
growth forest, or insect infestations. All of which 

can be defined on remotely sensed imagery and 
statistics generated from adaptive cluster sam-
pling to define their populations. Adaptive cluster 
sampling also has the potential to be combined 
with conventional sampling schemes, such as 
stratified sampling. The United States and Canada 
have large areas of forest cover which are gener-
ally homogeneous. However, forests in Europe 
are distinctly more fragmented and therefore, the 
landscape could be stratified into land use classes 
and adaptive cluster sampling used on forested 
areas to generate information.

5 Conclusion 

Adaptive cluster sampling has the potential to 
be a useful tool to estimate the number of red 
attack trees over large areas, or particular focus 
regions, on the landscape. This technique is espe-
cially useful at the leading edge of the infestation 
to identify clusters of low-level mountain pine 
beetle damage. When compared to a conventional 
non-adaptive approach, adaptive cluster sampling 
is demonstrated to be more efficient to assess 
the number and location of red attack trees on 
the landscape. Estimates provided by adaptive 
cluster sampling will provide accurate data to 
help inform forest managers when making deci-
sions for pest and disease management purposes. 
This data could guide mitigation to help control 
infestations, the sample networks provide the 
location of mountain pine beetle attacked trees 
and indicate the level of attack severity allowing 
forest managers to prioritize resources to control 
outbreaks in highly sensitive or valuable forest 
stands.
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