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Vertical and horizontal displacement profiles in compression parallel-to-grain in a 20 × 20mm 
area (30 × 21 or 630 points) in the Tangential–Longitudinal (T–L) and Radial Longitudinal 
(R–L) sections of small wood columns were obtained from digital image correlation applied 
to simultaneously captured images of the two surfaces. These consisted of 21 displacement 
realisations of 30 points along the length of the specimen. They revealed considerable local 
variations. Stochastic neural networks were successfully developed to simulate trends and 
noise across and along a specimen in both displacements as well as Poisson ratios in T–L 
and R–L sections for two selected load levels of 20kN and 40kN. These networks specifi-
cally embed noise characteristics extracted from data to generate realistic displacement and 
Poisson ratio realisations with inherent variability. Models were successfully validated using 
independent data extracted based on bootstrapping method with high accuracy with R2 
ranging from 0.79 to 0.91. The models were further validated successfully using a second 
approach involving Confidence Intervals generated from the data extracted from the models. 
Models and experimental results revealed that for 20kN load, both vertical and horizontal 
displacements in T–L section were less heterogeneous across the specimen (smaller vertical 
shearing and horizontal strain, respectively) than those in the R–L section. For the 40kN 
load, both displacement profiles in the T–L section were less noisy and more compact than 
those for the 20kN load indicating less heterogeneity due to compaction of structure. In the 
R–L section, larger vertical shearing and horizontal strains persisted at 40 kN load. Poisson 
ratio decreased with load and it was nonlinear in both sections but T–L section showed much 
less noise across the specimen than the R–L section.
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List of Symbols

Symbol Definition

u vertical displacement
v horizontal displacement
AI Approximate Identity
AINN Approximate Identity Neural Network
AINNs Approximate Identity Neural Networks
ANNs Artificial Neural Networks
CI Confidence Interval
COV Covariance
DIC Digital Image Correlation
KL Karhunen-Loève
MLP Multilayer Perceptron
MPM Material Point Method
NN Neural Network
RBF Radial Basis Function
R–L Radial –Longitudinal
SEM Scanning Electron Micrograph
SNN Stochastic Neural Network
SNNs Stochastic Neural Networks
T–L Tangential– Longitudinal
ν Poisson ratio
WN White Noise

1 Introduction

Presently, analysis of the behaviour of wood 
is based on the theories and assumptions for 
homogeneous isotropic or orthotropic materials. 
However, wood is a highly variable heterogene-
ous material and the effect of such variable struc-
ture on mechanical properties is well recognised. 
Due to lack of appropriate instrumentation and 
analytical methods, detailed studies of structural 
influence on mechanical behaviour of wood are 
very limited. Recently digital image correlation, 
a non-contacting full-field displacement analysis 
technique, has become a useful tool for obtain-
ing full field displacement and strain profiles in 
materials including wood. The method has been 
successfully applied to determine displacements 
of wood in tension and compression and crack-tip 
displacement fields in wood (Samarasinghe and 
Kulasiri 2000a, b, 2004). Several investigators 
have applied it to study compression behaviour of 
small wood specimens (Zink et al. 1995, Choi et 

al. 1991, 1996) and bolted wood joints (Stelmokas 
et al. 1997). In this investigation, digital image 
correlation is used to obtain full field displace-
ment profiles in compression and model these 
profiles using a novel neural network method, 
stochastic neural networks, that can capture noise 
inherent in a system. These models will allow 
full characterisation of the influence of the vari-
ability in the heterogeneous anatomical structure 
on wood properties.

1.1 Objectives

The goal of this research is to model full field 
displacement profiles in wood in compression 
using advanced neural networks based on experi-
mental data collected from digital image cor-
relation (DIC) method. Specifically, a) full field 
displacement profiles are studied in compression 
parallel-to-grain simultaneously in Tangential–
Longitudinal (T–L) and Radial–Longitudinal 
(R–L) sections in order to conduct a detailed 
assessment of the nature of the displacement char-
acteristics in these sections and relate them to the 
typical microstructure of T–L and R–L sections, 
and b) stochastic neural networks are developed 
to model the variability or noise characteristics 
found in the displacement profiles at different 
load levels as well as to study and model localised 
Poisson ratio variations in T–L and R–L sections 
in compression.

2 Background

Samarasinghe and Kulasiri (2000a, b, 2004, 
Samarasinghe et al. 2007) successfully used dig-
ital imaging in the studies of wood displacement 
to characterise various aspects of wood behav-
iour including displacement parallel- as well as 
perpendicular-to-grain in tension, crack-tip dis-
placements, and displacement in wood beams. 
They specifically revealed the highly variable 
nature of the displacement profiles obtained from 
the images analysed by the Digital Image Corre-
lation (DIC) method. Samarasinghe and Kulasiri 
(2000a) related the full-field displacements in 
tension-parallel-to grain to the underlying cel-
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lular structure. They pointed out that when the 
tracheids carry the load in parallel-to-grain ten-
sion, a substantially complex and noisy displace-
ment patterns result whereas the corresponding 
perpendicular-to-grain displacement profiles are 
much smoother, similar to that of isotropic rubber, 
which they stated could be an indication of the 
properties of lignin that binds the cells together.

Choi et al. (1991) studied parallel-to-grain com-
pression behaviour of very small wood samples of 
1 × 1 × 4mm and tensile behaviour of very small 
paperboard samples of 5 × 20mm. For wood, they 
obtained strain parallel- and perpendicular- to 
loading in an area of 0.63 × 2.58mm for several 
load levels. The most notable feature of their 
strain profiles was that there was a consider-
able variation in strain throughout the area ana-
lysed for a constant load level. For example, 
strain in the load direction varied from 0.76% to 
–1.0% where positive values indicate tension and 
negative values indicate compression showing 
that some areas within a compression specimen 
undergo tension in the direction of load. Strain 
perpendicular-to-loading also showed high varia-
tion ranging from –1.26% to 1.12% for a constant 
load level, where positive and negative values 
indicate tension and compression, respectively. 
Such variations indicate a significant influence of 
wood structure on strain fields in small specimens. 
For paperboard, there was variation in strain but 
the scatter was much less compared to wood. 
In a paper published later in 1996, Choi et al. 
graphically presented contours of these highly 
variable strains for wood and showed that strains 
become concentrated near rays closer to the edge 
of a compression specimen. With further increase 
in loading, these areas of strain concentration 
become large resulting in a failure zone associ-
ated with an area around a ray. The authors stated 
that failure was due to stress concentrations near 
rays and buckling of fibres associated with these 
rays.

Zink et al. (1995) showed a similar phenom-
enon to that described above for larger wood 
specimens under compression parallel-to-grain 
loading. They compared strains in aluminium and 
wood blocks of dimensions 25.4 × 25.4 × 101.6 
mm tested in compression. They found very uni-
form strains throughout the surface of aluminium 
but highly variable strains in wood. For example, 

range of strain for aluminium for a particular load 
was 1800–2000 µstrain, whereas for wood, strain 
varied within a much broader range between 
1250–2950 µstrain. They also found that the 
strain in wood varied along the length as well as 
across the specimen. Another interesting observa-
tion was that in some areas strain perpendicular to 
load was greater than that in the direction of load, 
which raises serious questions about the accepted 
notion of Poisson ratio. Zink et al. (1995) further 
state that the local areas of strain concentrations 
develop at load levels even below the propor-
tional limit confirming the similar observations 
made for much smaller specimens by Choi et al. 
(1991, 1996).

Nairn (2006) modelled transverse compression 
in one growth ring based on a scanning electron 
micrograph (SEM) image of wood, which he 
converted to material points in a grid based on 
the image intensity variation that reflects density 
variation in the cellular structure. He analysed 
it using material point method (MPM) for the 
cases of elastic and elastic-plastic behaviour with 
cellular properties obtained from literature. He 
demonstrated various aspects of deformation and 
collapse of cellular structure, which in general 
agreed with observed behaviour reported in lit-
erature. He reported the stress-strain relationship 
of the specimen as a whole. To date however, no 
work has been done to explicitly model the vari-
ability in localised wood behaviour. In our study, 
simultaneous full field displacement measure-
ments in the T–L and R–L sections are obtained in 
compression parallel-to-grain. These are reviewed 
closely to understand patterns and relate them 
to typical microstructure in these sections. The 
displacement profiles are then used in the devel-
opment of an advanced neural network, a sto-
chastic neural network, that can capture intrinsic 
noise in a specimen to model localised variation 
in displacements and Poisson ratios in the two 
sections.
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3 Methods

There are two aspects to the study: 1) experi-
mental programme to simultaneously capture 
images of the T–L and R–L sections of wood 
specimens and analyse the images for determin-
ing full field displacement fields in compression; 
and 2) developing stochastic neural networks for 
modelling wood displacements and Poisson ratio 
characterised by variability. These two aspects are 
addressed in this section.

3.1 Experimental Method: 
Digital Image Processing

Experiments were conducted on small wood 
columns (44 × 44mm cross section and 136 mm 
height parallel-to-grain) cut from clear kiln-
dried Pinus radiata (radiata pine). The average 
moisture content of the specimens at the time of 
testing was 15.1% and dry specific gravity was 
0.46. Before testing, two T–L and R–L sections 
of specimens were sprayed with black paint to 
prepare the surface for obtaining good quality 
images suitable for analysis with Digital Image 
Correlation (DIC). The test procedure was that 
of a standard compression test. A specimen was 
placed on the testing platform of a SINTECH/
MTS 30-D computer controlled testing machine 

in such a way that the two T–L and R–L surfaces 
were in view of the camera (Fig.1b). An Ikegami 
CCD camera with 25 frames a second capture rate 
was used and images were digitised to 512 × 512 
pixels by a high accuracy CX100 frame grabber. 
As both T–L and R–L sections of a specimen 
were captured simultaneously into one image, 
an image consists of two symmetrically placed 
images of the T–L and R–L surfaces. Priori to 
testing, a graph paper was placed against the two 
sides and their images were captured to convert 
the pixels to mm and the scale thus found was 
14.6 pixels/mm for T–L section and 14.4 pixels/
mm for the R–L section. (In the subsequent image 
analysis, the scales were adjusted to account for 
the fact that the wood surfaces are inclined 45º to 
the image plane). The graph paper was removed 
and an image of the specimen before loading was 
captured and then it was loaded at a rate of 2 mm/
min. Images were captured at various load levels 
up to failure and stored for processing with Digital 
Image Correlation (DIC).

DIC compares the original undisplaced images 
with images after displacement using a pattern 
matching algorithm that follows the movement of 
a local neighbourhood of points from the undis-
placed to the displaced images. Greater details of 
the method can be found in various publications 
(Samarasinghe and Kulasiri 2000a, b, 2004). In 
this study, a 20 × 20 mm2 area in each of the 

Fig. 1 (a) Experimentally obtained vertical displacement profiles in the T–L section. 
(Horizontal axis, x, indicates the location of 30 points (shown along x axis in Fig. 
1b) where displacements were measured: the distance between two adjacent points is 
10 pixels; scale: 14.6 pixels/mm); (b) Specimen configuration showing simultaneous 
camera view of the T–L and R–L planes and location of the areas (rectangular blocks 
with dots) subsequently analysed in the two sections.

a)
b)
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images of T–L and R–L sections (Fig.1b) was 
analysed in order to fully appreciate the minute 
local details of the displacement profiles. From 
the DIC method, vertical and horizontal displace-
ments of 630 points corresponding to 30 rows 
and 21 columns in each section were obtained. 
In order to aid the discussion on fundamentals 
of stochastic neural network development that 
will be presented in the next section, the vertical 
displacements (u) in the T–L section of a speci-
men are illustrated in Fig. 1a. One line graph in 
this figure is called a displacement realisation 
and represents displacements along one verti-
cal column of 30 points in the analysed area in 
the T–L section (Fig. 1b which also shows the 
coordinate system (x, y) used). There are 21 such 
realisations in Fig.1a corresponding to the 21 
columns of 30 points. Ideally, these realisations 
should be identical without noise for perfect mate-
rial homogeneity. As the figure reveals, there is 
substantial noise in the displacements as a result 
of the variability in the underlying heterogene-
ous wood structure. It is proposed to model this 
variability using stochastic neural networks that is 
based on the theory of stochastic processes.

3.2 Analytical Methods: Stochastic 
Neural Networks

Artificial Neural Networks (ANNs) are an 
approach that models complex natural and bio-
logical systems on the basis of mimicking the 
information processing methods in the human 
brain. ANNs have high capability in approxi-
mating input-output mappings that are complex 
and nonlinear to arbitrary degree of precision 
(Samarasinghe 2006). These capabilities of neural 
networks make them suitable to address some 
of the problems related to stochastic processes 
that are characterised by noise. Stochastic Neural 
Networks (SNNs) are a kind of ANN that captures 
the variability inherent in a system while follow-
ing trends in the system behaviour. This makes it 
suitable for analysing noisy behaviour of wood 
due to natural variation of anatomical properties 
and microscopic defects.

In this context, a stochastic process may be 
regarded as a set of values obtained from an 
experiment to observe the spatial development of 

a stochastic variable which does not have a unique 
value for the corresponding spatial coordinate x. 
This means that a different set of observations can 
be obtained when repeating the same experiment 
such as the 21 displacement realisations obtained 
for the same wood specimen as shown in Fig. 1a. 
Mathematically, a stochastic process is a collec-
tion of random variables over the time or space 
parameter x (x ∈ X) and the complex stochastic 
process is represented by the sum of elementary 
stochastic functions (Turchetti 2004); specifically, 
by a linear combination of non-random (determin-
istic) functions and zero-mean random variables. 
For many complex natural and biological proc-
esses, these non-random (deterministic) functions 
are not known a-priori and must be estimated 
from data. In this case, Karhunen-Loève (KL) 
theorem plays a central role in representing an 
observed stochastic process (Turchetti 2004).

In KL representation, a stochastic process is 
viewed as a bundle of finite number of realiza-
tions (such as the 21 displacement realisations) 
from a real stochastic processes collected over 
a finite number of points (such as the 30 points 
in Fig. 1a). Outcomes at a particular point x is 
considered a random variable. For instance, in the 
case of wood displacements in Fig. 1a, there are 
30 random variables corresponding to displace-
ments at the 30 points along a vertical line. Each 
variable has 21 values. In a stochastic process, 
these random variables are generally correlated 
and the covariance (COV) matrix depicts these 
relationships.

Now let us consider a stochastic process ξ(x) 
and its covariance matrix. The KL expansion 
represents a stochastic process as a linear combi-
nation of a finite number of orthogonal functions 
determined by the covariance matrix (Gilman and 
Skorohod 1974). Thus a stochastic process can be 
expanded as the following Eq. 1 associated with 
the COV given in Eq. 2.

ξ φ ζ λ( ) ( ) ( )x x
j

j

n

j
=

=
∑
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where ξ(λ) is an orthogonal sequence of random 
variables with zero-mean and variance equal to 
the eigenvalues (λ) of the covariance matrix of 
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the stochastic process, φ(x) are the eigenfunctions 
corresponding to the eigenvectors in the covari-
ance matrix, and x1 and x2 are any two spatial 
locations in the domain of x. The two items, 
ξ(λ) and φ(x), need to be estimated to complete 
the model in Eq. 1. In the KL expansion, COV 
matrix is decomposed into a set of eigenvectors 
and eigenvalues. Eigenvectors denote indepen-
dent orthogonal directions relevant to the data and 
eigenvalues represent the portion of variability in 
the original data captured by them. There are as 
many eigenvectors as there are random variables 
(i.e. discrete spatial points). This decomposition 
of COV matrix is called the eigenvalue decompo-
sition and it produces a new coordinate system, 
depicted by eigenvectors, where variables are 
independent and therefore, the COV between 
any two new variables is zero. Variance of each 
new variable is denoted by the corresponding 
eigenvalue.

The eigenfunctions φ(x) needed to construct 
the stochastic function in Eq. 1 are the functions 
fitted to each of the eigenvectors. This basically 
converts discrete points of an eigenvector into 
an eigenfunction. Since φ(x) are deterministic 
functions, they can be modeled by deterministic 
neural networks. For these networks, input is x 
and output is the corresponding eigenvector. The 
ξ(λ) is a random variable with zero-mean and λ 
variance and has the same attributes as the so 
called White Noise, a discrete stochastic proc-
ess represented by a Gaussian distribution with 
zero-mean and variance σ2 which in this case is 
equal to the eigenvalue λ of each of the eigen-
vectors. The φ(x) can then be linearly combined 
with White Noise ξ(λ) as in Eq. 1 to develop a 
stochastic neural network as shown in Fig. 2.

Thus the whole stochastic process can be 
regarded as a linear combination of the prod-
uct of the independent eigenfunctions φ(x) and 
their corresponding White Noise (WN) ξ(λ). In 
Fig. 2, ξ( )x  is the mean of the stochastic process 
at point x.

Developing a stochastic neural network thus 
involves two aspects: generating deterministic 
eigenfunctions φ(x) and White Noise ξ(λ) from 
measured data (e.g. displacement data). To model 
eigenfunctions, eigenvectors need to be first deter-
mined by calculating the COV from measured 
data and decomposing it using KL expansion. 

This results in eigenvectors and corresponding 
eigenvalues from which significant eigenvectors 
are determined. From each significant eigenvec-
tor, eigenfunction is modelled using determin-
istic neural networks. The corresponding ξ(λ) 
is generated by means of Gaussian distributions 
with 0 mean and variance λ associated with that 
φ(x). These φ(x) and ξ(λ) are linearly combined 
as in Fig. 2 to complete the SNN. This network 
will produce a different displacement realisation 
each time it is run in a way that preserves the 
COV of the data. The next section presents the 
development of deterministic neural networks for 
simulating eigenfunctions from the corresponding 
eigenvectors.

3.2.1 Developing Deterministic 
Neural Networks

Input to each of the deterministic NN representing 
one eigenfunction is the coordinate x and output is 
the corresponding component of the eigenvector 
being modeled. Generation of the eigenvectors 
is described in this section using the data shown 
in Fig. 1 as an example. The dataset is a bundle 
of realisations of a stochastic process ξ(x) (u(x) 
in this example). Assume that ξk(x) denotes the 
kth realisation. For each realisation, there are 
n  different values corresponding to n discrete 
points (30 points in the example). The COV of 
this stochastic process describes the relationship 
between values of all realisations at any two 
discrete points. If we assume that ξ(x) at each 
discrete point x is viewed as one variable, then 
the value of each realisation ξk(x) at each dis-
crete point x will be viewed as an instance of the 
corresponding variable. So we denote the whole 

Fig. 2. The structure of the Stochastic Neural Network 
(SNN).
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group of variables on the dataset by vector ξ(x) 
= { ξ(x1), ξ(x2),… ξ(xn)} where ξ(xi) contains 
all values of realisations at the ith discrete point 
xi i.e., ξ(xi) = { ξ1(xi), ξ2(xi),… ξk(xi)}. In this 
vector representation, the mean and variance of 
all realisations at a particular discrete point xi 
and the covariance of all realisations between 
any two different discrete points xi and xj can 
be efficiently calculated by using the following 
equations (Samarasinghe 2006):

ξ ξ( ) ( )x
K

xk

k

K

=
=

∑1

1

 (3)

COV
K

x x x xk

k

K
k T=

−
− −

=
∑1

1 1

( ( ) ( )) ( ( ) ( ))ξ ξ ξ ξ  (4)

In Eq. 3, ξ ξ ξ ξ ξ( ) ( ), ( ), ( ), , ( )x x x x x
n

= { }1 2 3
  

is a vector which contains all mean or expected 
values of realisations at each discrete point xi 
and k is the number of realisations in the dataset 
(21 in this example). In Eq. 4, COV is the cov-
ariance matrix which contains all variances and 
covariances. COV is a symmetric matrix with size 
n × n  where n is the number of discrete points. 
The diagonal entries of COV represent variances 
and off-diagonal entries represent covariances 
between any two different discrete points. Once 
the COV is constructed, eigenvalues and eigen-
vectors of the COV matrix can be extracted from 
mathematical or statistical software.

The model development involves firstly, the 
creation of a number of deterministic neural net-
works to simulate the significant eigenfunctions 
φj(x) of the COV matrix. The number of signifi-
cant eigenfunctions is decided by the number of 
eigenvalues that play a significant role in the KL 
representation of these real realisations. Each 
significant eigenfunction is modelled by a neural 
network where input is x and output is the cor-
responding eigenvector.

There are three main deterministic neural net-
works for function approximation: Multilayer Per-
ceptron (MLP) Networks (Samarasinghe 2006), 
Radial Basis Function (RBF) Networks (Park 
and Sandberg 1991) and Approximate Identity 
Neural Networks (AINN) (Turchetti 2004). All of 
them have powerful capability in approximating 
arbitrary deterministic input-output mappings. In 
this study, a series of Approximate Identity Neural 

Networks (AINNs) is developed to represent the 
significant eigenfunctions φj(x).

In modelling Artificial Neural Networks 
(ANN), important factors are: the number of 
neurons, the structure of network and the learn-
ing algorithm. The number of neurons depends 
on the complexity of the input-output map-
ping. This study employs an AINN with one 
input and one output and one hidden layer 
with Approximate Identity (AI) function 

ω ϑ σ ϑ σ
( ) tanh

( )
tanh

( )
x

v x v x= − +





− − −



2 2

 
 
as the activation function, where ν defines the 
sharpness of the function, ϑ defines the centre 
of symmetry and σ defines the position of the 
maximum of the function. This function has the 
form of Gaussian distribution with some special 
properties (Truchetti 2004). The backpropagation 
algorithm was used to minimize the network’s 
global error between the actual network outputs 
and their corresponding desired outputs.

Trained deterministic neural networks contain 
the weights and parameters of the stochastic 
neural network. Then stochastic properties of the 
network are achieved by adding the corresponding 
WN (ξ(λ) processes to each of the deterministic 
neural networks as shown in Fig. 2. The next 
section applies SNN to wood data, validates the 
model and analyses the results.

4 Results and Discussion

Fig. 3 depicts the coordinate system and the area 
analysed on the wood surface. The x axis lies 
along the direction of the compression load and y 
axis is perpendicular to the load. Further process-
ing and plotting of experimental displacement 
profiles as well as SNN developments were done 
on Mathematica 5.2 (Wolfram Research 2005).

4.1 Cell Structure of Wood

Before discussing the structural influence on 
mechanical behaviour of wood, it is necessary to 
closely look at T–L and R–L sections in terms of 
their anatomical features. Wood (Pinus radiata) 
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and T–L sections. In this study, focus is to assess 
the structural influence of these two types of sur-
face on displacements and model this behaviour 
characterised by noise.

In the R–L section (Fig. 4a), the white columns 
are the radial walls of the vertical tracheids and 
there are three sheets of ray in the horizontal 
direction. The small white circles are pits that 
are the communication channels between cells. 
In the T–L section (Fig. 4b), the white vertical 
columns are the tangential walls of the vertical 
tracheids organised around the cross section of 
piles of rays. As the natural structure of wood 
is quite different in these two longitudinal sec-
tions, the arrangement of the cells is expected to 
affect the mechanical behaviour of wood. For this 
reason, this study individually analyses the two 
sections to study the structural influence of wood 
on the displacement patterns and corresponding 
Poisson ratios when loaded in compression. A 
unique feature of the study is that the analysis is 
made on the same specimen using simultaneously 
captured images of the two surfaces.

Fig. 3. Coordinate system and location of analyzed area 
on the wood surface.

Fig. 4. The anatomical cell structure of softwood: (a) R–L section and (b) T–L section (Jane 1956).

consists largely of vertical tracheids which run 
longitudinally through the wood in the verti-
cal axis of the trunk. Ray cells run horizontally 
through the wood in the radial direction of the 
trunk throughout its height (Jane 1956). These 
two predominant types of cells are organised into 
a composite structure as shown in Fig. 4 for R–L 

a) b)
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4.2 Displacement Realisations in 
the T–L Section (20kN)

4.2.1 Vertical Displacement (u)

The vertical displacement is that in the direc-
tion of x-axis in the coordinate system shown 
in Fig. 3. When loaded in compression parallel-
to-grain, vertical displacement (u) measures the 
amount of contraction in the same direction as 
the load. In this direction, load is taken by the 
longitudinal tracheids (Fig. 4b) that can undergo 
compression as well as longitudinal shear and 
buckling. Rays act as discontinuities to load flow. 
This is expected to produce non-uniform char-
acteristics in displacements. Fig. 5a presents the 
vertical displacement (u) obtained for a speci-
men from images using the DIC method for a 
20kN load and each realisation is a series of 
displacement measurements at 30 points along 
one vertical column in the image. There are 21 
such realisations here representing displacement 
along 21 such columns of 30 points. The vertical 
displacement (u) randomly ranges from 0.22 mm 
and 0.25 mm for the constant load of 20kN. All 
vertical displacement realisations are quite differ-
ent from each other and the changes in a particu-
lar realisation are complex and stochastic. Thus, 
there are two aspects to noise or variability in this 
figure: one aspect is the noise in each realisation 
denoting the effect of variability along the length 
and the other is the difference between any two 
realisations denoting the effect of variability of 
structure across the specimen. In this paper, the 

first term is called noise along the grain or length 
and the latter is termed noise across the specimen 
due to relative displacement (longitudinal shear) 
between two adjacent columns of points. Refer-
ring to Fig. 4b, sources of noise along the grain 
depicted in one realisation appear to be randomly 
distributed stacks of rays that are encountered 
by the load carrying tracheids and the variability 
of tracheids themselves that undergo compres-
sion, shear and buckling. As for the difference 
between realisations, they indicate that longitudi-
nal shearing has taken place. This can be between 
tracheids and/or between rays and tracheids and 
can be assisted by lignin. Fig. 5a shows that 
there is noticeable noise in both directions. Fig. 
6a presents the covariance matrix of all vertical 
displacement (u) profiles.

In order to develop a stochastic neural network, 
COV matrix of these vertical displacement pro-
files were generated and decomposed using KL 
expansion as described previously. The number 
of significant eigenvalues and their corresponding 
eigenvectors were extracted from the distribution 
of eigenvalues (Fig. 7). There are three significant 
eigenvalues and therefore, three different AINNs 
were developed for simulating the three corre-
sponding eigenfunctions. The first eigenvalue 
amounts to 93% indicating that most of the data 
variation is captured by the first eigenvector; the 
other two eigenvectors capture 1.47% and 1.18% 
of variance, respectively.

All AINNs representing significant eigenfunc-
tions have the same structure but have different 
number of neurons and values of network param-

Fig. 5. Vertical displacement profiles in the T–L section under 20kN compression load. (a) experi-
mental data and (b) predictions from the developed stochastic neural network. (Horizontal axis, 
x, depicts the location of 30 points (10 pixels apart), where displacements were measured (see 
Fig. 1b). scale: 14.6 pixels/mm).

a) b)
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eters. Three networks were developed to simulate 
the three eigenfunctions and Fig. 8 shows the 
actual data (3 eigenvectors) superimposed on the 
eigenfunctions φ(x) approximated by AINN. In 
the figure, the dots represent eigenvector values 
while the black lines represent approximated 
output φ(x) from the networks. Furthermore, the 
three AINNs have approximated eigenfunctions 
with high accuracy (R2 of each AINN ranges 
from 0.992 to 0.998). The AINNs were assembled 
into a stochastic neural network as shown in Fig. 
2. The SNN consists of a linear combination of 
AINNs and corresponding WN (ξ(λ)) added to 
the mean displacement values at each discrete 
point x. Each ξ(λ) has zero mean and variance 
equal to the corresponding eigenvalue. The output 
of the SNN is one vertical displacement realisa-

tion. From the SNN, as many vertical displace-
ment realisations as desired can be generated and 
Fig. 5b displays a set of such realisations.

Fig. 5b shows that the vertical displacement 
realisations from the SNN follow the general 
behaviour of the vertical displacement observed 
in experimental data. These outputs of the SNN 
represent some probable realisations representing 
the statistical properties of the heterogeneous 
structure. Therefore, they also can represent the 
behaviour in other typical areas of the same wood 
not measured in the experiment.

The covariance matrix of the approximated 
vertical displacement (u) obtained from 200 
realisations from the SNN was used to assess the 
accuracy of the SNN for simulating vertical com-
pression displacement (u) in wood. Fig. 6b shows 
the covariance matrix of the approximated u and it 
resembles the original COV from data extremely 
well. In order to compare the actual and predicted 
covariance matrices, the corresponding entries in 
the two matrices were compared and results are 
shown in Fig. 9 which indicates a strong linear 
relationship between the predicted and the actual 
covariance matrices with an R2 value of 0.998. 
Furthermore, the mean square error (MSE) based 
on the comparison of two COV matrices was 
0.0792. This shows that the predicted SNN can 
simulate vertical displacements in wood well.

Fig. 6. The covariance matrix of vertical displacement profile in the T–L section under 20kN compression load: (a) 
experimental data and (b) predictions from the developed stochastic neural network. (Horizontal axis, x, depicts 
the location of 30 points (10 pixels apart), where displacements were measured. scale: 14.6 pixels/mm).

Fig. 7. The distribution of eigenvalues from KL expan-
sion.

a) b)



881

Ling, Samarasinghe and Kulasiri Modelling Variability in Full-field Displacement Profiles and Poisson Ratio of Wood …

4.2.2 SNN Model Validation

Two other methods were applied to confirm the 
validity of the SNN. One is the traditional valida-
tion method for deterministic neural networks – 
which is to develop the model on a portion (about 
70%) of data (training) and use the rest of the data 
(test data) to validate it. In this study, two inde-
pendent data sets (not used in developing SNNs) 
were used to validate the SNN. Specifically, boot-
strapping method was employed with two random 
extractions where each extraction involved parti-
tioning the dataset into 70% samples for training 
and 30% for testing, developing an SNN using 
the training data and validating with the test data. 

This was repeated for the second random data 
extraction. (SNN model results presented previ-
ously correspond to training data in extraction 1). 
Fig. 10 presents the relationship between the COV 
obtained from the SNN generated realisations and 
COV for experimental realisations for the two test 
datasets. It indicates a strong linear relationship 
with R2 of 0.91 and 0.90, respectively, for the 
two test datasets.

The other validation method is based on the 
95% confidence interval (CI) generated from the 
SNN based displacement realisations. Here, a 
large number of realisations (200 in this study) 
generated from the SNN were used to develop 
CI using the standard inferential statistical proce-
dures. Then data for two new validation specimens 
(not used in the previous modelling or testing) 
were projected onto the CI. If most of these fall 
within the bounds of the confidence interval, the 
SNN characterises the generic behaviour of wood. 
Fig. 11 displays results for the two independent 
validation specimens and it reveals that most of 
the realisations are within the CI (2 bold solid 
lines) indicating that the SNN has captured the 
essential noise characteristics in wood. There-
fore, the developed SNN is capable of simulating 
trends and noise in wood displacement.

Fig. 8. The three significant eigenfunctions approx-
imated by AINNs. (Horizontal axis, x, depicts 
the location of 30 points (10 pixels apart), where 
displacements were measured. scale: 14.6 pixels/
mm).

Fig. 9. The linear relationship between the actual and 
predicted covariance matrices.
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4.2.3 Horizontal Displacement (v) 
(T–L Section, 20kN)

The horizontal displacement is that in the direc-
tion of y-axis in the coordinate system shown in 
Fig. 3. When loaded parallel-to-grain, horizontal 
displacement (v) is a measure of the amount of 

displacement in the perpendicular direction to 
load. As the specimen is loaded in compression, it 
is expected to undergo expansion in the direction 
opposite to load. Fig. 12a presents the horizontal 
displacement (v) obtained for the same area in 
which u was measured previously.

In Fig. 12a, one profile or realisation is horizon-

Fig. 10. Linear relationship between the predicted and experimental COV for two different 
test datasets.

Fig. 11. Validation of SNN using two independent validation specimens based on 95% 
confidence interval for the displacement realisations extracted from SNN. (Horizontal 
axis, x, depicts the location of 30 points (10 pixels apart), where displacements were 
measured. scale: 14.6 pixels/mm).

Fig. 12. Horizontal displacement profiles in the T–L section under 20kN compression load: 
(a) experimental data and (b) predictions from the developed SNN. (Horizontal axis, x, 
depicts the location of 30 points (10 pixels apart), where displacements were measured. 
scale: 14.6 pixels/mm). Negative displacements indicate compression.

a) b)
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tal displacement along one column of 30 points 
in the image and there are 21 such realisations. In 
an ideal homogeneous material, all these profiles 
would have little or no noise. However, according 
to Fig. 12a, v is nonlinear and randomly ranges 
from –0.115 mm to –0.08 mm for a constant 
load of 20 kN, where negative values indicate 
compression. Comparing Fig. 12a and Fig. 5a, 
the influence of loading parallel-to-grain on hori-
zontal displacement is more complex and noisier 
than that on the vertical displacement. In this 
mode, randomly distributed stacks of rays (Fig. 
4b) may act as stress raisers and may be contribu-
ting to the variability and nonlinearity in indivi-
dual displacement profiles. Notable effect is that 
the displacement realisations are more compact 
(closer together) than in the vertical displacement 
case indicating reasonably uniform horizontal 
movement of the 21 vertical lines. The difference 
between two realisations indicates the relative 
displacement (horizontal strain). Contribution to 
horizontal displacement in the T–L section in 
general comes from pits between tracheids and 
pits between tracheids and rays. Samarasinghe 
and Kulasiri (2000a) demonstrated that displace-
ment across the grain of a wood specimen loaded 

parallel to grain in tension can be as uniform as 
that of isotropic rubber.

In this case, there are 8 significant eigenvalues 
which is 5 significant eigenvalues more than those 
required for the vertical displacement indicating 
that the individual horizontal displacement rea-
lisations have more noise and variance. Eight 
deterministic neural networks were developed 
successfully to simulate the 8 corresponding signi-
ficant eigenfunctions and the resulting models had 
very high accuracy with R2 ranging from 0.991 
to 0.997. White Noise was then added to each 
network to develop the SNN. The corresponding 
actual and predicted COV matrices revealed a 
strong linear relationship with an R2 value of 
0.983 and MSE of 0.083. Fig. 12b shows some 
predicted horizontal displacement realisations 
from the SNN. It compares extremely well with 
Fig. 12a. The model was validated using the two 
approaches presented in the previous section. 
The R2 for both independent test datasets from 
bootstrapping was 0.81, and data for the two 
independent validation specimens were within 
the respective CI bounds (not shown).

Fig. 13. Comparison of vertical and horizontal experimental displacement realisations with 
model predictions for R–L section under 20kN compression load: (a) and (c) experi-
mental data for vertical and horizontal displacements; (b) and (d) model predictions. 
(Horizontal axis, x, depicts the location of points where displacements were measured. 
scale: 14.4 pixels/mm).

a)

c)

b)

d)
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4.3 Displacement Realisations in the R–L 
Section (20kN)

Fig. 13 displays comparison of experimental 
results with model predictions for vertical and 
horizontal displacements in the R–L section under 
20kN compression load for one independent test 
dataset extracted for each case from bootstrap-
ping. Comparing Figs. 5 and 12 with Fig. 13, 
some differences between the T–L and R–L sec-
tions can be seen. The similarity in magnitudes of 
vertical displacement u can be expected as most 
displacement comes from tracheid compression, 
shear and buckling (Figs. 5a and 13a); however, 
individual u displacement realisations in the R–L 
section are more complex than those in the T–L 
section. As shown in Fig. 4a, the main feature 
in R–L section is randomly distributed piles of 
rays spanning their full length and they may 
explain the high variability observed in a single 
realisation. Furthermore, u displacement realisa-
tions are more far apart than in the T–L section 
indicating a greater amount of vertical shearing in 
the R–L section. As for the individual horizontal 
displacement realisations (v) in the R–L section 
(Fig. 13c), they are more linear and more spread 
out than those in the T–L section (Fig. 12a) 
indicating larger relative displacements (strain) 
between adjacent vertical columns of points in 
the R–L section compared to T–L section. In the 
R–L section, main contributors to horizontal dis-
placement are lignin and rays that could provide 
a restraining effect. How these contribute to the 
observed behaviour needs further investigation. 
The validation R2 for the two independent test 
sets (bootstrapped) for u was 0.801 and 0.798, 
respectively, and for v, 0.803 and 0.796, respec-
tively. Results for the two independent validation 
specimens were within the CI bounds generated 
from the models.

4.4 Displacement Profiles in the T–L and 
R–L Sections (40kN)

This section discusses the influence of structure 
on the vertical and horizontal displacements when 
loaded with a 40kN load parallel-to-grain in com-
pression. SNNs were developed for simulating 
these displacements in both T–L and R–L sec-

tions and they had high accuracy: [T–L: R2 for 
the two independent test sets were 0.82 and 0.80, 
respectively, for vertical displacement and 0.80 
and 0.79, respectively, for horizontal displace-
ment; R–L: R2 for the two independent test sets 
were 0.806 and 0.799, respectively, for vertical 
displacement, and 0.802 and 0.798, respectively, 
for horizontal displacement]. The data for the 
two validation specimens were within the CI 
bounds generated from the respective models 
for both sections. Furthermore, some interesting 
wood behaviour under high compression load 
was observed. For the vertical displacement in 
the T–L section, the relative displacement or 
vertical shearing across the specimen was much 
less (curves were more compact) than that for 
20kN (Fig.5a). It indicates that compaction in the 
structure at 40kN has reduced the relative verti-
cal movement between adjacent vertical lines of 
points. Noise in each profile also appeared to be 
smaller at 40kN indicating that the structure has 
become less heterogeneous with smaller level 
of noise. Some contributing factors can be ray 
compaction and/or collapse and tracheid buck-
ling/collapse.

For the horizontal displacement in the T–L sec-
tion, these displacement profiles were nonlinear 
as was the case for 20kN (Fig. 12a); however, they 
are even more compact with less noise compared 
to 20kN case. This indicates even smaller relative 
horizontal displacements (strains) between adja-
cent vertical lines at the higher load. In contrast, 
in the R–L section, although the higher load had 
increased the displacements, it had not brought the 
realisations closer as happened in the T–L section, 
i.e. realisations were still far apart from each other 
for both u and v. There was a minor reduction in 
noise in each profile compared to the 20kN case. 
Highly prominent vertical shearing and relatively 
large horizontal strain between adjacent vertical 
lines were predominant features in the R–L sec-
tion at both 40kN and 20kN loads.

4.5 Modeling variability in Poisson Ratio 
in Compression

Poisson ratio is a measure of the tendency of a 
material to stretch or contract in the perpendicular 
direction to load. In this study, it is the ratio of 
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the transverse strain to the longitudinal strain. 
Poisson ratio is assumed constant for a particular 
species of wood and its localised variation has 
not been studied before. In this study, variation 
of Poisson ratio is examined from experimental 
data and the ability of stochastic neural networks 
to capture its intrinsic noise is tested for wood 
in compression. Fig. 14 compares experimental 
results with model predictions for Poisson ratio 
in the T–L and R–L sections under 20kN com-
pression load for one independent test set from 
bootstrapping for each section.

Fig. 14 shows that Poisson ratio ranges from 
0.22 to 0.27 in the T–L section and from 0.19 
to 0.26 in the R–L section. These are in general 
agreement with the limited data from macro-scale 
measurements reported in the literature (Bodig 
and Jayne 1982). Poisson ratio in the T–L section 
is much less variable across the specimen (more 
compact curves) than that in the R–L section. This 
can be related to the individual profile character-
istics in the two sections. Furthermore, Poisson 
ratio varies nonlinearly as the distance from the 

load to the point increases (i.e. as x increases). 
Comparison between experimental results (Figs. 
14a and c) and SNN predictions (Figs. 14b and d) 
reveals that the models have captured the variance 
and noise characteristics of Poisson ratios rather 
well. The R2 for the two independent test sets for 
T–L section was 0.85 and 0.85, respectively, and 
for R–L section was 0.85 and 0.82, respectively. 
For each section, data for the two validation 
specimens were within the CI bounds generated 
from the respective models. We also analysed 
Poisson ratio in these two sections under 40kN 
and found the realisations to be less noisy and 
more compact with nonlinear trends and values 
that are lower than those for 20kN. For this case, 
R2 for the two independent test sets for the T–L 
section was 0.843 and 0.82, respectively, and 
for R–L section was 0.83 and 0.82, respectively. 
Results for the two validations specimens were 
within the CI bounds generated from the SNN 
predicted data.

Fig. 14. Comparison of experimental results with model predictions for Poisson ratio 
(ν) variation along vertical columns of 30 points in the image in the T–L and R–L 
sections under 20kN compression load: (a) and (c) – experimental Poisson ratio 
in T–L and R–L sections, respectively; (b) and (d) – SNN predicted Poisson ratio 
corresponding to the experimental measurements. (Horizontal axis, x, depicts the 
location of 30 points (10 pixels apart), where displacements were measured. scale: 
14.6 pixels/mm for T–L and 14.4 pixels/mm for R–L).

a)

c)

b)

d)
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5 Summary and Conclusions

Stochastic neural networks were developed from 
experimental displacement fields in the T–L and 
R–L sections of a specimen for 20kN and 40kN 
loads using the theory of stochastic processes. The 
developed stochastic neural networks approxi-
mated the experimental vertical and horizontal 
displacement profiles characterised by variability 
with high degree of accuracy. Models were suc-
cessfully validated using two separate validation 
methods (bootstrapping and Confidence Intervals) 
with R2 for validation data ranging from 0.796 
to 0.91.

Experiments and models revealed that for 20kN 
load, the horizontal displacement realisations in 
the T–L section are less heterogeneous (more 
compact and smaller strain) compared to those 
in the R–L section. Magnitude of vertical dis-
placements was similar in the two sections but 
displacement realisations are far more spread 
out in the R–L section, indicating higher vertical 
shearing compared to T–L section. For the 40kN 
load, both longitudinal and horizontal displace-
ment realisations in the T–L section were more 
compact (smaller vertical shearing and horizon-
tal strain) than those for the 20kN. Noise of the 
profiles along the specimen in the T–L section 
was also much less indicating reduced variability 
of structure attained through compaction. How-
ever, in the R–L section, this phenomenon was 
not observed and even larger spread between 
displacement realisations resulted at the 40kN 
load indicating larger strains (vertical shearing 
and horizontal strain) compared to 20kN. Why 
the structure in the T–L section resists vertical 
shearing and horizontal strains much more at 
the higher load compared to the lower load, and 
why the structure in the R–L section undergoes 
large strains at both lower and higher loads need 
investigation.

Stochastic neural networks were also devel-
oped to model variability in Poisson ratio in the 
two sections and successfully validated using 
the two methods mentioned with high accuracy 
(R2 ranging from 0.82 to 0.85). The models and 
experimental results revealed that for 20kN load, 
Poisson ratio realisations in T–L section are more 
compact than those in the R–L section and it is 

nonlinear in both sections. At 40 kN, Poisson 
ratio realisations were even far more compact 
and more nonlinear in the T–L section compared 
to those under 20kN. However, the R–L section 
showed a large heterogeneity in Poisson ratios 
across the specimen for both load levels indicat-
ing a complex interaction between tracheids and 
rays in this section.

The stochastic neural networks were capable 
of capturing the effects of the heterogeneous 
structure on wood behaviour. Assuming that the 
analysed area contains all relevant and essential 
microstructural details to classify it as a represent-
ative area, the outputs generated by the models 
can be thought of as representing the general 
character of variation for this wood. Therefore, 
with further validation, SNN outputs can help 
simulate behaviour of larger wood specimens 
with similar general characteristics as an integral 
part of simulation models where a set of realisa-
tions for the structural behaviour of interest can 
be studied for probabilistic interpretation of the 
behaviour. The method also has the potential for 
use in directly assessing variability in large-scale 
wood members by scanning lightly stressed mem-
bers and developing SNNs from the data extracted 
from the images.
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