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The potential for combined use of airborne discrete-return LiDAR and digital imagery in 
the classification and measurement of common seedling stand vegetation was examined 
in southern Finland (61°50´N, 24°20´E). Classification was based on spectral and textural 
image features in addition to geometric and radiometric features of the LiDAR. The accu-
racy of leaf-on, LiDAR-based terrain elevation models was tested as well as the accuracy 
of LiDAR in the measurement of vegetation heights. LiDAR-based canopy height and the 
range-normalized intensity of the LiDAR were strong explanatory variables in vegetation 
classification. Interspecies variation was observed in the height measurement accuracy of 
LiDAR for different tree, shrub and low vegetation canopies. Elevation models derived with 
1−15 pulses per m2 showed an inherent noise of app. 15−25 cm, which restricts the use of 
LiDAR in regeneration assessment of very young stands. The spatial pattern of the competing 
vegetation was reproduced in classification-based raster surfaces, which could be useful in 
deriving meaningful treatment proposals.
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1 Introduction

The objectives of forest regeneration and early 
tending of seedling stands can include optimiza-
tion of the timber production profitability, con-
sideration of scenic preferences, control of fungal 

root and foliage disease spread, control of nutrient 
leaching as well as biodiversity and game man-
agement issues (e.g. Piri 2003, Huuskonen and 
Hynynen 2006, Karjalainen 2006). Forest regen-
eration and tending of seedling stands involves 
direct costs. Economically, the investments are 
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paid back in increased harvesting revenues and 
a shortened rotation period. The other ecological 
and social effects may be more difficult to con-
firm and quantify. The success of a regeneration 
is assessed some years after planting, sowing or 
natural regeneration felling, and the result is typi-
cally compared with a target stand, which may be 
defined by a preferred species/size distribution and 
spatial pattern of crop trees. The future species 
mixture is controlled by precommercial thinnings 
and possible complementary planting. An optimal 
timing of the first precommercial thinning can 
help in avoiding a costly second precommercial 
thinning and it affects the economics of the first 
commercial thinning (Huuskonen and Hynynen 
2006). There may be considerable intrastand vari-
ation in the stand conditions that, if accurately 
known, could be utilized for optimization of forest 
and stand management. The benefits should how-
ever pay for the inventory costs.

Remote sensing (RS) of young stands is an 
attractive option although the emphasis, conclud-
ing from the large volume of topical research, 
has been on the development of methods for 
the appraisal of mature, commercially important 
stands. Airborne laser scanning (ALS, LiDAR), 
especially, is increasingly used in the measure-
ment of timber volume in boreal forests (Næsset 
2004, Suvanto et al. 2005). ALS was combined 
with analysis of aerial images for enhanced results 
(Maltamo et al. 2006).

Regeneration assessment in managed boreal 
forests using airborne RS has mostly been con-
cerned with assessment of the density, size, spatial 
distribution and condition of conifer seedlings 
using leaf-off very-high resolution imagery (Hall 
and Aldred 1992, Pouliot et al. 2002, 2005, 2006, 
Pouliot and King 2005). Hall and Aldred (1992) 
used visual interpretation of the stocking, density 
and species in a prestratification and two-stage 
random sampling setup (Boreal Zone, Saskatch-
ewan, Canada). Photo-plots were assessed at a 
scale of 1:500 from stereo pairs that were taken 
using a helicopter-mounted camera. The detection 
rate of crop trees was dependent on the seedling 
height, varying from 0% to 94% for height classes 
between 0–15 cm and 201+ cm. Species identi-
fication accuracy between white spruce (Picea 
glauca (Moench) Voss) and jack pine (Pinus 
banksiana Lamb.) was also dependent on the 

size of the seedling. A scale of 1:5000−1:8000 
in which 30-cm-wide crowns would be visible 
was suggested for the prestratification. Visual 
interpretation methods tend to be time-consuming 
and require trained personnel, which has hindered 
their widespread use. However, the results have 
provided a basis for the development of automated 
methods. Pouliot et al. (2005) used semiautomatic 
tree detection/delineation in 6-cm resolution dig-
ital CIR images of 5−10-yr-old planted stands 
in Ontario (cf. Pouliot et al. 2002, Pouliot and 
King 2005). The experiment included variation 
in competing vegetation. The tree detection rates 
were 48−70% for heights between 0.06 m and 3.0 
m. The abundance of competing vegetation also 
affected tree detection as well as image resolu-
tion, parameters of the algorithm and the spatial 
arrangement of trees.

Competition by other flora was assessed using 
both manual and automatic interpretation of 
2-cm-resolution leaf-off images in Pouliot et al. 
(2006). Leaf-on large-scale aerial photography 
was used for identification of general cover types 
(Pitt and Glover 1993, Pitt et al. 2000) and very-
high-resolution digital imagery was tested for 
cover and leaf-area estimation by Haddow et al. 
(2000). The requirement for very-high-resolution 
imagery, valid for both leaf-on and leaf-off, has 
hindered the adoption of RS in operational regen-
eration assessment, because the acquisition costs 
become excessive. Future use of small unmanned 
aerial vehicles may lead to a reduction in costs. 
However, in addition to the reduction in data 
acquisition costs, more reliable and automated 
analysis methods are needed for the ill-posed task 
of seedling stand RS.

The potential use of ALS in seedling stands is 
largely unexplored. Næsset and Bjerknes (2001) 
examined sparse ALS (1 pulse per m2) for the 
estimation of tree height and the stem number in 
2−6-m-high stands in Norway. The mean height 
(H) could be derived from the LiDAR features 
but the estimates of stand density (S), which is 
important for treatment proposals, were inaccu-
rate. In Finland, Närhi et al. (2008) tested sparse 
(0.5 pulses per m2) ALS for the derivation of treat-
ment need in three classes (no treatment, within 5 
years, immediate) in young Norway spruce (Picea 
abies (L.) H. Karst) stands, with H of 2−8 m. The 
three-class treatment need was not assessed in the 
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field, but derived later, using estimates of S and H. 
Furthermore, regression functions having height-
related LiDAR metrics as independent variables 
were used for the estimation of H and S. The 
classification accuracy was 71.8%. RMSEs of H 
and S were 16% and 45%, respectively.

Digital, metric multispectral (MS) frame and 
linear sensors are currently replacing film-based 
aerial cameras. These new sensors are perceived 
as well matched for photogrammetric automation 
due to the improved geometric and radiometric 
properties of the imagery (Leberl and Gruber 
2005). It is feasible to take multiple images of the 
target and to use this redundancy for enhanced 
classification and canopy surface reconstruction 
(Hirschmugl et al. 2007). In forest applications, 
digital passive sensors are entrusted to improve 
the species identification task, which is the current 
bottleneck (Olofsson et al. 2006, Larsen 2007). 
ALS systems are also evolving with improve-
ments in pulse density, range and orientation 
accuracy and in the measurement of backscat-
ter reflectance (intensity). Many of the technical 
problems that were still present in the late 1990s 
and that resulted in high costs (e.g. accurate sensor 
orientation, accurate field positioning, elevation 
modelling and lack of digital workflow; Pitt el al. 
2000) now have new solutions (e.g. Korpela 2006, 
Korpela et al. 2007).

Our aim was to assess the potential of the new 
data sources, digital MS imagery and discrete-
return LiDAR data in the classification and meas-
urement of seedling stand vegetation to support 
seedling stand management and the derivation of 
meaningful treatment proposals. For the first time, 
we tested a newly introduced digital frame camera 
together with high-density, small-footprint LiDAR 
in the classification of seedling stand vegetation. 
To minimize geometric noise in the object-to-
sensor mapping and data analysis, we used field 
samples that were positioned at centimetre-level 
absolute accuracy. Similarly, image orientation 
was determined with the utmost precision. The 
spatial sampling density of the imagery and the 
LIDAR were higher than what perhaps would be 
affordable in practice. However, it is justified for 
exploring the upper limits of accuracy achievable. 
The spectral image features and features extracted 
from the LiDAR were tested in the classification 
of individual plant species and species-classes 

that could be useful in the derivation of treat-
ment proposals. Our exploratory analysis aimed 
at basic information and we omitted the varia-
tion in image-object-sun geometry (bidirectional 
reflectance) that affects signals in the images. The 
thesis is that LiDAR is effective in the estimation 
of canopy heights. However, in seedling stands 
the inherent measurement errors may become 
prominent. Errors in a digital elevation model 
(DEM) are also directly propagated to canopy 
height observations. A specific objective was to 
examine the accuracy of LiDAR-based DEMs in 
seedling stands and the accuracy of canopy height 
estimation for common plant species. Typically, 
the tallest trees in young conifer plantations are 
deciduous and are removed in precommercial 
thinnings. We also examined whether the LiDAR-
based height observations in combination with 
image features could be useful in separating the 
deciduous trees from conifers and other types 
of vegetation and biotic material. High canopy 
closure of the broad-leaved trees as measured by 
LiDAR, would also indicate immediate treatment 
need. The study confines to artificially regener-
ated coniferous Scots pine (Pinus sylvestris L.) 
and Norway spruce stands at the ages of 3−13 
years.

2 Material and Methods

2.1 Aerial Imagery and LiDAR

The study area is in southern Finland (61°50´N, 
24°20´E) near Hyytiälä Forest Station. Leaf-on 
aerial imagery consisting of 82 exposures was 
taken with an UltraCAM D digital frame camera 
from three flight lines (Table 1). Each expo-
sure is a five-channel perspective image that is 
combined from 13 similar CCD arrays (4000 × 
2700, 9-µm pixels) that are almost simultaneously 
exposed through eight separate lenses equipped 
with absorption filters. Four subimages consti-
tute an MS image in R, G, B, and NIR that has a 
lower resolution in comparison to a panchromatic 
(PAN) image. The sensitivity curves overlap: 
390−530 nm (B), 470−660 nm (G), 570−690 nm 
(R), 670−940 nm (NIR) and 390−690 nm (PAN). 
The PAN image is fused from nine CCD arrays 
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that are exposed through four optical cones (Mar-
kelin et al. 2005, Honkavaara 2008). We used the 
level-2, internally preprocessed 16-bit images, 
in which a small number of defective pixels and 
rows were corrected by the vendor’s processing 
software.

The exterior orientation of the images was 
determined using 86 XYZ and 4 Z control points 
(CPs) and in-flight GPS observations of projec-
tion centre positions in a bundle block adjustment. 
The CPs were treated as error-free and the GPS 
observations were assigned an a priori accuracy of 
0.10 m in the aerial triangulation. Tie points were 
measured manually and the 765 image observa-
tions were assigned an a priori weight of 6 µm. 
The image residuals of the solution had an RMSE 
of 5.0 µm. Tables 2 and 3 list the standard devia-
tions of the unknowns. The SDs of the differences 
in the X, Y and Z coordinates of the CPs were 
0.06 m, 0.04 m and 0.16 m, respectively. The 
inferior accuracy in the Z coordinate is due to the 

unfavourable base-height ratio of the UltraCAM 
images.

In a Monte-Carlo simulation with Gaussian 
image orientation errors, derived using the var-
iance-covariance matrices of the bundle block 
adjustment, an error-free XYZ point mapped with 
an average 4-µm error in the PAN image, which 
corresponds to a half-pixel.

Three leaf-on discrete-return LiDAR (1064 nm) 
datasets from 2004, 2006 and 2007 were used 
(Table 4). Acquisition in 2006 occurred 1 week 
prior to the aerial photography and 4 weeks before 
the fieldwork. The LiDAR of 2006 was used for 
vegetation mapping and terrain modelling was 
tested using all LiDAR datasets.

The geometric accuracy and relative match-
ing of the image and LiDAR data sets were 
assessed by superimposing LiDAR points in the 
aerial images and by using surfaces and borders 
for which the XYZ coordinates were measured 
using Network RTK (Wanninger 2005) satellite 
positioning. The XY accuracy of the LiDAR 
datasets was 0.25 m or better. The Z accuracy 
was better than 0.1 m. The point densities showed 
considerable spatial variation, due to the scanning 
geometry (Fig. 1).

Table 1. Characteristics of the aerial imagery.

Camera Vexcel UltraCAM D
Date August 2, 2006
Time, UTC 06:20–06:40
Solar elevation 29.6°
Resolution,
   Panchromatic (PAN) 7500 × 11 500 pixels, 0.09 m
Resolution,
   Multi-spectral (MS) 2400 × 3680 pixels, 0.27 m
Focal length, PAN/MS 105.2 mm / 35 mm
Dynamic range,
   nominal 14 bits
Image overlaps,
   forward / side 60% / 30%
Aperture, shutter speed F8, 1/175 s
Base/height ratio 260 m / 1000 m
Image coverage 670 m × 1035 m

Table 2. Standard deviations of the exterior orientation parameters, [rad] and [m].

  Attitude parameters   Projection centre coordinates
 ω ϕ κ X0 Y0 Z0

Mean 0.000094 0.000088 0.000077 0.09 0.10 0.06
Min 0.000087 0.000078 0.000044 0.09 0.09 0.04
Max 0.000106 0.000098 0.000158 0.10 0.10 0.14

Table 3. Standard deviations of 169 tie point coordi-
nates [m].

 X Y Z

Mean 0.08 0.05 0.23
Min 0.03 0.03 0.07
Max 0.27 0.13 0.54
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2.2 Observations of Vegetation Field 
Samples

The field data were collected in August, 2006 in 
six seedling stands, where moraine soils prevailed 
and soil preparation by mounding or harrowing 
was applied (Table 5, Fig. 2). Two sampling 
schemes were used. First, each stand was sampled 
along lines with an entire coverage. These 947 
samples were selected at approximately equidis-
tant locations and represented homogenous sam-
ples of the 27 targets listed in Table 6. A second 
sampling included all trees and shrubs (n = 645) 
inside square-shaped plots that were subjectively 
located to include variation in stand conditions. 
All samples were positioned and measured for 

height and species. Network RTK positioning, 
which has an accuracy of 3−5 cm in XYZ, was 
used (Häkli 2004, Wanninger 2005). The sample 
height was measured in 0.1-m nominal accuracy, 
using a reference pole (Fig. 3).
Altogether 27 classes were defined, which were 
further divided into four operational classes (OCs) 
that were considered important for the derivation 
of meaningful treatment proposals in coniferous 
seedling stands (Table 6). The OCs comprised 1) 
coniferous trees, 2) broad-leaved trees for poten-
tial removal, 3) low vegetation and 4) abiotic 
material.

Table 4. Characteristics of the LiDAR datasets.

Instrument ALTM2033 ALTM3100 ALS50-II

Date August 5, 2004 July 25, 2006 July 4, 2007
Time, UTC 13:00−13:30 15:41−16:57 15:40−17:20
Flying speed ~75 m/s ~75 m/s ~66 m/s
Pulse/scan freq. 33.3 kHz / 29 Hz 100 kHz / 70 Hz 115.8 kHz / 52 Hz
Point density 0.7−2 / m2 6−9 / m2 7−12 / m2

Footprint diameter 25−29 cm 25−28 cm 17−18 cm
Strips per point 1−2, 20% overlap 2−3, 55% 2−3, 55 %
Scan angle ± 20° ± 14° ± 15°
Range, m 860−960 810−890 750−850
Returns 1 or 2 1, 2, 3 or 4 1, 2, 3 or 4
Range discrimination distance 4.5 m 3 m 3.5 m
Intensity 8 bits 12 bits 8 bits, returns 1–3

DENSITY 2006 & 2007

Fig. 1. Left: a 300 × 300-m map of LiDAR point density in seedling stand 6. The greyscale denotes density, 6−29 
first-return points per m2 for the combined data of 2006 and 2007. Middle and right: 17 × 17-m aerial views 
from the high-density area show the point patterns of the 2006 and 2007 data, respectively.

20072006
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Fig. 2. Photographs of stands 1−6 in August 2006 during the fieldwork.

1: Planted spruce 2: Planted spruce

3: Sowed pine and planted spruce 4: Planted spruce

5: Planted spruce 6: Planted pine
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Fig. 3. Box-whisker plot of vegetation heights in the 27 
target classes (Table 6). The box is drawn from the 
25th to the 75th percentile and the height range is 
marked by the line.

Table 5. Stand information in 2006.

Stand Age Area, ha Lines Plots All observations
   Nobs, lines Nobs, plot Area, m2 Trees, n/ha Mean h, m Mean h, m Mean h, m 
        conifers broad-leaved

1 8 1.83 138 119 225 5289 1.33 0.9 1.6
2 7 0.69 224 74 100 7400 2.70 2.2 2.7
3 13 1.52 151 112 100 11200 2.75 2.9 3.2
4 5 1.97 146 88 150 5867 1.40 1.1 1.7
5 3 0.57 139 160 150 10067 1.30 1.2 1.5
6 10 1.09 149 92 225 4089 1.62 2.3 1.7

2.3 Feature Extraction

2.3.1 Image Features

As a result of the imaging geometry (diagonal 
field-of-view 60°) and solar angles (zenith ~60°, 
azimuth ~108°), the phase-angles ranged from 33° 
to 89°. Bidirectional reflectance effects were thus 
present in the images and undoubtedly affected 

the spectral values observed. Fig. 4 illustrates 
the effect for Scots pine and Norway spruce 
seedlings. Shadowed targets also prevailed in the 
images, due to the low solar elevation.

In all, the field observations mapped to 21 
images and 5467 image points. The extraction of 
nine image features was performed with an in-
house photogrammetric workstation. The R, G, 
B and NIR values of the nearest pixel formed the 
pixel-level spectral features in 27-cm resolution 
as well as the normalized difference vegetation 
index, NDVI:

NDVI
NIR R

NIR R
=

−
+

( )

( )
 (1)

The NDVI separated vegetation effectively in the 
shaded areas, probably due to the high dynamic 
range of the images. The textural features PAN-
Mean, PANSD, PANMin and PANMax were calculated 
from 3 × 3 pixel windows of the 9-cm resolution 
PAN image.

To enable shadow masking and analysis of the 
effects of shadowing, the first author measured the 
training data – XYZ points in shadow and direct 
light (424 + 410), using manual least-square 
ray-intersection of the aerial images. Random 
selection of points in all stands was pursued. 
Image features were extracted for these points 
and Fisher’s linear discriminant analysis (LDA) 
was applied for the binary classification. The clas-
sification accuracy was 96% with NIR, NDVI, G, 
R and B (Fig. 5). The errors were mainly due to 
misclassifications in the training data. Namely, a 
portion of the points that mapped to more than 
two or three images, i.e. to additional oblique 
views, were occluded by other (higher) targets.

Mapping of the field observation to the near-
est image pixel was examined by systematically 
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lowering the vegetation sample. We hypothesized 
that this would result in better positioning of 
the image features in non-nadir views, since the 
pixels would capture more of the object. The shift 
downwards was proportional to the object height: 
∆Z = – h × (1 – lc). Parameter lc was assigned 
values between 0 and 0.35 in steps of 0.05 and 
the image features were stored for analysis. The 
number of observations classified as being in 
direct light was maximal when lc was 0.25, which 
was later applied for trees, i.e. classes 1−9. The 
image features were highly correlated, except for 
the NIR band (Table 7).

2.3.2 LiDAR Features

Three LiDAR features were extracted for each 
field observation, using the first-return points of 
the 2006 ALTM3100 data:
– Proportion of ground returns, PGR
– LiDAR-based height above ground, hLiDAR

– Intensity of the nearest pulse, INTnorm.

We hypothesized that PGR measures canopy 
closure and leaf density. It may be used to sepa-
rate dense broad-leaved species from coniferous 
canopies and tall grasses. hLiDAR is the height of 
the nearest LiDAR return. The height growth 

Table 6. The 27 target types classified in the field and their division into four operational classes (OCs). R is 
the rank by occurrence frequency of understorey species on mineral forest soils in Finland. Similarly, F is 
the average frequency of occurrence and D the average coverage in stands less than 20 yr old according to 
Hotanen et al. (2000).

 Woody plants Number of observations Hotanen et al. (2000)
  OC Lines Plots All R F, % D, %

1 Picea abies 1 118 129 247 – – –
2 Pinus sylvestris 1 79 33 112 – – –
3 Betula. 2 163 255 418 – – –
4 Populus tremula 2 30 29 59 – – –
5 Sorbus aucuparia 2 90 157 247 – – –
6 Alnus incana 2 15 0 15 – – –
7 Salix 2 60 38 98 – – –
8 Juniperus communis 2 29 4 33 – – –

LOW VEGETATION
9 Chamerion angustifolium 3 24 – 24 18 38 1.7
10 Rubus idaeus 3 49 – 49 44 10.5 1.0
11 Pteridium aquilinum 3 1 – 1 81 2.6 0.5
12 Vaccinium myrtillus 3 4 – 4 3 65 3.5
13 Vaccinium vitis-idaea 3 28 – 28 2 86 5.0
14 Vaccinium uliginosum 3 3 – 3 19 – –
15 Empetrum nigrum 3 1 – 1 12 25 2.0
16 Calluna vulgaris 3 21 – 21 20 25 4.4
17 Calamagrostis epigejos 3 70 – 70 64 5.0 0.7
18 Deschampsia flexuosa 3 59 – 59 4 68 11
19 Luzula pilosa 3 4 – 4 13 37 0.5
20 Carex 3 13 – 13 – – –
21 Pleurozium schreberi 3 4 – 4 1 74 21
22 Hylocomium splendens 3 2 – 2 6 27 1.6
23 Cladina/Cladonia 3 8 – 8 –/5 31/32 3.9/0.7

ABIOTIC TARGETS
24 Mineral soil surface 4 5 – 5 – – –
25 Stone/rock surface 4 30 – 30 – – –
26 Logging residue 4 29 – 29 – – –
27 Dry wood surface 4 8 – 8 – – –

TOTAL  947 645 1592
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Fig. 4. NDVI phase-angle scatterplots for pine (left) and spruce (right). The phase-angle is the angle between the 
object-to-camera and object-to-sun 3D vectors.

Fig. 5. Example of a 150 × 150-m false-colour aerial image of stand 6 and the corresponding shadow classifica-
tion, in which the shaded pixels are in white.

Table 7. Pearson correlation coefficients of image features. All 5467 observations.

 R G B NIR NDVI PANMean PANSD PANMax PANMin

R 1 0.95 0.94 0.46 −0.63 0.93 0.59 0.91 0.89
G  1 0.92 0.61 −0.44 0.95 0.56 0.92 0.92
B   1 0.33 −0.62 0.92 0.58 0.91 0.88
NIR    1 0.31 0.49 0.23 0.46 0.49
NDVI     1 −0.51 −0.44 −0.54 −0.45
PANMean      1 0.61 0.97 0.96
PANSD       1 0.76 0.37
PANMax        1 0.88
PANMin         1
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rhythm of coniferous seedlings differs from that 
of broad-leaved trees. Given the stand age and 
predicted heights, hLiDAR possibly separates the 
fast-growing and thus taller broadleaved species 
from the conifers. LiDAR intensity is a quantity 
analogous to backscatter reflectance in optical 
data. Unlike images, LiDAR is insensitive to 
shadows. The geometry and density of the foli-
age encountered by the LiDAR beam are likely 
to affect the measured backscatter. INTraw is the 
recorded intensity and INTnorm is normalized for 
the variation in the scanning range, which exer-
cises a considerable effect (e.g. Korpela 2008).

PGR was calculated from points inside a 0.5-m 
radius. The ground elevation was taken from 
accurate GPS field measurements. LiDAR points 
that deviated < 0.5 m from Zground were consid-
ered as ground returns; hLiDAR1 was the height of 
nearest LiDAR point. The intensity of the nearest 
LiDAR point was normalized for the variation in 
scanning range:

INTnorm = (R / Rref)a × INTraw (2)

In Eq. 2, a was 2.5. Theoretically, a = 2 for homog-
enous surfaces larger than the LiDAR footprint, a 
= 3 for linear objects and a = 4 for individual large 
scatterers (Ahokas et al. 2006, Kaasalainen et al. 
2007). The value 2.5 is a compromise that was 
determined using artificial surfaces and natural 
targets, including understorey shrub, lichen and 
moss vegetation (Korpela, 2008). Rref in Eq. 2 is 
an average reference range, which was 839 m.

The highest INTnorm values were observed for 
R. idaeus (raspberry, class 10 in Fig. 6). P. sylves-
tris (class 2) had a lower average LiDAR intensity 
than P. abies (1), but it may have resulted from 
mixing with other low vegetation because the P. 
abies seedlings were rather short. S. aucuparia 
(5) had a clearly higher intensity than Betula (3), 
which did not separate from P. abies (1) or P. 
tremula (4) (Fig. 6.).

2.4 Linear Discriminant Analysis for Object 
Classification

The Stepdisc and Discrim discriminant analysis 
procedures in SAS/STAT (SAS Institute Inc., 
Cary, NC, USA) statistical software (version 
9.1.3) were used for feature selection, classifica-
tion and leave-one-out type of cross-validation. 
Stepdisc performs a stepwise feature selection 
and Discrim was later used for LDA.

The classification performance was measured 
with the proportion of correctly classified objects 
and the simple kappa (Cohen 1960):

κ =
−

−
P A P E

P E

( ) ( )

( )1
 (3)

In Eq. 3, P(A) is the proportion of correctly clas-
sified objects and P(E) the expected proportion 
from random classification.

In LDA, it is assumed that the multivariate 
within-class distributions are approximately 

Table 8. Pearson correlation coefficients of LiDAR 
features. All 1592 observations.

 PGR hLiDAR1 INTnorm

PGR 1 –0.68 0.18
hLiDAR  1 –0.41
INTnorm   1

Fig. 6. Box-whisker plot of INTnorm for target classes 
1−27 (Table 6). The box is from the 25th to the 75th 
percentile and the range is depicted by the line.
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normal. Multivariate normality (MVN) was tested 
using Mardia’s skewness and kurtosis tests as 
well as the Henze-Zirkler’s test. The data did 
not fulfil all of the MVN assumptions, mainly 
because of the skewness of the distributions. The 
data was assumed to be outlier-free making LDA 
applicable.

2.5 Terrain Modelling

TerraModeler by Terrasolid (Jyväskylä, Finland) 
was used for processing the 2004 LiDAR data 
into a 1-m raster DEM, referred to as 2004-
Terra. TerraModeler is based on three principal 
parameters (Axelsson, 2000) that were tried in 
100 combinations and a best-case DEM with an 
RMSE of 0.27 m was selected for the tests here. 
The RMSE was observed in 8329 reference height 
points in mature forests across the same study 
area (Korpela and Välimäki, 2007).

An in-house DEM algorithm was applied for 
testing the effect of LiDAR point density on 
DEM accuracy, using all LiDAR datasets. The 
area in the algorithm flow is first divided into a 
raster, according to the parameter CellSize. The 
point with minimum Z is sought in each cell 
and all points that deviate less than the value of 
parameter Zbuffer from this minimum are stored 
for D-TIN estimation (Delaunay – Triangulated 
Irregular Network). This TIN is iteratively filtered 
for rising outlier peaks by removing nodes that 
can only ‘be reached’ by steep triangle facets. A 
threshold parameter, SlopeThreshold at 15°, was 
applied. The filtering is continued typically in 3−4 
iterations, until the visual appearance is satisfac-
tory (Fig. 7). Finally, the TIN is converted into 

a 1-m resolution raster model. This conversion 
introduces a small random error of 0.03−0.07 m. 
The TIN-estimation was done with fast, streaming 
algorithms by Isenburg et al. (2006).

The DEM algorithm is not optimal, because it 
results in higher point densities in planar nonveg-
etated areas and is somewhat limited in capturing 
fine topographic details. The parameter CellSize 
should be minimized to reproduce the details. 
However, the reduction in CellSize also reduces 
the probability that the lowest point in a cell is a 
true ground observation, which may lead to bias. 
If parameter Zbuffer is set to a very high value, it 
causes the DEM to float above the true ground.

2.6 Raster Analysis of the Canopy Layer

To determine how the sensor fusion and object 
classification could be applied in practice, we 
carried out a raster analysis, in which the fully 
mapped plots were classified in a 0.5-m grid. 
LiDAR features at each grid point were computed 
such that the PGR was estimated inside a 1-m-
wide circle and hLiDAR and INTnorm inside a 0.7-
m-wide square, using the highest LiDAR point. 
The image features were derived by mapping 
the highest LiDAR point to the image with the 
smallest off-nadir angle. The OC was determined, 
using LDA functions derived from eight image 
and LiDAR features and the training data of the 
particular stand. A reference grid was calculated, 
using the reference trees; in it, the OC was deter-
mined by the tallest tree in each grid cell.

Fig. 7. Visualization of the nonfiltered and filtered D-TIN of seedling stand 1 over an area of 300 m × 200 m.



764

Silva Fennica 42(5), 2008 research articles

3 Results

3.1 Accuracy of Leaf-on LiDAR-based 
Elevation Models

In all, five DEMs were compared and were all 
above the reference ground (Table 9). The in-
house DEM algorithm was inferior in comparison 
to the performance of the TerraModeler algorithm 
with the same 2004 LiDAR data. Increase in point 
density from 1 to 15 per m2 lowered the RMSE 
36%, from 0.30 m to 0.22 m.

The errors of the different DEMs were cor-
related (Table 10). We suggest that 36−64% of 
the random error variance could have been due 
to the properties of the reference data. The errors 
may also have been correlated due to the estima-
tion method, since the same XY grid and values 
of parameter Zbuffer were applied in each stand. 
Part of the observed random error may also have 
been due to errors in the reference measurements 
made with Network RTK. In addition, the subjec-
tive selection of the line samples and penetration 
of the GPS antenna rod into the soil may have 
been sources of systematic errors in the refer-
ence data. However, the low vegetation probably 
reduced the number of true ground returns, thus 
lifting the DEMs upwards; while a considerable 
portion of the random errors were probably due 
to the small-scale variation in the relief, which 
cannot be captured by the DEMs. This inherent 
random error was 0.15−0.25 m and suggests that 
very low canopies cannot be reliably measured 
using LiDAR, because this inherent DEM noise 
propagates directly to the height estimates.

There may also have been small XY or Z offsets 
at the project and strip levels in the LiDAR data-
sets. It is evident that changes in low vegetation 
have occurred between 2004 and 2007 (vegeta-

tion succession), which suggests that the results 
are most reliable for the 2006 DEM, the year of 
fieldwork. The errors were largest in stand 3, 
which has a dense 3−5-m-high canopy of sowed, 
planted and naturally regenerated trees on rather 
fertile soil that was harrowed in 1994.

3.2 Accuracy of LiDAR-based Canopy 
Heights

The use of hLiDAR resulted in underestimation of 
tree heights of from 19% to 39% or 0.54−1.09 m 
(Table 11). The coefficients of variation (CVs) 
ranged from 17% to 37%. The height of the 
relatively large-leaved raspberry (R. idaeus) was 
underestimated by 29% but the precision was 
rather high, 13% in CV. Rosebay willowherb (C. 
angustifolium), which has a comparable mean 
height but a different leaf structure, was underes-
timated by 52% (CV = 13%). The results which 
are biased and rather noisy imply that the vegeta-
tion height measurement accuracy of LiDAR is 
restricted and dependent on the species.

Table 9. Accuracy of the elevation models, n = 1592.

DEM Points/m2 Mean SD RMS Min Max

2004-Terra 0.7−1.4 −0.08 0.21 0.22 −0.91 +1.22
2004 0.7−1.4 −0.13 0.26 0.30 −1.70 +1.31
2006 6−9 −0.21 0.19 0.28 −1.65 +1.28
2007 7−10 −0.12 0.19 0.22 −1.93 +1.43
2006&2007 12−16 −0.14 0.18 0.23 −1.17 +1.38

Table 10. Correlation coefficients of the residuals of the 
five DEMs, n = 1592.

DEM 2004-Terra 2004 2006 2007 2006&2007

2004-Terra 1
2004 0.63 1
2006 0.67 0.70 1
2007 0.60 0.63 0.87 1
2006&2007 0.64 0.69 0.90 0.91 1
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3.3 Vegetation Classification Using LiDAR 
and Image Features

LDA was first applied in each stand for classify-
ing the four operational target types (Table 12). 
The classification accuracy varied from 61.1% to 
78.9% and was reduced if the shadowed targets 
were included (Table 13). NDVI and INTnorm were 
strong features. Similarly, hLiDAR1 was significant 
in stands 1−4, in which the height of the broad-
leaved trees differed from that of the conifers.

The best accuracy, 77.8% for the OCs was 
achieved in stand 6. The confusion matrix of this 
classification is given in Table 14.

The classification accuracy for all 27 classes 
using 3787 sunlit observations from all six stands, 
was 39% (κ = 0.28) with eight image and LiDAR 
features. With image and LiDAR features only, 
the accuracy fell to 28% (κ = 0.19) and 24% 
(κ = 0.15), respectively.

3.4 Raster Analysis

The raster analysis is illustrated in Figs. 8−10. 
Since the 0.49-m2 raster cells had overlaps in the 
0.5-m raster and since the reference raster was 
computed using the stem positions, comparison 
of the two surfaces was not straightforward. The 
reliability of operational class 2 (the competing 
trees) was considered essential. Those parts of a 
conifer seedling stand that have a dense dominant 
canopy cover of broad-leaved trees are likely in 
need of immediate clearing. In stand 1, the clas-
sification accuracy was low and the classified grid 
overestimates the portion of conifers and partly 
fails in accurate determination of the broad-leaved 
canopy (Fig. 9).

The spatial structure of the canopy of the broad-
leaved trees was reproduced by the classifications 
in stands 2−4 (Fig. 10). Based on the results, we 
suggest that further processing of the classified 
raster surfaces (e.g. segmentation) will enable 
derivation of maps of intrastand treatment pro-
posals.

Table 11. Accuracy of hLiDAR excluding DEM errors. Classes with over 30 observations were included.

Class N Mean h, m Mean ∆h, m hLiDAR, % CV, %

1 Spruce 854 1.66 +0.65 61 37
2 Pine 450 2.53 +0.77 69 21
3 Birch 1314 2.42 +0.84 65 23
4 Aspen 152 3.09 +1.09 65 30
5 Rowan 900 1.69 +0.54 68 28
6 Alder 66 3.60 +0.69 81 17
7 Willows 332 1.94 +0.73 63 29
8 Juniper 103 1.37 +0.48 65 27
9 Rosebay willowherb 99 1.28 +0.67 48 13
10 Raspberry 170 1.07 +0.31 71 14
13 Lingonberry 98 0.17 −0.05 128 122
16 Heather 69 0.38 +0.12 67 24
17 Small-reed 256 0.75 +0.43 43 32
18 Wavy hair-grass 192 0.44 +0.25 42 48
20 Sedges 46 0.47 +0.27 43 22
23 Reindeer lichens 38 0.00 −0.10 – –
24 Mineral soil 30 0.00 −0.14 – –
25 Stone / rock 111 0.00 −0.06 – –
26 Logging residues 107 0.40 +0.06 84 37
27 Dry round wood 28 1.21 +0.64 47 57
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Table 12. Classification results for the four operational classes: conifers, competing broad-leaved trees, 
low vegetation and abiotic material. Observations in direct light only.

Stand κ N % correct Features, max 8

1 0.44 639 61.6 R G B IR NDVI PANSD hLiDAR1 INTnorm
2 0.47 383 74.6 R G B PANSD hLiDAR1 PGR INTnorm
3 0.45 611 68.2 R G IR NDVI hLiDAR1 PGR INTnorm
4 0.57 727 70.7 R G B NDVI PANMean hLiDAR1 PGR INTnorm
5 0.59 392 71.4 R G B IR NDVI PANMax PGR INTnorm
6 0.69 1035 78.9 R G B IR NDVI PANSD PGR INTnorm

Table 13. Classification results for the operational classes: conifers, competing broad-leaved trees, low 
vegetation and abiotic material. All observations.

Stand κ N % correct Features, max 8

1 0.44 729 61.1 R G B IR NDVI PANSD INTnorm hLiDAR1
2 0.49 694 69.7 R IR NDVI PANMean PANMax PGR INTnorm hLiDAR1
3 0.47 1166 65.3 R G IR NDVI PANMax PGR INTnorm hLiDAR1
4 0.57 833 70.8 R G B IR NDVI PANMax INTnorm hLiDAR1
5 0.44 808 62.0 R G B IR NDVI PANSD PGR INTnorm
6 0.67 1237 77.8 R G B IR NDVI PANSD PGR INTnorm

Table 14. Error matrix (%) of best-case LDA classification in stand 6. Objects 
in shadow and direct light.

Class N Classified into, %
  1 2 3 4

1 Conifer 339 80.2 14.5 5.3 0.0
2 Broad-leaved 486 17.1 72.2 10.7 0.0
3 Low vegetation 122 0.8 9.0 89.3 0.8
4 Abiotic material 88 2.3 0.0 1.1 96.6

4 Discussion of Results and 
Conclusions

RS is an attractive option for the assessment of 
young seedling stands. Recent advances in sensor 
technology allow for detailed and geometrically 
accurate analysis and sensor fusion of optical and 
active data in 3D object classification, which was 
tested here for the first time in seedling stands. 
The experimental setup was limited; i.e. it did 
not include wide variation in stand conditions or 
topography, one image scale and camera were 
used and only one set of LiDAR data was tested. 
In addition, separate training and validation data-
sets were not used for the classifications. These 
factors affected the interpretation of the results 
and were accounted for. The geometric orienta-

tion of the field samples and the sensors was 
also established with the utmost precision. This 
provided a solid basis for the analysis.

We hypothesized that being able to measure 
canopy heights is crucial, since the growth rhythm 
of conifer seedlings and the pioneering broad-
leaved trees differs, thus enabling their separation. 
LiDAR produced DEMs that were 8−20 cm above 
the true ground. These results are in line with 
earlier findings (Korpela and Välimäki 2007). The 
random error was app. 0.2 m and the increase in 
point density from 1 to 15 points per m2 reduced 
noise only marginally. DEM errors apparently 
cause an inherent inaccuracy of app. 0.25 m in 
plant/canopy height estimates. The noise can be 
higher under very dense canopies, where the prob-
ability of LiDAR registering true ground is lower, 
or under more complex topographic conditions. 
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Fig. 8. The 225-m2 plot in stand 1 seen in a near-nadir false-colour image. The plot had 26 spruce seedlings (1155 
s/ha, H = 0.70 m), 44 birches (1955 s / ha, H = 1.72 m) and 47 rowans (2088 s/ha, H = 1.34 m). The LiDAR points 
are superimposed in the view on the right and the circular greyscale denotes intensity, INTnorm ∈ [46,132].

Fig. 9. Left: reference grid of operational classes derived from the field-measured trees. 
Right: Classification using eight image and LiDAR features (cf. Table 13). Stand 1.

Due to the random errors in terrain elevation and 
canopy heights, we feel that airborne LiDAR is 
not applicable in very young seedling stands. We 
suggest that multi-image matching (Hirschmugl 
et al. 2007) may be used to enhance the accuracy 
of canopy height (surface model).

The potential for use of semi-dense, small-
footprint LiDAR (6−9 p/m2, 0.3 m) in estimat-
ing the top elevation of individual plants and 
plant canopies in seedling stands was limited. 
Underestimation of heights was observed, which 
was dependent on the species. This complicates 

sensor fusion, because the LiDAR reflection point 
that is mapped to the images for the retrieval of 
image features is not necessarily from the outer, 
photovisible canopy; in addition the images and 
LiDAR view the targets in different geometries. 
The underestimation of tree heights varied from 
20% to 40% with a CV of app. 30%. The relative 
height difference of the conifer seedlings and the 
broad-leaved species, birch and aspen especially, 
can be 100% in seedling stands because of the 
differences in juvenile growth (e.g. Elfving 1982, 
Miina and Saksa 2008). If models are available 
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Fig. 10. Reference (left) and classified (right) grids of broad-leaved (●) and conifer (∙) vegetation in the 
100-m2 plots of stands 2 (upper), 3 (middle), and 4 (lower). Classification was carried out, using 
eight image and LiDAR features (cf. Table 13).
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for the prediction of juvenile height growth of 
trees, the model estimates can be used in the 
LDA classification of seedling stand targets, using 
the expectances and variances of heights and an 
empirical covariance structure of the other discri-
minant features. Naturally, the height estimates 
need to be unbiased or otherwise the classification 
will fail. The height growth difference of sprout-
ing broad-leaved stools vs. trees regenerating 
from seed further complicates the use of LiDAR-
based heights in classification.

The 27 classes consisting of common tree spe-
cies, shrubs, grasses, mosses and other surface 
types that typically occur in seedling stands 
could not be reliably classified using the tested 
image and LiDAR features. For the 27 classes, 
the overall classification accuracy was 39%. In 
the stand-level tests, the classification accuracy 
varied from 61% to 79% for the four operational 
classes of conifers, broad-leaved trees, other low 
vegetation and abiotic surfaces. These classes 
were considered sufficient for the determination 
of meaningful treatment proposals and stand 
projections. This rather high level of accuracy 
was attained with considerable training data. The 
raster analysis revealed that the spatial pattern of 
the broad-leaved trees is potentially retrievable, 
using sensor fusion and classification with image 
and LiDAR features. Further work with more 
representative field material (stand types, time of 
season) and different RS material (image scales, 
sensor types, sampling density) is required for the 
development of practical applications. For exam-
ple, we suggest testing of the ADS40 multiview 
line sensor (Leica Geosystems, Norcross, GA, 
USA) because its colour registration (beamsplit-
ter) differs from those in metric digital frame 
cameras (absorption filter). In general, digital 
cameras offer means of using redundancy for 
enhanced classification results and we suggest 
method development in multiview classification. 
This requires that the object classification occurs 
in 3D, which is easier to implement using LiDAR 
with images than by images alone (Hirschmugl et 
al. 2007). In addition, we suggest investigating the 
use of more complex image and LiDAR features 
for vegetation classification.

Range-normalized intensity of LiDAR was 
a strong explanatory variable in seedling stand 
vegetation classification. It is invariant to target 

location, unlike the image features used. Unfor-
tunately, the intensity did not separate the three 
main species of forest trees in Finland. LiDAR-
based height was usable in stands, where the coni-
fers were shorter than the broad-leaved trees. The 
spectral image features were not compensated 
for the varying image-object-sun geometry even 
though the spectral values varied with the imaging 
geometry and that the effect varied between spe-
cies. This is explained by the varying bidirectional 
reflectance distribution (BRD) of different targets. 
Further work is needed to study these directional 
effects and their compensation, or preferably, 
utilization in an image-based species classifica-
tion task. We thus suggest that BRD research be 
initiated to quantify these BRD effects and to 
separate them from biological noise (tree vigour, 
diseases, leaf density, epiphytic lichens etc.) and 
trends (tree size/age). Such basic research could 
also aid in constructing specific sensors (radio-
metric properties) for forest vegetation mapping. 
Currently, cameras and LiDAR sensors are mainly 
built for topographic mapping and are commonly 
used by foresters.

Traditional satellite image-based change detec-
tion procedures can be applied for estimating the 
proportion of deciduous trees in large regenera-
tion stands (Häme 1991) or when existing stand 
database information supports the interpretation 
(Varjo 1997). The presence of small-scale struc-
tural variation, small size of regeneration areas 
and the lack of multitemporal data lead to the 
conclusion that the resolution of traditional (e.g. 
Landsat) imagery is not sufficient for reliable 
regeneration monitoring in Finland (Häme et al. 
1998, Saksa et al. 2003, Pesonen et al. 2007). 
Instead of applying the new very-high-resolution 
(< 1 m) satellite images it may well be more 
cost-efficient to use digital aerial images, which 
have become readily available standard products 
offering extensive temporal and spatial coverage. 
The use of images from unmanned aerial vehicles 
should also be investigated.

In the present study, a semi-dense (6−9 pulses 
per m2) LiDAR data and low altitude (1 km) 
images were used. Such data acquisition leads to 
high spatial sampling densities and radiometric 
accuracy (atmospheric effects) but the costs are 
high, on the order of 3−4 €/ha for large projects. 
For practical applications, training data will be 
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needed from the field, which increases the costs. 
If absolute calibration of the spectral values of the 
images could be carried out, this would reduce 
the need for field samples (Honkavaara 2008). In 
addition, a priori information on the target area, 
e.g. knowledge of the stand treatment history 
and site conditions would likely enhance the RS 
results. Integration of the a priori information 
will require further research and method devel-
opment.
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