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A new heuristic method to mitigate infeasibilities when a choice is forced into a solution 
was developed to solve spatially constrained forest planning problems. One unique aspect 
of the heuristic is the introduction of unchosen decision choices into a solution regardless 
of the resulting infeasibilities, which are then mitigated by selecting next-best choices for 
those spatial units that are affected, but in a radiating manner away from the initial choice. 
As subsequent changes are made to correct the affected spatial units, more infeasibilities may 
occur, and these are corrected as well in an outward manner from the initial choice. A single 
iteration of the model may involve a number of changes to the status of the decision variables, 
making this an n-opt heuristic process. The second unique aspect of the search process is the 
periodic reversion of the search to a saved (in computer memory) best solution. Tests have 
shown that the reversion is needed to ensure better solutions are located. This new heuristic 
produced solutions to spatial problems that are of equal or comparable in quality to traditional 
integer programming solutions, and solutions that are better than those produced by two other 
basic heuristics. Three small hypothetical forest examples illustrate the performance of the 
heuristic against standard versions of threshold accepting and tabu search. In each of the 
three examples, the variation in solutions generated from random starting points is smaller 
with the new heuristic, and the difference in solution values between the new heuristic and 
the other two heuristics is significant (p < 0.05) when using an analysis of variance. However, 
what remains to be seen is whether the new method can be applied successfully to the broader 
range of operations research problems in forestry and other fields.
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1 Introduction
Spatial forest planning problems, such as those 
that involve the location and timing of harvest 
units, generally require integer decision variables, 
and can be difficult planning problems to solve. 
Recently the interest in using or developing spatial 
forest planning techniques has increased (Bettinger 
and Chung 2004), motivated by changes to vol-
untary and regulatory forest-based programs, and 
facilitated by advancements in computer technol-
ogy (Bettinger and Sessions 2003). Within the 
field of forest planning, green-up or adjacency 
constraints are among the most widely addressed 
spatial constraints. A common spatial forest plan-
ning problem would be to schedule forest harvest 
activities over time and space so that the openings 
remain below a certain size (i.e., the adjacency 
issue), and so that the openings are not near one 
another within a specified time frame (i.e., the 
green-up issue).

A significant amount of work has been published 
in the past 15 years regarding the use of spatial 
harvest scheduling constraints, from the early work 
of Torres-Rojo and Brodie (1990), Weintraub et 
al. (1994), and Yoshimoto and Brodie (1994) to 
the advancements provided by Snyder and ReVelle 
(1997), Murray (1999), and McDill and Braze 
(2000). The list of associated work is too long 
to include a summary of all of the relevant here, 
but advancements have proceeded generally along 
two lines: the development of adjacency constraint 
formulations for exact algorithms, and the devel-

opment of heuristics. Spatial forest planning has 
spanned the fields of forest transportation (e.g., 
Weintraub et al. 1995), wildlife management (e.g., 
Bettinger et al. 1997), aquatic system management 
(Bettinger et al. 1998), biological diversity (Kangas 
and Pukkala 1996), and clearcut size distributions 
(Murray et al. 2004).

A number of mathematical programming tech-
niques have been shown to be useful for spatial 
forest planning problems, including traditional 
mathematical programming (Weintraub and 
Navon 1976), dynamic programming (Hoganson 
and Borges 1998), Monte Carlo integer program-
ming (O’Hara et al. 1989, Nelson and Brodie 
1990, Clements et al. 1990), simulated anneal-
ing (Lockwood and Moore 1992, Dahlin and 
Sallnas 1993, Van Deusen 1999), tabu search 
(Bettinger et al. 2002, Boston and Bettinger 1999, 
Murray and Church 1995), threshold accepting 
(Bettinger et al. 2003), and genetic algorithms 
(Mullen and Butler 1999). Other heuristics, such 
as the sequential approach presented in Pukkala 
and Kangas (1993), the sequential quenching and 
tempering approach of Falcão and Borges (2002), 
and hybrid heuristics (Boston and Bettinger 2002, 
Borges et al. 1999) have also shown promise for 
forest planning problems. Most of these, with 
the exception of mathematical programming and 
dynamic programming, illustrate the development 
and usefulness of heuristics in forest planning. 
Much of the work related to the development of 
adjacency constraint formulations focuses on tra-
ditional mathematical programming as the solu-

Table 1. A brief categorization of search processes used in forest planning.

Search technique Type of change Number of units
 to a developing whose status
 forest plan is changed

Traditional exact methods (LP, IP) Deterministic Many
Dynamic programming  Deterministic  Many
Monte Carlo simulation Random  Many
Simulated annealing  Random One
Threshold accepting  Random One
Tabu search  Deterministic One
Genetic algorithms  Random Many 
Sequential search a) Deterministic One
Sequential quenching and tempering b) Both Many

a) Pukkala and Kangas (1993)
b) Falcão and Borges (2002)
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tion technique (e.g., McDill and Braze 2000).
In general, when applied to forest planning 

problems, these search processes can be catego-
rized by the type of change that is made to a 
developing forest plan with each “iteration” of 
the process (Table 1), and the number of units 
(stands, polygons) whose status (prescription, 
harvest timing) changes. Although these generali-
zations may be simplistic, they are characteristic 
of the basic processes when implemented in a 
forest planning environment. Bettinger (2005) 
provides an concise overview of the operation 
of the basic heuristic processes. Of course, a 
number of enhancements have been demonstrated 
as useful improvements to the basic search proc-
esses, such as the use of 2-opt moves (Bettinger et 
al. 1999, Heinonen and Pukkala 2004) or strategic 
oscillation (Richards and Gunn 2000).

In almost every example of heuristics applied to 
forest planning problems, potential infeasibilities 
associated with changes to a developing forest plan 
are either avoided (keeping the search process 
inside the feasible region of the solution space), 
recognized with penalties applied to the objective 
function, or mitigated (removing the infeasibilities 
by selecting alternative choices for the affected 
units). The mitigation processes have usually con-
sisted of unscheduling or rescheduling (maintaining 
feasibility) a unit (stand) from a harvest schedule 
(e.g., Boston and Bettinger 2002). Many heuristics 
also require a number of parameters to need evalu-
ation prior to implementation. For example, these 
might consist of the tabu state for tabu search, or 
the cooling rate for simulated annealing.

Here, we introduce a new heuristic that requires 
only two parameters, one that ignores potential 
infeasibilities when making changes to a develop-
ing forest plan (although correcting them later), 
and one that seems to produce very good solu-
tions to difficult forest planning problems. The 
development of radiating waves in standing water 
by the impact of falling raindrops inspired this 
new method of addressing spatial forest plan-
ning problems. In short, when a choice is made 
for a developing forest plan, and infeasibilities 
occur, the mitigation process allows further infea-
sibilities to occur as the corrections are made in 
a radiating fashion away from the initial choice. 
This is a process that has yet to be explored in 
spatial harvest scheduling and forest planning and 

represents an improvement in solving some types 
of spatial forest planning problems.

2 Methods

The scheduling process we designed begins with 
the development of a randomly defined, feasi-
ble solution to the problem (Fig. 1). This is a 
random search process much like that used in 
Monte Carlo simulation. Next, as the forest plan 
is developing, a choice (management unit and 
harvest period) not currently in the solution is 
selected at random. The choice is then forced into 
the solution regardless of any potential constraint 
violations. A list of the management units that 
are affected (i.e., that then result in an infeasible 
solution) is then compiled. From this list, the 
management unit physically nearest the original 
selected management unit (based here on the 
centroids of each unit) is identified, and the next 
best alternative (harvest period) for this unit, 
that does not result in a constraint violation with 
the originally selected unit, is chosen and forced 
into the solution. Any management units that are 
subsequently affected by this change to the solu-
tion are added to the list of affected units. The list 
of affected units is then again consulted, and the 
unit physically nearest the originally selected unit 
is once again selected. The next best alternative 
for this third unit is chosen, as long as it does not 
result in a constraint violation with units previ-
ously examined, including the original unit and 
any other management units physically nearer 
the originally selected unit than the affected unit 
now being considered. This radiating, spatially 
sprawling (Fig. 2) adjustment process continues 
until all infeasibilities have been corrected. Thus 
ends one iteration of the search process. The 
process continues for a user-defined number of 
iterations, and at a user-defined interval, the cur-
rent solution to the problem reverts back to the 
previously saved best solution.

The scheduling process is different than pre-
vious heuristic processes in a number of ways. 
First, while the selection of management units and 
harvest periods to enter into a solution is random, 
much the same as Monte Carlo simulation, thresh-
old accepting, and simulated annealing, a single 
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Fig. 1. A flow chart of the new heuristic search proc-
ess for spatially constrained forest planning prob-
lems.

iteration of this new process also includes sub-
sequent deterministic changes to other affected 
management units. And unlike many of the basic 
implementations of other heuristics, any con-
straint (adjacency) violations that occur require an 
adjustment of the affected management unit’s har-
vest timing such that the next best harvest timing 
is selected (regardless of the resulting additional 
infeasibilities). These changes are made in a geo-
graphical manner, and are applied first to the man-

agement units physically nearest to the originally 
selected unit. Also, this search process avoids the 
use of parameters typically employed in other 
heuristics. Thus this model lacks the moderately 
cryptic user-defined parameters such as the initial 
temperature (or threshold), the annealing rate (or 
threshold change value), the tabu state, or the 
mutation rate used in other heuristics, that cause 
users to evaluate their significance to the search 
process. The only two criteria that a user must 
define are the total number of iterations to model 
(as in all other heuristics that lack an intelligent 
stopping criteria), and the number of iterations 
that allowed to pass before the heuristic reverts to 
the previously saved best overall solution.

2.1 Forest Planning Problem Formulation

To illustrate the use of the new spatial forest 
planning process, a forest management problem 

Fig. 2. A conceptual model of the spatially sprawling 
infeasibilities that occur when a management unit 
and harvest period (X) is forced into a solution, 
and the resulting order of infeasibilities that must 
be corrected to complete one iteration of the new 
method.

X = initial unit chosen to enter the solu-
tion

1–9 = subsequent affected units (in order, by 
distance from the original unit chosen) 
whose status is changed in the solu-
tion
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is defined and solved using three small spatial 
databases that represent potential harvest volumes 
from three areas of the United States (U.S.). The 
objective of the forest planning problem is to 
maximize timber harvest over three time periods. 
The heuristic model was designed such that the 
objective function was represented as:

minimize H Tt
t

−( )
=
∑ 2

1

3

1( )

where
t = a time period
Ht = the total harvest volume (tons) during a time 

period
T = a target harvest volume

This is an even-flow (of harvest volume) objective, 
which seeks to locate a solution with the highest 
and most even harvest volume for each of the three 
time periods. Attempting to achieve perfect even-
flow across a time horizon is relatively easy within 
a linear programming environment, where decision 
variables are continuous in nature. However, when 
using integer variables, the initial structure of a 
forest (polygon size distribution and forest age class 
distribution) may preclude an exact, and relatively 
high, harvest rate from being obtained.

To accumulate scheduled harvest volumes, 
accounting rows were used to sum the scheduled 
harvest volume during each time period:
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where
i = a management unit
n = total number of management units
Xit = a binary variable indicating whether (1) or not 

(0) unit i is scheduled for harvest during time 
period t

Vit = the volume per unit area available for unit i 
during time period t

Ai = the size of a management unit

Unit restriction adjacency constraints (Murray 
1999) are included in this problem formulation, 
where a unit sharing an edge (side) with another 
can not be harvested in the same time period.

Xit + Xjt ≤ 1         ∀ t, i, j ∈ {Ni} (3)

where
j = a management unit
Ni = the set of all management units adjacent to unit i

When addressing adjacency constraints in forest 
harvest scheduling problems, the unit restriction 
model is more restrictive on final solution values 
than the area restriction model (Murray 1999). 
While both models can be solved with exact meth-
ods, the area restriction model allows more flex-
ibility in the harvest timing of individual stands, 
thus the final solution values are generally higher 
(in a maximization problem) than those provided 
by the unit restriction model. However, one aspect 
of this study is to compare the heuristic solu-
tion values to solution values provided by exact 
methods, and since the unit restriction model is 
more easily formulated with exact methods than 
the area restriction model, we chose to solve it 
and provide it as a way to validate the results. In 
addition, Murray (1999) notes that defining the 
potential contiguous areas for the area restriction 
model of adjacency and green-up may be difficult 
even for small forest planning problems.

Of the various types of adjacency constraint for-
mulations (e.g., pairwise, Type I nondominated, 
new ordinary adjacency matrix), these are pair-
wise constraints. While Type I nondominated con-
straints have been shown to result in significantly 
lower solution times, and new ordinary adjacency 
matrix have also been shown to perform better in 
problems containing mainly immature forests, 
pairwise constraints have been shown to perform 
better in forest planning problems containing 
overmature and old-growth forests (McDill and 
Braze 2000). In addition, McDill and Braze (2000) 
state that the more mature the forest, the harder 
the problem to solve. This is important when 
using the branch and bound algorithm associated 
with the integer programming solver (LINDO), 
because a smaller proportion of branches are the 
trimmed from the branch and bound tree, thus the 
decision tree that is explored is larger than with 
other types of forest configurations (McDill and 
Braze 2001). Each of our example forest problems 
contain mature forests (i.e., those ready for har-
vest). In addition, no tolerance gap was used in 
the generation of integer programming solutions, 
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although McDill and Braze (2001) show that 
near-optimal solutions can be obtained quickly 
by using a 0.1–2.0% gap.

In this management problem, the number of 
choices available to each management unit is the 
number of time periods plus 1 (one choice for 
each potential clearcut period, and one additional 
choice for not cutting a unit). The number of units 
that can be clearcut during any one time period 
is unlimited, as the objective function (maxi-
mization of even-flow) sorts this out during the 
development of a forest plan.

2.2 Hypothetical Forests to Which the Model 
Is Applied

To assess the effectiveness of the new heuristic 
for solving spatially constrained forest planning 
problems, three hypothetical forests are used. 
First, a 625-unit hypothetical southern U.S. forest 
was designed as a 25 by 25 unit grid, with each 
grid cell representing 10 ha. Forest ages (0 to 
30 years) were randomly assigned to each cell. 
Forest volumes were assigned to each age based 
on slash pine (Pinus elliotii Engelm.) volumes 
provided by Bailey et al. (1982) for stands with 
uniform stocking and 15% fusiform rust (Cron-
artium fusiforme Hedgcock & Hunt ex Cummins) 
stem cankers. The time horizon is assumed to be 
15 years in this example, thus each time period 
is 5 years long.

Second, a 74-unit, 1012 ha forest commonly 
referred to as the Daniel Pickett Forest (Davis 
et al. 2001) is used to provide realistic polygons 
(Fig. 3). Potential board foot volumes for typical 
western U.S. forests are assigned to these poly-
gons. The average size of polygons in this forest 
average 13.6 ha. The time horizon assumed in 
this example is 30 years, thus each time period 
represents one decade (10 years).

A 40-unit, 631 ha forest with parcels of 9, 18, 
and 36 ha was developed as the final standard 
problem to assess the usefulness of the new heu-
ristic (Fig. 4). Potential northern U.S. hardwood 
yields for white oak (Quercus alba L.), red oak 
(Quercus rubra L.), and other red oaks (e.g., 
Quercus palustris Muenchh.) were assigned to 
each stand randomly. Yields were developed from 
estimated volumes for oak-hickory forest types in 

Fig. 3. The spatial arrangement of polygons that rep-
resent the 1012 ha Daniel Pickett forest (western 
U.S.) example.

Fig. 4. The spatial arrangement of polygons that repre-
sent the 40-unit, 635 ha northern forest example.
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Wisconsin (Essex and Hahn 1976). The time hori-
zon assumed in this example is also 30 years, and 
thus each time period represents one decade.

Data regarding each of the hypothetical forest 
databases is available via the Internet (Bettinger 
2004). Databases are both tabular (area, potential 
volumes, adjacency list, centroids of stands) and 
spatial (ArcView GIS databases for the 73-unit 
Daniel Pickett forest and the 40-unit northern 
U.S. forest example).

2.3	 Validation

There are four general methods for assessing and 
validating the performance of a heuristic search 
process:
1) Compare solution values against a relaxed linear 

programming (LP) solution
2) Compare solution values against an integer pro-

gramming (IP) solution (preferred)
3) Compare solution values against an estimated 

global optimum developed using extreme value 
theory

4) Compare solution values against those produced 
by other heuristics

While it may make sense to compare the new 
heuristic against others (which we have done), 
the best method for comparing the performance 
of a heuristic is against a very similar, and known, 
global optimum solution from integer program-
ming (which we have also done). However, the 
objective function to the problem described above 
(Eq. 1) contains a non-linear term which can not 
be accommodated in the integer programming 
problem formulation. This non-linear term is 
needed in the heuristic to differentiate between 
similar solutions, one of which may have a more 
uneven volume stream. For example, assume two 
solutions have the following set of harvest vol-
umes over three time periods:

Set A {1000, 1000, 1020}
Set B {950, 1000, 1070}

Each of the two solutions has the same total har-
vest volume over the time horizon (3020 units), 
although set A has harvest volumes that are obvi-
ously more even. If we were to assume a target 
volume of 1100 units per time period, each of the 

two sets is also 280 units away, in total, from the 
target. To recognize that set A is more even than 
set B, we squared the periodic deviations from 
the target volume in Eq. 1. Thus set A is given 
a value of 26 400, while set B receives a value 
of 33 400. Set A is thus preferred if one were to 
attempt to minimize the squared deviations from 
the target harvest level. Thus the non-linear term 
was needed to help us make this decision.

While the objective function (Eq. 1) for the 
heuristic contained a non-linear term, the integer 
programming problem was formulated so that the 
objective function simply maximized total harvest 
volume over the three time periods:

minimize Zt
t=
∑

1

3

4( )

where
Zt = T – Ht	 (5)

To ensure that the harvest levels were as high as 
possible, and as close as possible, pseudo even-
flow constraints were included:

H1 – H2 ≥ – Z (7)
H2 – H1 ≥ – Z (8)
H1 – H3 ≥ – Z (9)
H3 – H1 ≥ – Z (10)
H2 – H3 ≥ – Z (11)
H3 – H2 ≥ – Z (12)

The value of Z allows some flexibility in the har-
vest levels, since an exact even-flow harvest level 
for each time period was impossible to find within 
a reasonable (12 hour) time period. In fact, as we 
alluded to earlier, an exact even-flow solution 
may be impossible to locate when using integer 
variables. These constraints were not used in the 
heuristic process, and making the Z values very 
small produces a different solution (generally 
more even in volume than the heuristic solution, 
but with lower total volumes). Therefore, to make 
the comparisons of the integer solutions and the 
heuristic solutions fair, the Z value was set to the 
largest deviation amongst periodic harvest levels 
found in the best solution generated by the new 
heuristic for each example forest problem. For the 
625-unit southern U.S. example problem, we used 
a Z value of 66 300 tons. For the 73-unit Daniel 
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Pickett (western U.S. example) problem we used 
a Z value of 550 MBF. For the 40-unit northern 
U.S. forest example, we used a Z value of 133 
m3. The resulting integer programming models 
were solved using Industrial LINDO / PC release 
6.1 (LINDO Systems, Inc. 2002).

In addition to comparing solutions generated 
by the new heuristic to the integer programming 
solutions, we also compare the new heuristic’s 
solutions to solutions generated by standard 
threshold accepting and tabu search methods. 
Threshold accepting was initially developed by 
Dueck and Scheuer (1990), and has been applied 
to forest planning problems by Bettinger et al. 
(2002, 2003). Rather than a linear change to the 
threshold, which is commonly used, a geometric 
change was used (0.995 × previous threshold). 
Through numerous tests, we have found that this 
type of “threshold change” moves the search 
process to better areas of the solution space more 
quickly, and results in higher quality solutions. 
Tabu search was initially described by Glover 
(1989), and has been applied to numerous forest 
planning problems (e.g., Batten et al. 2005, Bet-
tinger et al. 1997, 2002). Standard 1-opt tabu 
search was used for the comparison with the 
new method, although others have shown that 
intensification (Bettinger et al. 1999) or diversi-
fication (Richards and Gunn 2000) strategies may 

be necessary. Each of these three heuristics (the 
new method, threshold accepting, tabu search) 
was developed within the HATT environment 
(Bettinger 2005), although only tabu search and 
threshold accepting are currently available to the 
public through an Internet site (Bettinger 2004).

Fifty solutions were generated using the three 
heuristics to compare the quality of their results. 
The target volumes that were used in this assess-
ment were derived from relaxed linear program-
ming solutions to each forest planning problem. 
They were: a) 2 972 462 tons for the 625-unit 
southern U.S. forest example, b) 9134.6 m3 for 
the 40-unit northern U.S. forest example, and c) 
34 467 MBF (thousand board feet) for the 73-unit 
western U.S. forest example. 

Parameterization is required of each of the three 
heuristics examined. We made a concerted effort 
to select parameters for each model that would 
allow an objective comparison of each. We ran 
numerous trial runs of tabu search, and found that 
the tabu state should be about 150 iterations for 
the 73-unit western U.S. example, 600 iterations 
for the 625-unit southern U.S. example, and 80 
iterations for the 40-unit northern U.S. example. 
We ran the tabu search heuristic for 100 000 itera-
tions on the 73-unit western U.S. forest example 
and the 625-unit southern U.S. forest example. 
The tabu search heuristic was allowed to run for 

Table 2. Preliminary results from the new heuristic method using alternative reversion rates (20 
solutions generated using each reversion rate).

Reversion Objective function values a)

rate
 Minimum Maximum Average Standard
 (best) (worst)  deviation

0 454 340 553 112 572 570 439 512 518 646 161 762 36 977 836 837
1 78 132 994 612 103 806 340 812 90 916 021 675 6 667 014 976
2 77 821 915 052 95 078 429 472 85 285 369 752 4 994 950 346
3 75 126 570 552 94 409 573 572 84 634 418 204 5 512 224 349
4 70 295 758 932 91 337 174 632 81 576 452 568 5 667 170 231
5 76 409 475 212 95 462 209 292 85 035 377 346 5 609 720 952
6 77 640 865 772 98 719 285 752 87 459 908 985 5 903 718 797
7 72 868 783 992 97 472 457 032 87 774 263 412 6 615 753 840
8 78 279 990 572 106 577 261 092 91 052 723 877 7 915 577 284
9 75 954 907 852 108 422 576 972 90 592 355 860 8 965 679 652
10 83 169 836 552 108 708 774 252 94 537 143 988 6 940 360 532
20 93 086 521 952 119 977 882 872 107 796 307 146 6 930 477 957

a) Using Eq. 1, and applied to the 625-unit southern U.S. forest example.
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10 000 iterations on the 40-unit northern U.S. 
forest example.

The threshold accepting heuristic required an 
examination of the initial threshold, the number 
of iterations per threshold, the rate at which the 
threshold changes, and the number of unsuccess-
ful (either infeasible or outside the threshold) 
choices selected before the threshold changed. 
Numerous trials were run for each example 
forest. For the 73-unit western U.S. example, we 
decided to use an initial threshold of 10 000 000, 
and a rate of change of 0.995. The number of 
iterations per threshold was 1000, and the number 
of unsuccessful iterations prior to changing a 
threshold was 1000. For the 625-unit southern 
U.S. example, we decided to use an initial thresh-
old of 110 000 000 000, and a rate of change of 
0.995. The number of iterations per threshold was 
10 000, and the number of unsuccessful iterations 
prior to changing a threshold was 1000. For the 
40-unit northern U.S. example, we decided to 
use an initial threshold of 10 000 000, and a rate 
of change of 0.995. The number of iterations per 
threshold was 1000, and the number of unsuc-
cessful iterations prior to changing a threshold 
was 500.

The new heuristic process was first subjected 
to preliminary analyses where the reversion rate 
varied from 0 iterations (no reversion to the best 
solution) to 20 iterations (Table 2). The heuristic 
was applied to the 625-unit southern U.S. forest 
example and allowed to run for 20 000 itera-
tions. Twenty solutions were generated using each 
reversion rate tested. From this examination we 
found that reverting back to the best solution 
every four iterations of the model seemed to pro-
vide the best results. Here, not only was the best 
solution located, but the standard deviation was 
the amongst the lowest, and the average and worst 
solution was better than those provided when 
using the other reversion rates. What this shows 
is that the spatially-sprawling method, when used 
by itself (0 iteration reversion), does not produce 
good solutions to planning problems. The heu-
ristic is essentially allowed to make numerous 
random and deterministic changes to a developing 
forest plan, yet there are no provisions to force 
the heuristic to find the better areas of the solu-
tion space. The reversion helps, but when too 
few and too many iterations pass before revert-

ing back to the best solution, inferior solutions 
are developed. The best situation seems to be to 
let the new method perform about 4 randomly 
located, spatially-sprawling modifications to a 
solution. If a better solution is not found along the 
way, it is best to revert back to the best solution 
and try again. We subsequently used 4 iterations 
as the reversion rate for the remaining analysis 
of the new method, and ran the heuristic for 
100 000 iterations on the 73-unit western U.S. 
forest example and the 625-unit southern U.S. 
forest example. The heuristic was allowed to run 
for 10 000 iterations on the 40-unit northern U.S. 
forest example.

3 Results

The integer programming version of the model 
produced optimal solutions to the 40-unit and 73-
unit examples relatively quickly (< 30 seconds). 
The 625-unit southern U.S. forest example was 
allowed to run in LINDO for about 20 hours. In 
none of the examples were the new method’s solu-
tions as good as the corresponding integer solu-
tion (Table 3). However, the best solution for the 
40-unit problem produced with the new heuristic 
contained volumes that were within 1.1% per 
decade of the integer programming solution. The 
best solution for the 73-unit problem contained 
volumes that were within 0.7% per decade of the 
integer programming solution. The best solu-
tion for the 625-unit problem contained volumes 
that were within 0.4% per period of the integer 
programming solution. What should be kept in 
mind is that the new heuristic method was only 
run for a limited number of iterations to provide 
an objective comparison of the three heuristic 
methods. As an additional test of the robustness 
of the new heuristic, it was run a limited number 
of times (15) on the 40-unit and 73-unit example 
forest problems with 1 million iterations. For 
the 40-unit problem, 3 of the 15 solutions were 
slightly better than the solution noted in Table 3, 
but not as good as the integer programming solu-
tion. For the 73-unit problem, 5 of the 15 solutions 
were as good as the integer solution.

When examining the 50 solutions generated 
by each heuristic for the 73-unit western U.S. 
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forest example, we found that the new method 
produced better solutions than either threshold 
accepting or standard 1-opt tabu search (Table 4). 
The average solution generated using the new 
method was almost as good as the best solu-
tion generated from threshold accepting, and was 
better than the best solution generated with 1-opt 
tabu search. The spatial distribution of harvests 
(Figs. 5–7) allows one to visualize the resulting 
forest plans, and for this example problem show 
many similarities. Finally, the standard deviation 
of the solutions generated from the new method 
was relatively small, while the standard deviation 

of the solutions generated by the other two was 
large, as they resemble flat, normal distributions 
(Fig. 8). An analysis of variance test showed that 
the distribution of solutions produced by the new 
heuristic was significantly different (p < 0.05) than 
the distribution of solutions produced by the other 
heuristics.

From the 50 solutions generated by each heu-
ristic for the 625-unit southern U.S. forest exam-
ple, we found that the new method produced 
better solutions than either threshold accepting or 
standard 1-opt tabu search (Table 5). The worst 
solution from the new method was better than the 

Table 3. Comparison of integer programming solution and heuristic solutions.

 Objective Harvest volumes (tons)
 function 
 value a) Period 1 Period 2 Period 3

625-unit southern U.S. forest example
Integer solution 64 859 941 092 2 796 070 2 834 340 2 851 350
Best heuristic solution 68 823 857 652 2 789 800 2 824 390 2 856 130

73-unit western U.S. forest example
Integer solution 5 500 391 33 049.5 32 933.6 33 399.4
Best heuristic solution 5 556 343 32 827.8 33 169.8 33 377.7

40-unit northern U.S. forest example
Integer solution 98 439 8 981.5 8 903.6 8 987.5
Best heuristic solution 102 653 8 879.3 8 984.2 9 012.6

a) Using Eq. 1

Table 4. A comparison of 100 heuristic solutions developed for the 73-unit western U.S. 
forest example, using the new method, threshold accepting, and tabu search.

 New Threshold Tabu
 method accepting search 

Minimum (best) a) 5 556 343 8 880 500 9 323 179
Maximum (worst) a) 15 491 044 39 050 808 33 907 707
Average a) 9 019 837 22 657 588 18 997 219
Standard deviation a) 2 432 331 6 481 078 5 439 394

Best solution volumes (MBF) b)

Time period 1 32 828 32 433 32 417
Time period 2 33 170 32 779 32 663
Time period 3 33 378 33 090 33 102

a) Using Eq. 1
b) Target was 34,467 MBF per time period
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Fig. 7. The best tabu search solution for the 73-unit 
Daniel Pickett forest (western U.S.) example.

Fig. 5. The best solution generated by the new method 
for the 73-unit Daniel Pickett forest (western U.S.) 
example.

Fig. 6. The best threshold accepting solution for the 
73-unit Daniel Pickett forest (western U.S.) ex-
ample.

best solution developed from 1-opt tabu search. 
The average solution generated using the new 
method was almost as good as the best solution 
generated from threshold accepting. Finally, the 
standard deviation of the solutions generated from 
both the new method and threshold accepting 
were relatively small (Fig. 9), but an analysis of 
variance test indicated that the difference between 
the two distributions of solutions was significantly 
different (p < 0.05).

Finally, when examining the 50 solutions gen-
erated by each heuristic for the 40-unit northern 
U.S. forest example, we once again found that 
the new method produced better solutions than 
either threshold accepting or standard 1-opt tabu 
search (Table 6). The new method and threshold 
accepting produced similar best solutions, while 
the average solution generated by the new method 
was almost as good as the best solution generated 
from 1-opt tabu search. The spatial distribution 
of harvests (Figs. 10–12) again allows one to 
visualize the resulting forest plans, and as with 
the 73-unit western U.S. forest example, show 



326

Silva Fennica 40(2), 2006 research articles

Fig. 8. The distribution of solutions generated for the new method, tabu search, and threshold 
accepting, using the 73-unit Daniel Pickett forest (western U.S.) example.

Fig. 9. The distribution of solutions generated for the new method, tabu search, and threshold 
accepting, using the 625-unit southern U.S. forest example.
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many similarities. Finally, the standard deviation 
of solution values generated from the new method 
and threshold accepting were relatively small, 
while the standard deviation of solution values 
generated by the 1-opt tabu search process was 
quite large (Fig. 13). However, as with the other 
two examples, an analysis of variance test showed 
that the distribution of solutions produced by the 
new heuristic was significantly different (p < 0.05) 
than the distribution of solutions produced by the 
other heuristics.

All of the results provided here were developed 
using a personal computer equipped with a 2.4 
MHz Pentium processor. The average time to 
generate a solution using the new heuristic was 

about 8 minutes for the 73-unit western U.S. 
forest example, about 21 minutes for the 625-unit 
southern U.S. forest example, and about 1 minute 
for the 40-unit northern U.S. forest example. 
By comparison, these values were slower than 
those for threshold accepting (20 seconds, 25 
seconds, 8 seconds, respectively), and those for 
tabu search (7 minutes, 13.5 minutes, 40 seconds, 
respectively). One should keep in mind that the 
heuristic was developed using the Visual Basic 
6.0 programming language, and that using other 
programming languages will likely shorten the 
time required to generate a solution.

Table 5. A comparison of 50 heuristic solutions developed for the 625-unit southern U.S. forest 
example, using the new method, threshold accepting, and tabu search.

 New Threshold Tabu
 method accepting search 

Minimum (best) a) 68 823 857 652 76 758 360 212 127 256 326 072
Maximum (worst) a) 88 044 884 212 104 664 970 452 231 164 522 272
Average a) 78 003 063 077 89 038 938 886 179 908 440 258
Standard deviation a) 4 425 098 183 6 455 070 410 21 078 698 124

Best solution volumes (tons) b)

Time period 1 2 789 800 2 769 750 2 719 280
Time period 2 2 824 390 2 822 300 2 772 290
Time period 3 2 856 130 2 857 930 2 775 350

a) Using Eq. 1
b) Target was 2,972,462 tons per time period

Table 6. A comparison of 100 heuristic solutions developed for the 40-unit northern U.S. forest 
example, using the new method, threshold accepting, and tabu search.

 New Threshold Tabu
 method accepting search 

Minimum (best) a) 102 653 121 836 203 589
Maximum (worst) a) 440 767 652 462 2 042 786
Average a) 217 470 330 930 642 424
Standard deviation a) 73 660 119 546 314 746

Best solution volumes (m3) b)

Time period 1 8 879 8 858 8 878
Time period 2 8 984 9 007 8 875
Time period 3 9 013 8 965 8 869

a) Using Eq. 1
b) Target was 9,134.6 m3 per time period
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Fig. 12. The best tabu search solution for the 40-unit 
northern U.S. forest example.

Fig. 10. The best solution generated by the new method 
for the 40-unit northern U.S. forest example.

Fig. 11. The best threshold accepting solution for the 
40-unit northern U.S. forest example.

4 Discussion

The process presented here, to the best of our 
knowledge, has not been presented previously 
in the literature. The method of randomly select-
ing a decision choice is not new, it is the main 
decision process in simulated annealing, thresh-
old accepting, Monte Carlo simulation, genetic 
algorithms, and other heuristics. How the result-
ing infeasibilities are mitigated is new, however. 
Here, we compile a list of the affected manage-
ment units, and based on their proximity to the 
original randomly selected management unit, the 
next best alternative for the affected unit(s) is 
chosen. This mitigation process could result in 
further infeasibilities, which are added to the list 
of affected management units, and the process 
continues until all infeasibilities have been elimi-
nated. Other work, as noted earlier in this paper, 
either avoids infeasible solutions, mitigates the 
immediate infeasibilities (not resulting in new 
infeasibilities), or penalizes the infeasibilities 
(hoping that they would be removed later in the 
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search). Based on our results, this new method 
shows promise for further examination in forest 
planning problems.

Our new heuristic uses both random and deter-
ministic changes to a developing forest plan, 
which is seldom found in a single iteration of a 
heuristic. In contrast to the sequential method 
presented in Falcão and Borges (2002), which 
also uses both random and deterministic changes 
to a developing forest plan, our heuristic makes 
the random change first, then uses deterministic 
changes to mitigate the infeasibilities. In Falcão 
and Borges (2002), deterministic changes are 
made first, then a set of random perturbations are 
made later. And while many units are assigned a 
new prescription during a single iteration when 
using the random changes, the changes are 
random, and all infeasibilities are penalized, not 
mitigated. Whereas in our new heuristic, during 
an iteration only the first choice is random, the 
others are deterministic, and feasibility is main-
tained at the end of the iteration.

The major advantage (i.e., the main benefit) of 
the new heuristic is that the number of param-

eters required by the user is limited to two: the 
total number of iterations to run the model, and 
the reversion rate. As Falcão and Borges (2002) 
have shown, and as we have shown here with 
threshold accepting and tabu search, some heu-
ristics require significant parameterization prior 
to being used. Further, a second benefit is that 
the parameters used in the new heuristic are more 
intuitive than the parameters required to utilize 
simulated annealing (initial temperature, anneal-
ing rate), threshold accepting (initial threshold, 
threshold change rate), tabu search (tabu state), 
and genetic algorithms (mutation rate). This 
addresses the notion presented in Pukkala and 
Kangas (1993) that a system should be easy to 
use and understand. While some may argue that 
each of the other heuristics can be modified from 
their basic form to revert to the best solution, it 
is not a standard practice. In addition, assessing 
the impact of changing the status of decision 
choices, and correcting the resulting infeasibili-
ties, is not a standard practice in other heuristics, 
where choices that lead to infeasibilities are either 
avoided, or the objective function is penalized. 

Fig. 13. The distribution of solutions generated for the new method, tabu search, and threshold 
accepting, using the 40-unit northern U.S. forest example.
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However, by approaching the development of 
solutions in the manner we have suggested, the 
search process is allowed to move more forcefully 
through the solution space, as compared to typical 
1-opt moves represented in simulated annealing, 
threshold accepting, and tabu search. The third 
advantage (and benefit) of the new heuristic is 
that the quality of solutions is better than other 
standard heuristics, and very close to integer pro-
gramming results, implying high quality solutions 
are generated. A final advantage (the final main 
benefit) is that one can be assured that a set of 
solutions generated from random starting points 
have a tighter distribution than solutions gener-
ated similarly with the other standard heuristics 
studied, implying higher consistency in solution 
values.

The main disadvantage of the new heuristic 
is the additional programming logic required to 
identify and track the infeasibilities that result as 
a management unit and harvest period is forced 
into the solution, and as subsequent alterations to 
the solution are made to correct the infeasibilities 
that arise. This process of tracking infeasibilities 
is not usually incorporated into any other heuristic 
(e.g., simulated annealing, threshold accepting, or 
tabu search) unless for applying penalties to the 
objective function. In addition, the order of the 
mitigation of infeasibilities in the new heuristic 
is based the proximity of infeasible management 
unit choices to the original randomly selected 
management unit chosen at each iteration. This 
requires knowledge of the location of each man-
agement unit (i.e., the centroid), which is infor-
mation that not commonly used in applications 
of other heuristics in forest planning.

Based on the results shown here, the utility of 
the new heuristic method for assisting with the 
development of spatial forest management plans 
show promise. Three additional areas of research 
associated with this search technique seem fruit-
ful. First, we have only described the performance 
of the heuristic for one type of forest planning 
problem: maximization of even-flow of timber 
volume subject to unit restriction, one-period 
green-up, adjacency constraints. There are numer-
ous other objectives that are common in forest 
planning, such as the maximization of net present 
value or some type of utility function. In addition, 
there are a multitude of constraints that could be 

associated with a forest planning problem, such 
as those that relate to wood flows of various 
products, cash flows, or habitat requirements. 
How well the process described here works with 
other forest planning problems is uncertain. One 
could speculate that as the number of constraints 
grows, the ability of the heuristic to mitigate the 
infeasibilities that arise may become cumber-
some. Additional testing of the heuristic would be 
needed to fully assess this assumption, however.

Second, additional research may be needed to 
assess the selection of the initial management 
unit and harvest period (the choice forced into 
the solution) to reflect choosing a cluster of man-
agement units over a period of iterations, rather 
than a random selection of a management unit at 
each iteration. The clustering could be modeled 
spatially, irregardless of the underlying manage-
ment units, or could be modeled with respect to 
those management unit and harvest choices that 
are more important to the planning problem. For 
example, perhaps the initial choices could be 
selected a cluster of older forested stands that are 
more likely to be harvested within the time frame 
of the resulting plan, rather than from a cluster of 
younger forested stands that may not contribute 
much to the objective. In addition, rather than 
selecting a single management unit and harvest 
period to begin each iteration of the model, mul-
tiple management units and harvest periods could 
be used to begin an iteration. 

We reiterate that what we have described is 
a new heuristic that requires both the spatial-
sprawling mitigation of infeasibilities and a 
periodic reversion to the best solution stored in 
memory. However, a third area of research could 
be aimed at incorporating the methods we have 
proposed here with other heuristics to form a 
hybrid search process. In addition, simply incor-
porating the reversion process into another type 
of heuristic may show promise for the genera-
tion of high quality forest plans. We leave these 
investigations, however, for the future and for 
other researchers.
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5 Conclusions
We feel that the new heuristic we have presented 
here has significant potential for use in spatially 
constrained planning problems, whether arising 
from the field of forest management or from 
other disciplines. The radiating manner in which 
infeasibilities, based on their proximity to the a 
randomly selected management unit, are miti-
gated make this process unique among search 
processes currently used to address forest plan-
ning problems. The fact that the mitigation proc-
ess could result in further infeasibilities, which 
must also be mitigated, until the solution is once 
again feasible, makes the search process unique. 
The ability to revert back to the best solution is a 
required parameter of the model, as no reversion 
seems to produce unacceptable final solutions. 
This, along with the number of iterations that the 
model is allowed to run, are the only considera-
tions required by a user of the model, making it 
more simplistic than most other heuristics com-
monly used in forest planning. 

The four main benefits of the new method, which 
suggest a contribution to science, are: 1) that higher 
quality solutions are generated, as compared to two 
other standard heuristics, 2) that a tighter distribution 
of solution values is generated, as evidenced by a 
relatively low standard deviation amongst sets of 
solutions, 3) that a smaller set of model parameters, 
as compared to other heuristics, which implies that 
the model needs less parameterization, and 4) that 
simpler and more intuitive parameters are used, 
as compared to other heuristics. What remains 
to be seen is whether the model can be applied 
successfully to the broader range of operations 
research problems. These include the travelling 
salesman problem and other types of machine 
scheduling problems, which also require integer 
decision variables, and forest planning problems 
with other objectives or a more comprehensive 
suite of constraints.
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