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Large area natural resource inventory programs typically report estimates for selected 
geographic areas such as states or provinces, counties, and municipalities. To increase the 
precision of estimates, inventory programs may use stratifi ed estimation, with classifi ed 
satellite imagery having been found to be an effi cient and effective basis for stratifi cation. 
For the benefi t of users who desire additional analyses, the inventory programs often make 
data and estimation procedures available via the Internet. For their own analyses, users 
frequently request access to stratifi cations used by the inventory programs. When data 
analysis is via the Internet and stratifi cations are based on classifi cations of even medium 
resolution satellite imagery, the memory requirements for storing the stratifi cations and 
the online time for processing them may be excessive. One solution is to summarize 
the stratifi cations at coarser spatial scales, thus reducing both storage requirements and 
processing time. If the bias and loss of precision resulting from using summaries of 
stratifi cations is acceptably small, then this approach is viable.

Methods were investigated for using summaries of stratifi cations that do not require 
storing and processing the entire pixel-level stratifi cations. Methods that summarized 
satellite image-based 30 m × 30 m pixel stratifi cations at spatial scales up to 2400 ha 
produced stratifi ed estimates of the mean that were generally within 5-percent of estimates 
for the same areas obtained using the pixel stratifi cations. In addition, stratifi ed estimates 
of variances using summarized stratifi cations realized nearly all the gain in precision that 
was obtained with the underlying pixel stratifi cations.
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1 Introduction
National and large area natural resource inven-
tory programs report design-based estimates of 
attributes based on measurements at sampling 
locations for selected geographic areas such as 
states or provinces, counties, and municipalities. 
Because users frequently desire additional analyses 
using the same data, the programs may provide 
public access to data via the Internet, an increas-
ingly popular and useful medium for doing so. For 
example, in 2003, the Internet data access site of 
the Forest Inventory and Analysis (FIA) program of 
the Forest Service, U.S. Department of Agriculture 
(USDA) received approximately 15 000 requests 
for data retrievals and analyses. Other inventory 
programs that make data available via the Internet 
include the National Resource Inventory (NRI) of 
the USDA Natural Resource Conservation Serv-
ice, the national forest inventory of Canada, and 
the national forest inventories of several European 
countries (e.g., Finland, France). 

When data requests do not include exact sampling 
locations, then there are few constraints on data 
access. However, if exact locations are required for 
a user’s area of interest (AOI), then several policy 
issues must be considered. First, revealing exact 
locations may entice users to visit the locations 
to obtain additional information, thus artifi cially 
disturbing vegetation on the sampling location. If 
permanent inventory plots are used, this distur-
bance contributes to inventory estimation bias. 
Second, sampling locations may be located on 
private land, and the land owners, while permit-
ting access by inventory crews, generally prohibit 
additional access. In these situations, user visits to 
sampling locations may jeopardize future access 
by the inventory crews. Third, revealing the exact 
sampling locations may violate constraints on the 
release of proprietary information. Thus, if exact 
sampling locations are required for a user’s data 
request, policy constraints may require that the 
analysis be completed online in a manner that 
does not disclose the locations.

For many inventory programs, the combination 
of budgetary constraints and the natural variabil-
ity among plots prohibits sample sizes suffi cient 
to satisfy precision standards unless the estima-
tion process is enhanced using ancillary data. One 
approach to enhancing the estimation process is to 

use stratifi ed estimation with stratifi cations based 
on classifi ed satellite imagery (McRoberts et al. 
2002). Stratifi ed estimation requires that two tasks 
be accomplished: each sampling location must 
be assigned to a stratum, and stratum weights 
must be calculated as the proportions of the AOI 
in strata. When stratifi cations are derived from 
classifi ed satellite imagery, sampling locations 
are assigned to strata on the basis of the stratum 
assignments of their associated satellite image 
pixels, and stratum weights are calculated as the 
proportions of image pixels assigned to strata. 
Users who desire the precision gain associated 
with stratifi ed estimation but do not have access 
to exact sampling locations have two options: 
they may use their own stratifi cations and assign 
sampling locations to strata using approximate 
coordinates provided by the inventory program, or 
they may accept online analyses using the inven-
tory program’s stratifi cation and its assignment of 
sampling locations to strata using exact coordi-
nates. Users usually prefer the second option. 

If storage space and processing time were not 
constraints for online analyses, the inventory pro-
grams could provide access to their entire pixel-
level stratifi cations. However, because storage 
space and online processing time are constraints, 
this approach is not feasible. Therefore, methods 
for making the advantages of the stratifi cations 
available to users via online analyses without 
requiring inordinate amounts of storage space and 
intolerable processing delays merit investigation. 
The objective of this study was to compare strati-
fi ed estimates of forest attributes obtained using 
pixel-level stratifi cations with stratifi ed estimates 
obtained using summaries of those stratifi cations. 
Spatial summarizations of pixel classifi cations 
and predictions are also useful for facilitating 
online, map-based estimation of forest attribute 
estimates obtained by aggregating individual pixel 
classifi cations or predictions for selected AOIs.

2 Methods

2.1 Data

Comparisons of stratifi ed estimates obtained with 
pixel stratifi cations and summaries of those strati-



561

McRoberts, Wendt and Liknes Stratifi ed Estimation of Forest Inventory Variables Using Spatially Summarized Stratifi cations

fi cations used 1998 FIA data for the State of Indi-
ana, USA. The FIA sampling design for Indiana 
is based on an array of regular hexagons cover-
ing the conterminous USA (Fig. 1) (McRoberts 
1999). Each hexagon includes 2402.8 ha and con-
tains at least one permanent sampling location. 
This array of sampling locations provides com-
plete, consistent coverage of all lands in the USA. 
To facilitate intensifi cation of the sample for some 
states, the hexagons have been subdivided into 
three parallelograms denoted sub-hexagons. Sam-
pling locations for the national FIA program are 
denoted plots and consist of four 7.31-m radius 
circular subplots confi gured as a central subplot 
and three peripheral subplots located at distances 
of 36.58 m and azimuths of 0°, 120°, and 240° 
from the centre of the central subplot. Among the 
observations FIA fi eld crews obtain are individual 
tree diameters and heights and the proportions 
of subplots that satisfy specifi c ground land use 
conditions. The tree diameter and height observa-
tions are used as predictor variables for calculat-
ing model predictions of individual tree volumes. 
Volume per unit area is calculated for each plot by 
adding the volume predictions over all trees on a 
plot and scaling the sum to a per unit area basis. 
Forest land proportion is obtained for each plot by 

aggregating the ground land use conditions into 
forest and non-forest categories. Analyses for this 
study focused on stratifi ed estimates of means and 
standard errors for tree volume per unit area and 
proportion forest land. 

The National Land Cover Data (NLCD) is a 
satellite image-based classifi cation that has been 
used by the FIA program as a basis for strati-
fi cations. The NLCD, a digital product of the 
Multi-Resolution Land Characterization (MRLC) 
Consortium (Loveland and Shaw 1996), is a land 
cover map of the conterminous USA consisting 
of the assignment of each 30 m × 30 m pixel to 
one of 21 land cover classes. The classifi cation 
was produced by the U.S. Geological Survey and 
was based on nominal 1992 Landsat 5 Thematic 
Mapper (TM) satellite imagery and a variety of 
ancillary data (Vogelmann et al. 2001).

2.2 Stratifi ed Estimation

The regional FIA program of the North Central 
Research Station, USDA Forest Service, derives 
stratifi cations from the NLCD (McRoberts et 
al. 2002). First, all the NLCD forest classes are 
aggregated into a forest stratum, and the remain-

Fig. 1. Indiana, USA counties and FIA hexagons.
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ing classes are aggregated into a non-forest stra-
tum. Second, two additional strata are created 
by subdividing the forest stratum into forest and 
forest edge strata and by subdividing the non-
forest stratum into non-forest and non-forest edge 
strata. The edge strata are created by assign-
ing pixels in the original forest stratum within 
two pixels of the forest/non-forest boundary to 
the forest edge stratum and pixels in the origi-
nal non-forest stratum within two pixels of the 
forest/non-forest boundary to the non-forest edge 
stratum. The rationale for this approach to strati-
fi cation is discussed in detail by McRoberts et al. 
(2002). A minimum of fi ve plots per stratum is 
considered necessary to obtain reliable stratifi ed 
estimates. If fewer than fi ve plots are assigned to 
a stratum, then the forest and forest edge strata 
are collapsed into a single forest stratum and/or 
the non-forest and non-forest edge strata are col-
lapsed into a single non-forest stratum. If either 
collapsed stratum has fewer than fi ve plots, then 
stratifi ed estimation is deemed inappropriate for 
the AOI. This approach to stratifi cation yields 
stratifi ed variance estimates for proportion forest 

land that are smaller by factors as great as 4.0 
than corresponding estimates calculated under 
the assumption of simple random sampling (SRS) 
(McRoberts et al. 2002).

The national FIA program assigns plots rather 
than subplots to strata to avoid the mathemati-
cal complexities necessary to accommodate the 
spatial correlations among subplot observations 
when calculating variances. Nevertheless, assign-
ing FIA plots to strata is not trivial, because each 
plot is covered by multiple 30 m × 30 m pixels. 
For this study, each plot was assigned to the stra-
tum of the pixel corresponding to the plot centre. 
Stratum weights were then calculated as the pro-
portions by strata of pixels with centres in the 
AOI. This stratifi cation method was designated 
the pixel method and was the standard for com-pixel method and was the standard for com-pixel
parison for other methods (Fig. 2).

Stratifi ed estimates of means and variances 
of means were obtained using formulae from 
Cochran (1977): 
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These formulae ignore fi nite population correc-
tion factors. 

Fig. 2. Pixel stratifi cation method for Scott County, 
Indiana, USA.
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2.3 Stratifi ed Estimation with Estimated 
Stratum Weights

Stratum weights obtained from classifi ed satellite 
imagery are only estimates of the true weights 
because imagery at all resolutions aggregates 
forest attribute information at a coarser spatial 
scale than it naturally occurs. Use of estimated 
rather than known weights contributes to bias 
in the stratifi ed estimates of the mean and to 
increases in the stratifi ed variance estimates. 
Cochran (1977) provides a formula for the bias 
which, when substituting sample stratum means, 
{ }{ }{ }x{ }h{ }h{ }, for population stratum means, { }{ }X{ }h{ }h{ }, gives, 
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where {wh} are the estimated stratum weights. 
The effects of estimated stratum weights on strati-
fi ed variances may be evaluated by considering 
the problem as one of double sampling for strati-
fi cation with the satellite image pixels as the fi rst 
phase sample and the plots as the second phase 
sample. Cochran (1977) provides the following 
formula for the stratifi ed variance when using 
estimated stratum weights, 
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where N is the population size and N is the population size and N nʹ is the size 
of the fi rst sample. When using classifi ed satellite 
imagery as the basis for stratifi cations, nʹ is the 
number of pixels with centres in the AOI. For a 
circle of radius 15 km, nʹ = 785 000; for the small-
est Indiana county, nʹ = 473 000; and for a user 
AOI with two strata, fi ve plots per stratum, one 
plot per hexagon, and 26 000 pixels per hexagon, 
nʹ > 250 000. Thus, 
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When compared to [2], [5] reveals that for nʹ 
large, the differences between known and esti-
mated stratum weights account for all but negli-
gible differences in variance estimates. For this 
study, stratum weights obtained using the classi-
fi ed satellite imagery are the standard for com-
parison and are assumed to be the true stratum 
weights, {WhWhW }, and stratifi ed estimates using these 
weights are assumed to be unbiased.

2.4 Stratifi ed Estimation with Stratifi cation 
Summaries

Stratifi cations were summarized by counting the 
number of pixels by stratum for summary units of 
a variety of spatial scales. Beginning with an arbi-
trarily selected starting point, the state of Indiana 
was tesselated by a set of non-overlapping squares 
with 1-km sidelengths. The numbers of pixels with 
centres in each square kilometre were counted by 
stratum and retained. Stratifi cations were summa-
rized at the sub-hexagon and hexagon level in the 
same manner as for square kilometres. 

To obtain stratifi ed estimates with stratifi cation 
summaries, the same two stratifi cation tasks must 
be accomplished: plots must be assigned to strata, 
and stratum weights must be calculated. The fi rst 
task is easily accomplished by using the same 
stratum assignments as for the pixel stratifi ca-
tions. Several methods were used to accomplish 
the second task. One method was to select the 
summary units with centres in the AOI, add the 
pixel counts by stratum over these summary units, 
and calculate stratum weights as the proportions 
of pixels assigned to strata. This method, based 
on including or excluding a summary unit’s pixel 
counts in the overall total on the basis of whether 
the centre of the summary unit was inside the AOI, 
was designated the centre estimation method and 
was used in combination with the square kilometre 
(100 ha), sub-hexagon (~8000 ha), and hexagon 
(~2400 ha) summary units (Fig. 3).

Pixel counts by stratum obtained using the 
centre method with stratifi cation summaries will 
not be the same as those obtained using the pixel 
method, because the exterior boundaries of the 
spatially aggregated summary units will not coin-
cide exactly with the boundaries of the AOI. Two 
categories of summary units are distinguished: 

1
0

′
≈

n
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Fig. 3. a) Square kilometre summary unit with centre 
estimation method for Scott County, Indiana, USA. 
All pixels are counted for square kilometres with 
centres in the county.
b) Sub-hexagon summary unit with centre estima-
tion method for Scott County, Indiana, USA. All 
pixels are counted for sub-hexagons with centres 
in the county.
c) Hexagon summary unit with centre estima-
tion method for Scott County, Indiana, USA. All 
pixels are counted for hexagons with centres in 
the county.

interior summary units are wholly within the AOI, 
while boundary summary units are only partially 
within the AOI. Boundary units cause two kinds 
of errors in pixel counts for an AOI. Boundary 

units with centres inside the AOI cause pixel 
counts to include some pixels outside the AOI, 
and boundary units with centres outside the AOI 
cause pixel counts to exclude some pixels inside 
the AOI. However, stratifi ed estimation does not 
require pixel counts by stratum but rather stra-
tum weights that are proportions of pixel counts 
by stratum. Thus, even though some pixels are 
erroneously included and some are erroneously 
excluded in the pixel counts by stratum over 
summary units, the stratum weights may still be 
approximately correct.

a b

c



565

McRoberts, Wendt and Liknes Stratifi ed Estimation of Forest Inventory Variables Using Spatially Summarized Stratifi cations

Two additional methods for summarizing strati-
fi cations were investigated. The fi rst included 
pixel counts for boundary summary units on the 
basis of whether any part of a unit was inside 
the AOI. This method was designated the exte-
rior estimation method, because the boundaries 
of the spatially aggregated summary units coin-
cided with or were exterior to the boundaries of 
the AOI. The exterior method counted all pixels 
in a boundary unit, regardless of whether the unit 
centre was inside or outside the AOI and was used 
only in combination with hexagon summary units 
(Fig. 4). The corresponding interior estimation 
method was not investigated because of the risk of 
excluding so many pixels that the stratum weights 
would not adequately represent the AOI. This risk 
is particularly acute for AOIs with small, frag-
mented components for which the ratio of interior 
to boundary summary units is small.

The second additional summary method was 
designed to compensate for pixel inclusion and 
exclusion errors. With this method, the total pixel 

counts by stratum for boundary summary units 
were adjusted by multiplying them by the propor-
tion of the unit in the AOI. The additional compu-
tation necessary to determine the proportion for 
each boundary unit may produce more accurate 
pixel counts, more accurate stratum weights, and 
hence, more accurate stratifi ed estimates. This 
method was designated the proportional estima-
tion method and was used only in combination 
with hexagon summary units (Fig. 5). The propor-
tional estimation method should be distinguished 
from the method that fi rst determines the portion 
of the unit in the AOI and then counts only those 
pixels in the selected portion. Although this is 
exactly the method that would be used under 
ideal conditions, it is also exactly the storage- and 
processing-intensive method for which this study 
sought alternatives.

Fig. 4. Hexagon summary unit with exterior estimation 
method for Scott County, Indiana, USA. All pixels 
are counted for hexagons with any portion of the 
hexagon in the county.

Fig. 5. Hexagon summary unit with proportional esti-
mation method for Scott County, Indiana, USA. 
All pixels are counted for hexagons completely in 
the county (interior hexagons). For hexagons only 
partially in the county (boundary hexagons), all 
pixels are counted, and counts are multiplied by the 
proportion of the hexagon in the county.
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2.5 Interpreting Estimates Obtained with 
Stratifi cation Summaries

Estimates obtained with stratifi cation summaries 
for an AOI may be interpreted in two ways: 1) as 
estimates obtained with an approximate stratifi ca-
tion for the exact AOI, or 2) as estimates obtained 
with an exact stratifi cation for the approximate 
AOI defi ned by the boundaries of the selected 
summary units. If bias in stratifi ed estimates due 
to using an approximate stratifi cation is small 
and the gain in precision realized from stratifi ed 
estimation is acceptable, then the fi rst interpreta-
tion is preferable because the estimates are for the 
exact AOI. The specifi c objectives of the study 
were to estimate the bias and the precision loss 
for estimates obtained using stratifi cation sum-
maries. If the bias is too great, users may accept 
the second interpretation, or if there is too much 
loss in precision, they may revert to estimation 
under the SRS assumption.

2.6 Analyses

Two sets of analyses were used to compare strati-
fi ed estimates obtained using the pixel method to 
estimates obtained using the stratifi cation summary 
methods. For both sets of analyses, the compari-
sons focused on estimates of means and standard 
errors of volume per unit area and proportion forest 
land for selected areas in the State of Indiana, USA 
(Fig. 1). The fi rst set of analyses evaluated differ-
ences between estimates obtained using the pixel 
stratifi cations and estimates obtained using stratifi -
cations summarized at the spatial scales of square 
kilometre, sub-hexagon, and hexagon for Indi-
ana counties. For each Indiana county for which 
there were at least fi ve plots in at least each of the 
two collapsed forest and non-forest strata, strati-
fi ed estimates of the mean were calculated for the 
pixel method using [1] and for each summarization 
method using [1], except that estimated stratum 
weights obtained from stratifi cation summaries 
were used. Estimates of the variances were calcu-
lated for each county for the pixel method using 
[2] and for each summarization method using [5]. 
In addition, estimates of the means and standard 
errors were calculated under the SRS assumption, 
and bias was estimated as the difference between 

the stratifi ed estimates of the mean obtained using 
the pixel method and the summarization methods. 
Finally, for each stratifi cation summary method, 
four comparative measures were calculated: 1) the 
ratio, RBmn, of the bias and the stratifi ed mean 
calculated using [1]; 2) the ratio, RBSE, of the bias 
and the estimate of the stratifi ed standard error for 
the pixel method; 3) the ratio, RV, of the stratifi ed 
variance estimate obtained with the pixel method 
and the estimate obtained with the stratifi cation 
summary method; and 4) relative effi ciency, RE, 
calculated as the ratio of the variance of the mean 
obtained under the SRS assumption and the strati-
fi ed variance. 

The second set of analyses compared methods 
for areas enclosed in two sets of concentric cir-
cles of radii 16.09 km (10 mi), 32.19 km (20 mi), 
48.28 km (30 mi), 64.37 km (40 mi), and 80.47 
km (50 mi) (Fig. 6). One set of circular areas 
had its centre in an area of northern Indiana with 
sparse, fragmented forest, while the other set had 
its centre in a more heavily forested area in south-
ern Indiana that includes the Hoosier National 
Forest (HNF). The purpose of these analyses was 
to compare estimates of the means and standard 

Fig. 6. User-defi ned circular areas.
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errors for areas that mimic user-defi ned AOIs. 
Circular AOIs of radius 16.09 km include 81 332 
ha, and with a sampling intensity of one plot for 
every 2402.8 ha, were expected to include approx-
imately 34 plots. Assuming moderate variability 
in the number of plots per stratum, circular areas 
of radius 16.09 km were about the smallest areas 
that could be expected to have fi ve plots assigned 
to each of the four strata. The same estimates and 
measures were calculated for the circular areas as 
were calculated for the counties.

The assumption when using stratifi cation sum-
maries is that stratum weights obtained from the 
summaries will be similar to stratum weights 
obtained from the pixel stratifi cations. Similar-
ity in stratum weights was expected to be related 
to similarity between an AOI and the analytical 
area represented by the spatial aggregation of the 
AOI’s stratifi cation summary units. For the hexa-
gon-exterior method, the boundary of an analyti-
cal area was the extension of the AOI boundary to 
the exterior boundaries of any hexagons through 
which the boundary of the AOI passed. For the 
hexagon-centre method, the boundary of the ana-
lytical area was the extension of the AOI bound-
ary to the exterior boundaries of hexagons with 
centres in the AOI and the contraction of the AOI 
boundary to the interior boundaries of hexagons 
with centres outside the AOI. Pixel stratifi cations 
and stratifi cation summaries are exactly the same 
for interior summarization units and differ only 
for boundary summary units. Thus, one measure 
of the potential for differences in stratum weights 
for an AOI and corresponding analytical area is 
the ratio of interior to boundary summary units for 
the AOI. Large ratios indicate that stratifi ed esti-
mates obtained with the pixel stratifi cations and 
the stratifi cation summaries would be expected to 
be similar; small ratios indicate greater potential 
for the two sets of stratifi ed estimates to be dis-
similar. Small ratios indicate only a potential for 
dissimilarity, because if the proportions of pixels 
by stratum in the boundary unit within the AOI are 
similar to the proportions for the entire boundary 
unit, then the stratum weights and stratifi ed esti-
mates would still be expected to be similar. 

The relationship between the ratio of interior 
to boundary hexagons and the bias in stratifi ed 
estimates of the mean was analysed by graph-
ing absolute values of RBmn obtained using the 

hexagon-centre method versus ratios of interior 
to boundary hexagons. The graphs included one 
data point for each Indiana county, one point for 
each of the northern and southern circular areas, 
and for one point for HNF. HNF consists of the 
aggregation of many relatively small, non-con-
tiguous fragments of heavily forested areas in 
south central Indiana (Fig. 7) and is the kind of 
area for which stratifi cation summaries may not 
produce acceptable estimates for two reasons. 
First, due to land management practices, the por-
tions of hexagons within HNF are expected to be 
heavily forested, while the portions outside HNF 
may or may not be forested. Second, because 
the contiguous fragments of HNF are relatively 
small, the ratio of interior to boundary hexagons 

Fig. 7. Hoosier National Forest, Indiana, USA (straight 
lines are administrative boundaries; shaded areas 
are actual ownership).
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was also expected to be small. Thus, the ratios of 
interior to boundary hexagons were expected to 
range from very small for HNF to quite large for 
the 80.47-km circular areas.

3 Results

3.1 County-level Analyses

Seven Indiana counties were eliminated from 
the analyses as a result of the requirement that 
at least fi ve plots be assigned to at least each of 
the two collapsed forest and non-forest strata; 
85 counties remained. The analyses indicated 
that stratifi ed estimates of both means and vari-
ances obtained using the stratifi cations summa-
rized at the spatial scale of square kilometre, 
sub-hexagon, and hexagon differed little from 
the estimates obtained using the pixel method 
(Tables 1a and 1b). As expected, differences were 
less for smaller summary units. Among the three 
methods using hexagon summary units, results 
for the hexagon-exterior method were inferior, 
while results for the hexagon-centre and hexa-
gon-proportional methods were similar to each 

other. RE values indicated that the stratifi cations 
produced substantial gains in precision, averag-
ing nearly 2.0 for volume per unit area and more 
than 3.0 for proportion forest land. The average 
RE for proportion forest area was slightly better 
than the RE obtained by McRoberts et al. (2002). 
Counties for which RE < 1.0 were characterized 
by small estimates of proportion forest land and 
were relatively few in number, 16 for volume 
per unit area and six for proportion forest land. 
Calculation of estimates under the SRS assump-
tion is an easy task and permits these counties 
to be readily identifi ed. Little precision was lost 
with the stratifi cation summaries compared to the 
pixel stratifi cations. Excluding the inferior hexa-
gon-exterior method, the variances were always 
within ±10 percent of the variance obtained with 
the pixel method. Because of its inferiority rela-
tive to the other two hexagon methods, the hexa-
gon-exterior method was not evaluated further. 
The hexagon-centre and the hexagon-proportional 
methods produced similar results, but the hexa-
gon-centre method was preferable because of its 
less intense processing requirements. Therefore, 
only the square kilometre, sub-hexagon, and hex-
agon summary units with the centre method were 
evaluated further.

Table 1a. Comparisons of stratifi ed estimates of volume per unit area for Indiana counties.

Statistic Stratifi cation method

 Pixel Square kilometre Sub-hexagon Hexagon

 Centre Proportional Exterior

Estimated bias relative to pixel method mean (RBmn)
Minimum  –0.02 –0.04 –0.08 –0.08 –0.12
Mean  0.00 0.00 0.00 0.00 0.02
Maximum  0.02 0.03 0.06 0.08 0.29

Estimated bias relative to pixel method standard error (RBSE)SE)SE
Minimum  –0.09 –0.14 –0.36 –0.36 –1.00
Mean  0.00 –0.01 –0.02 –0.01 0.06
Maximum  0.05 0.15 0.23 0.24 1.36

Ratio of variances (RV)
Minimum  0.98 0.96 0.93 0.92 0.87
Mean  1.00 1.00 1.00 1.00 1.01
Maximum  1.02 1.03 1.06 1.09 1.29

Relative effi ciency (RE)
Minimum 0.56 0.56 0.54 0.50 0.56 0.61
Mean 1.98 1.98 1.98 1.99 1.97 1.90
Maximum 14.33 14.39 13.58 13.85 13.08 8.68
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3.2 Analyses for Circular AOIs

The second set of analyses was based on simu-
lated user-defi ned AOIs. Results for the square 
kilometre, sub-hexagon, and hexagon summary 
units, all of which used the centre method, were 
similar to each other and to results for the pixel 
method which was the standard for comparison 
(Tables 2a and 2b). Results for smaller summary 
units were slightly more similar to the results for 
the pixel method. These similarities held for esti-
mates of both means and standard errors.

3.3 Interior/ Boundary Hexagon Analyses 

For the hexagon-centre method, graphs of RBmn
versus the ratio of interior to boundary hexagons 
(Fig. 8) indicated that as the ratio increased, 
RBmn decreased. However, the graphs also indi-
cated considerable variability in the relationship. 
For volume per unit area the ratio of interior to 
boundary hexagons for the circular areas ranged 
from slightly less than 0.89 to approximately 
6.63, while RBmn ranged from 0.00 to 0.02. For 
the Indiana counties, the ratio ranged from 0.20 

to approximately 1.24, with corresponding range 
in RBmn of 0.00 to 0.08, although the majority of 
RBmn observations were less than 0.03. The wide 
range of the RBmn observations illustrated that 

Table 1b. Comparisons of stratifi ed estimates of proportion forest land for Indiana counties.

Statistic Stratifi cation method

 Pixel Square kilometre Sub-hexagon Hexagon

 Centre Proportional Exterior

Estimated bias relative to pixel method mean (RBmn)
Minimum  –0.02 –0.04 –0.07 –0.08 –0.13
Mean  0.00 0.00 0.00 0.00 0.02
Maximum  0.02 0.03 0.06 0.08 0.29

Estimated bias relative to pixel method standard error (RBSE)SE)SE
Minimum  –0.13 –0.25 –0.59 –0.63 –1.02
Mean  0.00 –0.02 –0.05 –0.02 0.10
Maximum  0.15 0.19 0.26 0.36 2.20

Ratio of variances (RV)
Minimum  0.98 0.97 0.94 0.93 0.89
Mean  1.00 1.00 1.00 1.00 1.01
Maximum  1.01 1.03 1.06 1.04 1.21

Relative effi ciency (RE)
Minimum 0.64 0.64 0.62 0.57 0.68 0.74
Mean 3.10 3.10 3.12 3.13 3.11 3.06
Maximum 22.87 22.37 23.73 23.87 22.69 24.05

Fig. 8. Absolute value of ratio of estimated bias and 
pixel method stratifi ed estimate of the mean versus 
ratio of interior hexagons to boundary hexagons for 
volume per unit area.
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when the ratio of interior to exterior hexagons 
was in the 0.20 to 1.24 range, RBmn-vol could 
be as great as 0.08 but that this maximum was 
not always realized. The two circular areas with 
radius 16.09 km had ratios of 0.89 and 1.00, well 
within the upper range of the county ratios, and 
the corresponding RBmn observations were less 
than 0.01 and 0.03, well within the lower range 
of RBmn for the counties. These results suggested 
continuity in the relationship between the ratio of 
interior to boundary hexagons and RBmn, despite 
differences in the county and circular areas that 
produced the data points. The ratio of interior to 
boundary hexagons for HNF was zero; there were 
no interior hexagons for HNF. For HNF, RBmn

was 0.06, well within the upper range of values 
of RBmn for the counties, again suggesting conti-
nuity. Although considerable variability in RBmn
would be expected for other areas similar to HNF, 
this single point illustrated that even with a ratio 
of zero, RBmn may be relatively small. However, 
a wise precaution would be to evaluate such situa-
tions on a case-by-case basis. Nevertheless, ratios 
of interior to boundary hexagons that were greater 
than 0.25, nearly always resulted in RBmn < 0.05. 
Slightly better results were obtained for propor-
tion forest land.

Table 2a. Stratifi ed estimates of volume per unit area (m3/ha) for Indiana circular areas. 

Stratifi cation method Circle radius

 16.09 km (10 mi) 48.28 km (30 mi) 80.47 km (50 mi)

 Mean SE RBn RE Mean SE RBmn RE Mean SE RBmn RE

Northern area          
Pixel 9.13 2.76 0.00 1.94 12.20 1.13 0.00 2.85 12.02 0.77 0.00 1.84
Square km 9.12 2.75 0.00 1.95 12.20 1.13 0.00 2.85 12.02 0.77 0.00 1.84
Sub-hexagon 9.26 2.78 0.01 1.92 12.12 1.12 –0.01 1.88 12.02 0.77 0.00 1.84
Hexagon-centre 9.37 2.80 0.03 1.88 12.12 1.12 –0.01 2.87 12.06 0.77 0.00 1.84

Southern area          
Pixel 117.4 7.53 0.00 2.16 57.82 2.21 0.00 2.30 45.56 1.28 0.00 2.24
Square km 117.3 7.53 0.00 2.16 57.82 2.21 0.00 2.30 45.57 1.28 0.00 2.24
Sub-hexagon 116.5 7.51 –0.01 2.19 57.61 2.20 0.00 2.32 45.61 1.28 0.00 2.23
Hexagon-centre 117.5 7.44 0.00 2.15 57.93 2.21 0.00 2.30 45.57 1.28 0.00 2.23

Table 2b. Stratifi ed estimates of proportion forest land for Indiana circular areas. 

Stratifi cation method Circle radius

 16.09 km (10 mi) 48.28 km (30 mi) 80.47 km (50 mi)

 Mean SE RBmn RE Mean SE RBmn RE Mean SE RBmn RE

Northern area          
Pixel 0.10 0.03 0.00 1.84 0.10 0.01 0.00 3.78 0.10 0.01 0.00 2.39
Square km 0.10 0.03 0.00 1.84 0.01 0.01 0.00 3.77 0.10 0.01 0.00 2.40
Sub-hexagon 0.10 0.03 0.01 1.83 0.10 0.01 –0.01 3.80 0.10 0.01 0.00 2.39
Hexagon-centre 0.10 0.03 0.02 1.81 0.10 0.01 –0.01 3.79 0.10 0.01 0.00 2.38

Southern area          
Pixel 0.81 0.03 0.00 1.59 0.41 0.01 0.00 3.33 0.33 0.01 0.00 3.43
Square km 0.81 0.03 0.00 1.59 0.41 0.11 0.00 3.33 0.33 0.01 0.01 3.43
Sub-hexagon 0.81 0.03 –0.01 1.58 0.41 0.01 0.00 3.36 0.33 0.01 0.06 3.43
Hexagon-centre 0.81 0.03 0.00 1.68 0.41 0.01 0.00 3.33 0.33 0.01 0.02 3.43
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4 Conclusions
Three conclusions may be drawn from this study. 
First, on average, results obtained with the square 
kilometre, sub-hexagon, and hexagon summary 
units with the centre method were all acceptable 
approximations to the results obtained with the 
pixel stratifi cations which were the standard for 
comparison. Second, the hexagon-centre method 
was preferred overall: it produced satisfactory 
results relative to the standard for comparison, 
the pixel method; it has direct linkages to the 
FIA national sampling design; and it requires 
the least storage and processing time of all the 
stratifi cation summary methods considered. The 
quality of results for the hexagon-centre method 
suggests that it should be investigated in other 
areas with different topographies, tree species, 
and forest management practices. Third, ratios of 
interior to boundary hexagons greater than 0.25 
nearly always resulted in differences in estimates 
relative to the mean of volume per unit area and 
proportion forest land that were smaller in abso-
lute value than 0.05. Differences this small will 
generally be considered an acceptable price to pay 
to realize virtually all the gain in precision that the 
underlying pixel stratifi cation provides.

The necessity of summarizing stratifi cations 
may be alleviated as the costs of computer storage 
and processing decrease. However, the tendency 
toward using fi ner resolution stratifi cations as they 
become available may exacerbate the problem. 
Regardless of whether the problem is alleviated 
or exacerbated, it is worth noting the difference 
in storage requirements for the underlying strati-
fi cation and a summary of the stratifi cation at 
the hexagon level. For hexagons of 2402.8 ha, 
the storage requirement for the underlying strati-
fi cation is one cell for each of the 26 696 30 m ×
30 m pixels. When summarizing a stratifi cation 
at the hexagon level, four cells are required, one 
for each of the four stratum pixel counts. The 
magnitude of this ratio, 26 696:4, which is also an 
approximation of the factor by which computer 
processing requirements may be reduced, more 
than justifi es proportional differences in estimates 
of 0.05 or less when the benefi ts of stratifi cation 
are also realized.
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