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This paper presents the principles of a unified data processing system suitable for derivation
of the most variables of interest in forest mensuration. The precedence (succedence) relations
between the tree and forest stand variables are analyzed and a blockwise simultaneous recursive
multi-equation model is suggested to describe these relations. Regression analysis is used in the
estimation of the model parameters and Taylor’s series and Monte Carlo simulation are avail-

able in the derivation of the unbiased results.

1. INTRODUCTION

The purpose of data processing in forest
mensuration is to transform the original
measurements into a form more applicable
to forestry decision making. For instance,
tree diameter and height measurements are
transformed into volumes and single tree
parameters into growing stock parameters.
Before the introduction of electronic
computers, the data processing of forest
measurements was necessarily very simple.
Quite often the measurements were designed
in such a way that only very few calcula-
tions were needed. In the visual estimation
of stands, for example, all the growing
stock characteristics were estimated di-
rectly in the forest. The data processing
only consisted of the multiplication of the
estimated per hectare values by the areas
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of the stands, and the summation of the
results.

In the first phase of the introduction of
computers, the traditional calculations were
simply transferred to the computers. How-
ever, it was soon discovered that data
processing capacity of the computers not
only facilitated traditional calculations but
made new calculation procedures feasible.
These new computational procedures have
made it possible to obtain more information
from the traditionally measured forest data,
and computational difficulties no longer
constrain the development of forest meas-
urement techniques.

The origin of this paper lies in the belief
that the potentials of the computer are still
not fully exploited in the data processing

of forest measurements. Especially, the
exploitation of data measured earlier is
often insufficient. Further considering the
fast development of the computers, it is not
unrealistic to develop methods which com-
putationally are today still too time con-
suming.

The first task in practical forest men-
suration work is to analyze what kind of
information is needed. Thereafter, the
measurement and data processing system
has to be chosen which provides the deci-
sion maker with this information at least
cost. In this paper the main interest is
focussed on the data processing part of the
information system. However, the study
does not limit itself to producing some
particular information but tries to present
principles of a unified data processing system
suitable for most if not all tasks in forest
mensuration.

2. THEORETICAL

21. Systems analysis

LANGEFORS (1973, p. 35) defines a system
as a collection of objects, called parts,
which are correlated in some way. Accord-
ing to this definition almost anything can
be a system. However, the concept »system»
is mainly reserved to describe the whole of
a system and the relations between the parts
of a system, but not the properties of the
parts of the system.

The unification of the data processing
system tries to serve several purposes: (1)
To avoid repetative work in the derivation
of results from different measurements by
using common parts of the data processing
system whenever possible. (2) To use the
existing information as efficiently as possible
whether it is in the form of measured data
or mathematical models. (3) To avoid
internally contradictory results due to the
separate estimation of different tree and
growing stock parameters.

The scope of this paper is so wide that
a complete solution cannot be given. The
main purpose is to introduce the under-
lying theory and present some examples of
the possible practical applications.

The manuscript has been read by prof. Simo
Poso. His criticism has been valuable and is
acknowledged.

BACKGROUND

Systems can be simply described dia-
grammatically. The nodes represent the
objects of the system and the relations
between these objects are described by
arrows, Fig. 2.1.

Fig. 2.1. shows that certain nodes of
the graph are precedents of other nodes.
This relation is called a precendence relation.
Respectively, some nodes are succedents
of others. This relation is called the succed-
ence relation. The precedence (succedence)

succedents
A B CDEF
A
B |1
precedents-C 1
D |1
E 11
F 1 1

Fig. 2.1. Diagrammatic and matrix representations of a system.
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relation can be described also by a preced-
ence matrix.

Precedence matrices are useful in the
description of a large system, because they
make possible the algebraic analysis of the
system. Thus, for instance, the precedents
of the precedents can be determined by
multiplying the matrix by itself.

An information system is a system of
information sets needed for decision and
signalling in a larger system called the
object system (LANGErFors 1973, p. 195).
The object system can be an organization
or enterprise, for instance. Data and
algorithms are the central concepts in the
description of information systems. The
value of a variable, a vector or an obser-
vation matrix are examples of data. Also
the precedence matrices belong to the data.
The algorithms operate on the data to
produce new sets of data. Thus, for
example, tree volume is calculated from
tree measurements by such algorithms as
volume functions.

An example of an information system
and the corresponding precedence matrix
are given in Fig. 2.2.

The relevance of any information in the
information system can be determined by
precedence analysis. The precedence anal-
ysis also helps to find the most effective
methods to derive certain information.

T

A,B,C,D,E,F = data

Fig. 2.2. Example of an information system.
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22. Models

221. Classification of the models

It is possible to define model as anything
that represents something else (KLEIJNEN
1974, p. 3). In the present paper only
abstract models consisting of mathematical
symbols are considered. These models are
used as algorithms of the information system
to produce new data from existing data.
The models have to be in an operational
form, i.e. they have to be applicable to
practical calculations.

Models are employed for two reasons:
(1) to save work in the measurement of
certain variables and (2) to estimate wvari-
ables whose measurement is impossible.
The first case is typical in ordinary forest
mensurational problems. There are no
theoretical difficulties in the measurement
of the upper stem diameters, for instance,
but the costs involved are so high that
measurements are frequently replaced by
models which yield estimates for the upper
diameters. There are also examples of the
second case in forest measuration. The
direct measurements of the volumes of the
different parts of the tree are impossible
without Kkilling the tree. Moreover, all
variables which describe some future events
must be predicted by models.

succedents
A B CDEF
A a
B a
precedents - e b
D b
E
F

a,b = algorithms

Single - equation model:

X3= a+ bx;+cx,+ €

Multi - equation recursive model:

XZ= 020+ 021X1 + EZ

X3= 0.30+ a31x1+ 0.32X2 + 83

QO Q@

Simultaneous equation model:

Qp1Xy + QX2 + A;3X3 + € =0 I

021X1 + QooXp + O23X3 + 82‘:0

e
s

Q31X + A32X2 + Q33X3 + €3=0

Fig. 2.3. Examples of different models.

RitHINEN (1963, p. 12) has divided the
mathematical models used in econometrics
into the following categories:

1. Single-equation models

2. Multi-equation models
21. Recursive models
22. Simultaneous models

Examples of these models and the corre-
sponding graphs which illustrate the preced-
ence relations between the wvariables in

different model categories are given in
Fig. 2.3.

In the single-equation model, one and
only one variable is the succedent of the
other variables of the model. The preceding
variables are called independent wvariables
and the succeding variable the dependent
variable. The error term (g) can also be
treated as an independent variable. One
special class of single equation models is
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that containing equations which include
only the constant and error terms but no
explicit independent wvariables. These
models yield the marginal distribution of
the dependent wvariable. Then, the esti-
mation of the error term distribution has
even stronger emphasis.

In the multi-equation recursive model
one variable may be the dependent variable
in one equation and an independent variable
in another equation. However, the preced-
ence relations are always in one direction,
i.e. the same variable cannot both precede
and succede another variable.

In the simultaneous equation model a
variable can be both a precedent and
succedent to another variable. Such vari-
ables are called intervening or endogenous
variables. The variables with no preced-
ents in the simultaneous equation model
are called exogenous variables. Thus, the
endogenous variables represent a collective
dependent variable and the exogenous
variables a collective independent variable.

In order to decide which type of model
is the most suitable for a certain application,
a thorough precedence analysis is needed.
In this analysis both theoretical and prac-
tical aspects have to be considered. The
precedence analysis has to be made before
the data for the models is measured. A
certain variable is measured only if all its
precedents have measured values. Other-
wise, the observation cannot be used in the
derivation of the models which predict
this wvariable.

The precedence relation between the
variables is determined by several factors.
First, the causal relationships should be
honoured whenever possible. Secondly, the
mensurational aspects have to be taken
into account. Thirdly, the simplicity of the
models is an important factor. Thus, for
example, recursive models may be preferred
even though the causal relationships would
suggest simultaneuos models.

After the precedence analysis has been
completed, it is still necessary to analyze
the functional form of the models. Some-
times it is possible to determine the func-
tional form a priori, before the data are
measured. Then, the functional form is
based upon an existing theory. More often,
however, the exact functional form can
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only be determined after the actual data
are available.

Whenever transformations are applied to
the dependent wvariables, the effect is the
same as if a new equation were introduced
into a multi-equation model (cf. HoLm 1977).
Thus, for instance, any single-equation
model becomes a two-equation recursive
model after the transformation of the
dependent variable. If a logarithmic
transformation is applied to the dependent
variable (y), the derivation of the value of
the dependent variable requires the following
two-equation recursive model:

log (y) = £ (x)
y = elog(y)

where x represents the set of independent vari-
ables.

Another way to classify mathematical
models is to see whether the dependent
variable is quantitative or qualitative. The
models with quantitative dependent vari-
ables have until now dominated in forest
mensuration. Recent development of com-
puters and estimation algorithms have also
made the models with qualitative dependent
variables accessible (e.g. Bismorp et al.
1975, NErLovE and PRress 1973).

222. Estimation of the parameters

First, it is assumed that the measurements
upon which the models are based are cor-
rect. Then, ordinary least squares (OLS)
estimation of the single-equation model
parameters yields unbiased estimators for
quantitative variables. This assumes proper
precedence analysis, proper functional form
of the model, and homogenous error variance
of the dependent wvariable. The residual
error variance is then due to the missing
independent variables. The models con-
sequently yield unbiased results when ap-
plied to the same parent population from
which the data for the model has been
measured.

If there are measurement errors in the
variables, the estimation of the model
parameters may become more complicated.
If the errors occur in the dependent variables
at random, the OLS method still gives
unbiased models. In the multi-equation

simultaneous models, however, errors in any
variables are dangerous since a dependent
variable in one equation may also be an
independent variable in another equation.

If there are errors in the independent
variables, the OLS method is no longer
valid in the derivation of the models which
exhibit the true relationships between the
dependent and independent variables. For
single-equation models, this distortion may
not lead to biases if there are equal errors in
the independent variables while the models
are applied. However, the derivation of
models from data in which the independent
variables do not have exactly known values
should be avoided.

Fortunately, forest measurements can
be made very accurately compared to many
other areas of measurement. In measuring
trees almost an arbitrarily high degree of
accuracy can be attained. Therefore, no
more attention will be paid in this paper to
the possible errors in the model data. The
problem of errors in the measured values
should not, however, be overlooked. In
econometrics, for instance, a whole branch
of statistics has been developed to deal with
this problem.

In recursive models it might appear
attractive to employ the estimated values
of the dependent variables as values of the
independent wvariables in the succeeding
equations. The model would then give
unbiased estimates when directly applied
to a situation where the values of the
respective variables are derived by the
model. However, the model may give
biased results wherever the independent
variables assume values with a different
error distribution than that of the model.
This happens, for instance, if the independent
variables assume exact measured values.
In order to have consistent models, exact
values of the independent variables should
be also used when the parameters of the
recursive models are calculated. In the
following section it will be shown how the
possible biases in the results of the unbiased
multi-equation models can be avoided.

The models are not usually exact, but
there is an error term. Therefore, due
attention must be paid to the estimation of
the parameters of the error term. Usually,
the distribution of the errors are assumed

to follow a normal distribution, with zero
expected value and with certain wvariance.
If the normality assumption does not hold,
the description of the error distribution
usually requires more parameters, higher
order central moments, for instance.

If the assumation that the residual errors
of the dependent variable are homogenous
does not hold, and this may be especially
true when the dependent variable is quali-
tative, OLS estimation no longer gives
unbiased models. Then, more complicated
methods, such as weighted linear regression
analysis, nonlinear regression analysis, etc.
must be employed.

223. Use of the models

2231. Analytical methods

The main purpose of the mathematical
models in forest mensuration is not to
verify hypotheses of the relations between
different variables but to provide means for
estimating distributions for those variables
whose values cannot be measured directly.
The distributions of the wvariables can be
condensed into parameters such as sums,
means, and variances. This condensation
is often necessary to aid comprehension of
the distribution. On the other hand, it is
possible to later derive the real distributions
from these parameters.

It is now shown how to derive unbiased
estimates for the distribution parameters
of the quantitative variables.

With single-equation models the calcula-
tion of the distribution parameters of the
quantitative dependent variable may be
quite straight-forward. If the model is as
follows:

y=f(x} ..., %) + & (2.1)
where y = dependent variable
x; = independent variable i

= error term of the equation

and the values of the independent variables
are known exactly, the expected wvalue of
the dependent variable can be calculated
from the following formula:
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E(y) = f(X, ..., %) + E(gy) (2.2)

~
where X; = true value of x;

If the model is unbiased the expected
value of the error term, or the first central
moment (m,) equals zero. The higher central
moments can be calculated easily:

m, = E(eyz) (2.3)
my = E(ey:’) (2.4)
etc.

If the central moments have to be esti-
mated from a sample, then the third and
higher order central moments have to be
replaced by Fisher’s (1928) Kk-statistics.

The first ordinary moment (M;) equals
the expected value of the dependent vari-

able, and the higher ordinary moments can
be derived from the central moments:

M,=M?%+m, (2.5)
M; = 3M,M,; — 2M,2 + my (2.6)
M, = 4M;M, — 6M,M,? 4 3M;* 4+ m, (2.7)
etc.

If the values of the independent variables
are not known exactly, or the error term of
the model is correlated with the independent
variables, the use of model (2.1) in the
derivation of the distribution parameters of
the dependent variable becomes more com-
plicated. If the equation is continuous
with respect to all its derivatives, the
expected value of the dependent variable
can be derived by the application of the
Taylor’s series:

2 T

5
( )— f(XI". Xk) +Z Z l‘—lrl ) 6x1f1

=1 =1

4 — L+ Eley) (2.8)

where R; = degree of the equation with respect to x;

m —
Ty...Tx =T7...

rth central moment of vector x

The error term of the equation (ey)
is separated from the independent variables,
but if it covariates with them it must be
handled as another independent wvariable.
Independent variables may also be quali-
tative, but then they must assume exact
values.

The calculation of the higher order
ordinary moments requires equation (2.1)
to be first raised to the respective power and
the new equation introduced to formula
(2.8). The central moments are obtained by
solving equations (2.5, ..., 2.7, etc).

Formula (2.8) becomes computationally
easier if some assumptions concerning the
distribution of the deviation of x;:s from
their expected values can be made. If the
deviations around the expected values of
Xi:s are symmetrical, only the central
moments with even number as a sum of
ri:s need to be taken into account. Further-
more, if it can be assumed that there
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exists no covariation between the devia-
tions of the x;:s, only the even values of
ri:s need to be taken into account.

Some examples of the use of formula
(2.8) are now given. The first of the two
formulas indicates the original equation and
the second formula gives the expected
value of the dependent wvariable or the
first ordinary moment of its conditional
distribution as a function of the expected
value and central moments of the indepen-
dent variable.

Yy =x+ g (2.9 a)
E(y) = & + m; + E(ey) (29b)
y =x2+ ¢ (2.10 a)
E(y) = X2 + 28m, + m, + E(ey) (2.10 b)
y =x3+4 g (2.11 a)

E(y) = X + 3x%m,; + 3%m, + m, + E(e,) (2.11b)
y =x+ e (212 a)

E(y) = X* 4 4%°m, + 6%2m, + 4Xm, + m, +

E(ey) (2.12 b)
y =x24. (2.13 a)
-3
E(y)= X2 + 128 —1/2m, — 1/8% 2m, +
0
1 =%
Ex myg — ...+ E(gy) (2.14 b)
y =e¥+ & (2.15 a)

E(y) = e* + eXm, + 1/2¢¥m, + 1/6e¥m, +
-+ E(ey) (2.15b)

The term with m, gives the effect of
bias, the term with m, gives the effect of
variance, etc. If it can be assumed that the
original models are unbiased, term E(ey)
cancels out from the expected value formulas.

The derivation of unbiased expected
values of the dependent wvariable after
transformations is identical to the previous
examples with only one independent vari-
able. If a logarithmic transformation, for
example, is applied to the dependent variable
before regression analysis, the logarithmic
value of the dependent variable yielded by
the regression equation can be transformed
back to its antilogarithm by using formula
(2.15b). Thus, formula (2.15b) is a gener-
alization of the well-known correction formula
for the case of normally distibuted logarith-
mic residuals (see MEYER 1941).

If it can be assumed that the residuals of
the dependent variable of the regression
equation are normally distributed after a
nonlinear transformation, only the even
order central moments have to be taken
into account in the derivation of the
unbiased expected values for the untrans-
formed dependent variable. The higher
even order central moments of the normal
distribution can be calculated from the
following formula (cf. Fraser 1976, p.

227).
My, = (2n — 1) (2n — 3)+++3+1-m,"
n=2,34,... (2.16)

Next, two examples involving two in-
dependent variables (x and z) are given.

Yy =3Xz+4 g (2.17 a)

E(y) = xZ+my_+m, +m, + E(e,) (217b)

y o o=x48 ey (2.18 a)

X423 + 4§323mlx + 6§223m2x + 4§23m3x
+ 23m‘x 4 32422mlz + 12)’5322m1xlz -
18X22%m, ; + 12222m§,x,z +32%m,

+ 3242m22 + 12§3lz\mlxzz + 18X2Zm, ,
+ 12XZm, , + 3zmy , + Xtm, +
4x%my , + 6x%m, , + 4xXmy_, +

my 5, + E(ey) (2.18 b)

The higher order central moments of the
dependent variable may be of interest when
single-equation models are employed. The
information they yield is indispensable
when using multi-equation models. In the
multi-equation model the dependent vari-
able may be an independent variable in a
succeeding equation. In this case, it is
necessary to know the parameters or the
moments which describe its variation and
covariation with the other independent
variables.

When multi-equation recursive models
are used to derive parameters which de-
scribe the conditional distributions of the
dependent variables, the calculation proceeds
in accordance with the precedence relations.
At each stage the necessary steps have to be
taken to calculate all the moments required
in the succeeding stages. The calculations
may become quite overwhelming with large
and complicated models. A judgement has
then to be made up which order it pays to
compute the moments. Quite frequently
only the means, variances, and covariances
are needed.

The derivation of results from simultaneous
equation models is more difficult than from
single-equation models or multi-equation
recursive models. The calculations are still
relatively easy if the simultaneous equations
are linear. Then, linear matrix operations
can be employed to derive the ordinary
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moments of the conditional distributions
of the endogenous variables.

The linear simultaneous equation model
can be written by using the matrix notations:

Ay + Bx + &y =0 (2.19)
where A = coefficient matrix of the endogenous
variables

y = endogenous variable vector
B = coefficient matrix of the exogenous
variables
x = exogenous variable vactor
&y = error vector of the equations
By multiplying the matrix equation
(2.19) by the inverse matrix Al we get:

y= — Al Bx — A'ley (2.20)

If the equations are unbiased and the
values of the exogenous variables are known
exactly, the expected values of the endo-
genous variables can be calculated from the
following formula:

E(y)= — A1BX (2.21)

If there are nonlinear transformations in
the exogenous variables and the values of
the exogenous variables are not exactly
known, the exogenous parts of the original
equations have to be replaced by equations
corresponding to formula (2.8). The resulting
vector is then inserted into formula (2.21)
to replace vector BX.

The expected values of the variances (V;)
of the endogenous variables can be calculated
from the following formula:

n n—1 n
2
E(Vy) = E agmy, + 2 g § ik ajiMy 1,
k=1 k=1 1=k+1 (2.22)
where
aj;; = ijth element of matrix —A™
m, = error variance of equation k
my g, = covariance of the errors of equations k
and 1
n = number of equations (= number of

endogenous variables)

The expected values of the covariances
(covj;) between the endogenous variables
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can be calculated by the following generalized
formula:

n n
E(covy;) = -;- E agiajmy, ;;  i=1,..., n

k=1l1=1 0 [(—0 IRV |
(2.23)

The third central moments (mai’) can be
derived from the following formula:

n

y E 3
E(m3i) = aikmsk +3

n
k=1 k

n—1 n
§ -E 2
3 Qa1 My 9 +

k=11=k-+1

E E 2
QjjajiMy q) +

1 n
=1 l=k+1

n—2 n—1 n

6 _S_ E g aikj|dipMy 1,1y

k=11=k+1 p=l+1
ju1,..., 0 (2.24)

The symbols are the same as used in
formulas (2.8) and (2.22). It should be
noticed that if the number of endogenous
variables is less than three, the last term
disappears. Similarly, formulas for any
higher order central moments can be
derived.

If the equations in the simultaneous model
are nonlinear with respect to the endogenous
variables, the solution of the system of
equations becomes more complicated. In
fact, no analytical solution usually exists.
However, several iterative techniques and
computer algorithms are available to solve
the problem (see e.g. BrRowN and DENNIS
1971; Imsr 1977). The Jacobian matrix
contains the first derivatives of the equations
with respect to all endogenous variables:

v
oy Oy

=1 - (2.25)
o
8y, Oya

The Jacobian matrix of the system of
simultaneous linear equations equals the
coefficient matrix A (cf. formula 2.19).

The estimates of the second and higher
order central moments of the distributions
of the endogenous variables can be calcu-
lated by using the inverse of the Jacobian
matrix (2.25) in the respective formulas
(e.g. 2.22, 2.23, and 2.24). The information
provided by these central moments is
necessary if the system of equations is
nonlinear (cf. KiLkkr and VArmora 1979).
The equations then have to be expressed
in the form of formula (2.8). Since the
Jacobian matrix may change with the
change of the values of the endogenous
variables, the central moments should, in
theory, be calculated anew with each
round of iteration. Fortunately, the central
moments usually change rather slowly,
and they need to be updated only after k
iterations.

If the dependent variables are qualitative,
the mathematical model yields the proba-
bilities that the dependent variables assume
certain values. Thus, for instance, a logistic
model used by WALKER and DunNcanN
(1967) yields the probability of the presence
or absence of disease. If the estimated
qualitative variables are used as inde-
pendent variables for the succeeding model,
either the population has to be divided into
subpopulations according to the values of
these variables or the Monte Carlo method
described in the following section has to be
employed.

2232. Monte Carlo method

Even though the basic requirements, the
continuity of the functions and the exact
values of the qualitative independent vari-
ables, have been fulfilled, derivation of the
population parameters by the methods
described in the previous section may prove
to be quite laborious for large multi-
equation models. To be sure that no
important moments are missing, an over-
whelminly large number of them should be
taken into account. Moreover, there are
situations in which the population cannot be
described by a few parameters such as
means and variances. Quite frequently,
it would be more practical to handle the

population elements instead of the param-
eters of the population in further analysis.
It is also possible that the methods described
in section 2231 may require an excessive
amount of computer time, even though
this point will lose its importance given the
prevalent trend in computational costs.

An alternative method is therefore re-
quired to derive results from mathematical
models. Such is the Monte Carlo method
(see e.g. HILLIER and LIEBERMAN 1967).
In the Monte Carlo method, the theoretical
distribution described by a mathematical
model is decomposed into a number of
population elements by taking a sample of
the distribution. Since the sampling is done
by computer, all variables of the sample
elements assume exact »measured» values,
and the size of the sample may also be
relatively large compared to the samples
taken in real conditions.

The mathematical model describes the
population as a n-dimensional distribution,
where dimension n expresses the number of
variables in each population element. The
distribution of each variable is described as
a conditional distribution of its precedents.
The Monte Carlo sampling progresses in
accordance with the precedence relations.
After the precedents of a certain variable are
known, the value of this variable is sampled
from its conditional distribution. The con-
ditional distributions can be determined
easily because the precedents assume exact
values. In a typical case the conditional
distribution equals the distribution of the
residuals of a regression model.

In its simplest form the Monte Carlo
sampling is unrestricted random sampling.
The value of the variable is taken randomly
from its conditional distribution as deter-
mined by its precedents. The conditional
probability density function determines the
probability that the variable gets a certain
value.

As in the sampling of real populations
(see e.g. NYVYSSONEN et al. 1967), the
unrestricted random sampling is not usually
the most efficient sampling technique in
the Monte Carlo method. A number of
variance reduction techniques in the Monte
Carlo method have been developed (KLEIJ-
NEN 1974). Among these techniques are
stratified sampling, selective sampling or
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fixed sequence techniques, control variates
or regression sampling, importance sampling,
antithetic variates, and common random
numbers. The most interesting of these
techniques in our case are stratified sampling
and antithetic variates.

The antithetic variate technique tries to
create negative correlations between the
observations. One observation is generated
from a random number (r) taken from
interval 0...1, and its antithetic pair
from random number (1-r). If the values of
the variable are normally distributed around
its expected value, the two observations are
located at equal distances from the ex-
pected value. The same is true for any
symmetric distribution.

For multi-dimensional distributions two
sequences of random numbers r,..., r,
and (1-ry), ..., (1-r,) have to be developed.
The error variance of the mean of any vari-
able is calculated as the variance of the
means of the antithetic pairs.

The use of the antithetic variates may
not be useful with qualitative variables or
if relations between the variables are non-
monotonic (see KLEWNEN 1974, p. 189).
Since there is no harm of using the antithetic
variates technique even with qualitative
variables and since most of the relations
between the quantitative variables are
monotonic in forest mensuration (e.g. h =
f(d)), there is little danger of increased

3. MODEL OF

Forest stand and/or tree populations are
the objects of forest mensuration. In
covering the whole area inside the bound-
aries of a forest area, compartments which
do not belong to forest land are also fre-
quently included in the stand population.

The elements of the stand population,
the stands, are characterized by a number
of variables describing the location, site, and
growing stock. The tree population ele-
ments, the trees, may possess all these stand
variables besides such individual variables
as tree species, quality of the tree, various
diameters, height, etc. The frequency
attached to each stand indicates the area of
the stand. The frequency of the tree popu-
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variance if antithetic variates are employed
for all randomly sampled variables.

One major advantage of the Monte Carlo
method is the fact that the method itself
takes care of possible biases arising from
nonlinear transformations of the dependent
variables. Thus, for example, no correction
to the constant term of the regression
model due to logarithmic transformation
(see e.g. MEYER 1941) is required. Since
the conditional distribution of the trans-
formed values often follows the normal
distribution, the description of the distribu-
tion is also easy.

In simultaneous equation models, the
sample must be taken from a multi-dimen-
sional conditional distribution of the en-
dogenous variables. If the endogenous
variables are continuous and if their condi-
tional distributions with respect to the
exogenous variables are normal, the multi-
variate normal distribution can be employed
for sampling (see e.g. WILks 1962, p. 164).

After the sample from the distribution is
taken, the frequencies of the sample elements
are summed. The total frequency of the
population is divided by this sum and the
result is used as a multiplier to calculate
the true frequencies of the sample elements.
The population parameters are calculated by
standard algorithms from the artificial
observation matrix derived by the Monte
Carlo method.

THE FOREST

lation element usually indicates the number
of trees, but it may also indicate the basal
area or volume or some other quantitative
measure.

Sometimes it is feasible to measure all
interesting variables of all elements of either
stand or tree populations. More often,
however, the measurements have to be
limited to only a small fraction of the
whole population. Even from that sample,
only part of the interesting variables can be
measured. Therefore, we need an infor-
mation system which reconstructs from
these partial measurements, a model of the
orginal population. The first task is to
study the precedence relations of the

variables of the stand and tree population
elements. Since all stand characteristics
are also tree characteristics, discussion can
be limited only to the precedence relations
between the tree characteristics.

Some relations between the tree charac-
teristics are clearly causal. For example,
the environment and the age of the tree, as
well as the past development of the tree
affect the growth of the tree. Quite fre-
quently, however, the relations between the
tree characteristics are noncausal. For
example, it is not possible to say that dbh
precedes the height or vice versa. Thus,
there are features which favour both re-
cursive and simultaneous models in the
description of the relations between the
tree characteristics.

Unfortunately, it is not possible to base
the models only upon causal relations. It
must be remembered that to estimate the
parameters of the model, the values of all
independent and dependent variables have
to be measured (see p. 372). If a multi-
equation simultaneous model for instance,
is chosen, all endogenous (as well as exoge-
nous) variables have to be measured from
the sample trees, otherwise the parameters
of the model cannot be estimated. Thus,
a model supported by the causal precedence
analysis may not be chosen, but measure-
ment costs must also be taken into account.
Then dbh, for example, precedes height
in field measurements.

Finally, model simplicity also forms a
relevant basis for making choices between
models. One might argue that single-
equation models offer the simpliest model
structure. Given wunbiased models and
correct measurements of the independent
variables, the single-equation models do
give unbiased estimates. Thus, the volume
of all tallied trees might be estimated
directly by an equation in which only the
variables measured from all trees, tree
species and dbh, for instance, would be the
independent variables.

The use of the single-equation models
has its drawbacks. In some cases equations
become quite awkward and complicated since
they are aggregates of several interde-
pendencies. Moreover, the timber assort-
ment models, for instance, are not con-
tinuous with respect to the breast height

diameter. The number of sample trees may
also become too small for some models
since only those trees with sufficient meas-
urements can be employed. The single-
equation volume increment models, for
instance, must incorporate in themselves
the height and taper of the tree. However,
sample trees with only height and taper
measurements but without increment meas-
urements cannot be utilized at all.

The variables predicted by single-equation
models may also contradict with each other
unless strictly linear relations prevail be-
tween the variables. For instance, if the
height, taper class (dbh-d;), and volume
of the tree are predicted by their own
equations in which tree species and dbh
are independent variables, the predicted
values do not represent any real trees.

As a flexible approach, a blockwise
simultaneous recursive model (BSRM) is
suggested in this paper. This model is a
combination of simultaneous models which
are arranged in a recursive order. The
simultaneous parts of the model take
advantage of the causal nature of the rela-
tions between the stand and tree characteris-
tics. The overall recursive organization
allows the use of cost saving multi-phase
sampling techniques in which the most
difficult measurements are restricted to a
small number of sample trees and ultimately
may be totally avoided in favour of the
existing models.

The more numerous the blocks are the
closer the model becomes to a pure recursive
multi-equation model. In the extreme,
there is only one equation per block and the
model is completely recursive. Furthermore,
since all dependent variables of the pre-
ceding equations do not have to be em-
ployed as independent variables in suc-
ceeding equations, a set of single equations
is an extreme case of a multi-equation
recursive model. Thus, the blockwise
simultaneous recursive model, in fact, covers
all the models and combinations described
in section 221.

It would require a thorough cost-benefit
analysis to decide the optimal division of
the blocks and the optimal sample size in
each block. The age of the tree, for instance,
is an important precedent to a number of
tree characteristics. However, its measure-
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ment by boring is costly and, consequently,
the age cannot in most cases precede the
height, not to mention dbh.

In the following, a provisional block
arrangement is suggested. It results from
a priori known precedence relations between
the wvariables. For the time being, only
the tree characteristics related to the stem
are included.

The first block of the simultaneous
equations is reserved for the stand charac-
teristics. These are obtained mainly by
ocular estimation. In an extreme case, all
stand characteristics are estimated directly
and consequently there are only exogenous
variables in the simultaneous model of the
first block. The employment of remote
sensing and two-phase sampling represents
another extreme. Then, the stand char-
acteristics estimated from the aerial photo-
graphs, for example, are exogenous variables
and the variables measured on ground are
endogenous variables.

Some relationships between the stand
characteristics are deterministic and cause
no problems. Most of the relationships are
stochastic and since a number of the en-
dogenous variables are measured either by
nominal or order scale, ordinary regression
analysis cannot be employed. Because of
the computational difficulties involved in
the estimation of the models with several
qualitative polytomous variables (NERLOVE
and Press 1973) it may be useful to break
the large simultaneous models into smaller
parts. Also the qualitative variables should
be avoided whenever practicable. Thus, a
continuous variable should not be broken
into discrete classes. As a result of the first
block, a multidimensional probability dis-
tribution of the endogenous variables
emerges.

In the second block, the dbh distribution
is estimated. As with any variables, the
breast height diameters can be measured
directly; they are then exogenous variables
of the model and the solution is trivial. If
the number of dbh measurements is too
small to estimate the dbh distribution
conditioned by the stand characteristisc as
a discrete distribution, some theoretical
distribution has to be employed. Beta-
distribution is the most commonly used
distribution for breast height diameters (cf.
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Loetrscu et al. 1973). Beta-distribution
needs four parameters which are often
strongly intercorrelated. Thus, the deriva-
tion of the parameter estimates suggests the
use of a simultaneous model. The endoge-
nous variables of the model are the four
parameters and the exogenous variables are
the stand characteristics; mean diameter
being the most useful one. It is also advis-
able to try certain transformations of the
dbh in order to make the distribution closer
to the normal distribution. The estimation
of the parameters is then more accurate.
One simple transformation is to square
the diameters.

In the third block, the conditional dis-
tributions of height, the upper diameter
(dg), and bark thickness at breast height
are calculated. Such transformations should
be applied to the endogenous variables
that make their conditional distribution
multinormal. The most important exogenous
variable is certainly the breast height
diameter, but all stand characteristics are
also potential exogenous variables.

In the fourth block, the endogenous
variables include ig, i, and the age of the
tree. These variables should also be trans-
formed to produce multinormal conditional
distributions.

In the fifth block, the endogenous vari-
ables might be relative-height diameters
above bark (cf. KiLKKI ef al. 1978), and the
relative-height diameters under bark.

The diameter increments at various rela-
tive heights can be obtained by employing
the Jacobian matrices of the models of the
fifth and sixth blocks. However, more
accurate results can .be derived by esti-
mating the diameter increments separately
in the seventh block. Then, the influence
of the environment can be taken into ac-
count more accurately.

The eighth block consists of an interpola-
tion formula which connects the relative-
height diameters and diameter increments
to form continuous taper and diameter
increment curves.

In the ninth block, models to divide the
stem into assortments are employed.

In the tenth block the volumes of dif-
ferent parts of the stem are calculated by
general integration formulas.

The blockwise simultaneous recursive

model yields, at each stage, the conditional
distributions of the endogenous variables
with respect to the exogenous variables.
To activate the model, the values of the
exogenous variables in any of the blocks
are required. Thereafter, the conditional

distributions of the succeeding variables
can be estimated. Of course, the reliability
of the results is improved whenever
measured values can be applied. The
employment of the measured values must
be blockwisely in the recursive order.

4. APPLICATION OF THE METHOD

The application of the blockwise simul-
taneous recursive model (BSRM) can be
divided into two parts. In the first part,
the measurements are used to adjust the
parameters of the model to the actual
population. In the second part, the model
is activated by inserting into it the values
of the exogenous variables of the first
relevant block. The results are then cal-
culated.

Theoretically, the BSRM as a whole
could be derived from the actual meas-
urements in a certain forest mensura-
tion job. In practice, however, the deriva-
tion of all parts of the model is in most
cases impracticable. First, the task re-
quires too many measurements, and se-
condly, people working with practical
forest mensuration problems seldom pos-
sess sufficient skills to derive the whole
model. Consequently, an existing model
is a necessary prerequisite of the application
of the BSRM. Otherwise, more traditional
methods should be employed.

Given an existing BSRM, it can be acti-
vated from any block by inserting into the
model the exogenous variables of the block.
Thereafter, it is possible to calculate the
parameters which describe the conditional
distributions of all succeeding variables.
However, if both the endogenous and
exogenous variables of a certain block are
known for some observations, these measure-
ments can be utilized in adjusting the
basic model to the population under sur-
veillance.

There are three main ways to utilize the
measured observations of both the en-
dogenous and exogenous variables: (1) the
measured values of the endogenous vari-
ables are employed as such to form a discrete
distribution, (2) completely new equations
are derived from the measured values, and

(3) original functional forms are used, but
one or more parameters of the equations are
estimated from the measured values. Dbh-
distribution of the sample trees is a tradi-
tional example of the first case. Height
curves are often based solely upon the
sample tree measurements and represent
the second case. In the third case, fre-
quently, only the constant term of the
equation is changed.

To optimize the number and quality of
the measurements, the principles of se-
quential sampling should be utilized. The
number of observations and their deviation
from the expected values derived by the
existing BSRM determine whether it pays
to make any changes in the existing model.

A computer system has to be built to
handle the calculation of the results. This
system may employ both the analytical
methods and Monte Carlo method. The
analytical methods are practical for the
derivation of the results from some parts of
the BSRM. As a general purpose algorithm,
however, only the Monte Carlo method is
serviceable.

The practicality of the Monte Carlo
method greatly depends upon the number
of observations required for a given accuracy.
The most promising variance reduction
techniques, in our case, seem to be a com-
bination of stratified and systematic sam-
pling, and the use of antithetic variates.

The discrete variables without any pre-
cedents form a natural basis for strati-
fication. Each tree species, for example,
may form one stratum. Continuous vari-
ables can also be used for stratification. If
the class intervals are equally large, and the
value of the variable is taken from the
middle of the stratum, the sampling is
equivalent to systematic sampling. The
middle values of the dbh-classes are an
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example of this kind of sampling. However,
the merits of systematic sampling are evident
only if the sample is large enough and
sufficiently covers the whole range of the
variable values. With small samples, the
tails of the distribution in particular may
be left without representatives if systematic
sampling is employed.

Both stratification and systematic sam-
pling have to be restricted to the first varia-
ables in accordance with the precedence
relations. Otherwise, the number of obser-
vations becomes too large, or the succeeding
variables will have too few values in the

densest part of the distribution. When
stratified and/or systematic sampling are
applied, the frequencies of the observations
may no longer be equal. The frequency of
each element has to be expressed explicitely.

Random sampling with the use of anti-
thetic variates is applied to the bulk of the
variables.

The observation matrix produced by the
Monte Carlo method is directly applicable
to the calculation of any population parame-
ters. In these calculations standard algo-
rithms are used.

5. DISCUSSION

The data processing system for forest
measurements described in this paper is
still mainly a paper tiger. It is also pos-
sible that some of the ideas embodied in it
will change in the ultimate test of practical
data processing. Especially, the optimal
division of the blockwise simultaneous
recursive model (BSRM) into blocks may
be different from the one given in chapter 3.
Of course, it is not even necessary to build
a complete BSRM to apply the ideas
presented in this paper, but these ideas
can be utilized in solving any partial data
processing problems in forest mensuration.

Even though no complete BSRM can be
presented to prove to applicability of the
approach, a number of partial models have
been developed in recent years. Eventually,
at least some of these models can be incor-
porated into a BSRM. The models needed
in the second block are under preparation.
PArvINeEN (1978) has published taper class
(dbh-d;) and breast height bark thickness
equations for pine, spruce, and birch.
Furthermore, unpublished equations for
height, i4, iy, and age of the tree have
been developed. These models, however,
are purely recursive.

The greatest advance has been made in
the development of the simultaneous equa-
tion models of the fifth block. Systems of
both linear and nonlinear equations have
been calculated to estimate the diameters at
11 and 10 relative heights of the tree (KILKKI
et al. 1978; KiLkki and VArmora 1979).
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In these studies interpolation formulas for
the seventh block have also been developed.
At present, a working system resembling
the BSRM, has been built to calculate the
main results of the national forest inventory
of Finland. The system is based upon a
multi-equation recursive model. The system
is basically capable of inclusion in a larger
system which would produce results from
any forest measurements. However, at
present it lacks the parts needed to estimate
stand characteristics and dbh-distributions,
as well as those parts needed to estimate
diameters, bark thicknesses, and diameter
increments at arbitrary heights of the stem.
Stand characteristics and breast height
diameters are measured exogenous vari-
ables. Traditional models based upon two
fixed height diameters (dbh and dg), height,
ig, iy, and bark thickness at breast height
are employed in the estimation of the
volumes of different parts of stem.

The numerical results of the inventory
are derived mainly by the Monte Carlo
method. A combination of stratified and
sytematic sampling, and the use of antithetic
variates is employed.

In future, other parts of the tree in
addition to the stem should be included in
the model. There is a correlation between
the form of the stem and the wvariables
describing the crown. Similar relations
may be found between the rootsystem and
the parts of the tree above ground. Growth
is also related to the crown and root charac-

teristics. Consequently, a new evaluation
of the block division may be necessary.

Another extension of the data processing
system is the simulation of the future devel-
opment of the growing stock. This question
also belongs to our study program. The
set of the trees derived by the Monte Carlo
method serves as a starting point for the
simulation of growth.

BSRM is not restricted only to the der-
ivation of results from forest measurements.
It is also a system to test data. When the
conditional distributions of the wvariables
are known, it is easy to find out excep-
tional values of the variables.

Most of the discussion has so far con-
cerned the practical data processing problems
encountered in forest mensuration. The
methodology described in this paper is also
applicable in the problems of growth and
yield studies, in which the basic relations
between the environment and the develop-
ment of the trees are studied. For growth
and yield studies, most probably, very large
simultaneous equation models will be
needed, and the application of differential
equations will also be necessary.
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SELOSTE:

EHDOTUS METSANMITTAUSTULOSTEN LASKENTAMENETELMAKSI

Tutkimuksessa esitellddan metsinmittaustulosten
laskentamenetelmd, joka kattaa valtaosan puun ja
metsikon mittauksessa esiintyvistd laskentatilan-

teista. Ensiksi tutkitaan puuta ja metsikkoéd ku-
vaavien muuttujien edeltdja-seuraajarelaatiot.
Niitd relaatioita kuvaamaan laaditaan moniyhtils-
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malli (BSRM), joka koostuu rekursiiviseksi malli-
ketjuksi jarjestetystd joukosta simultaanisia yhti-
16ryhmid. Mallin parametrit saadaan péddosin
regressioanalyysilli. Tulosten laskenta mallilla
edellyttdd joko Taylorin sarjakehitelmian tai
Monte Carlo simulointiin perustuvan korjaus-
menetelmadn kayttoda harhojen poistamiseksi.

Laskentamenetelman etuina ovat: (1) samoja
matemaattisia malleja ja tietokoneohjelmiston
osia voidaan kayttdid lukuisten tunnusten lasken-
taan, (2) olemassaolevaa tietoa voidaan kidyttdi
tehokkaasti hyviksi ja (3) lasketut puutunnukset
ovat keskenddn ristiriidattomia.

UUSI OPAS TUTKIMUSRAPORTIN LAATIJOILLE

Sitten professori V. T. Aaltosen vuonna
1945 julkaiseman teoksen »Tieteellinen tut-
kimustyo» metsidntutkijain kiytettdvissid ei
ole ollut hyvii suomenkielistd opasta tutki-
musraportin laadinnasta. Téstéd syystd viime
kevddnd vt. professori Maiti Kdrkkdisen
julkaisema kisikirja »Tutkimusraportin laa-
dinnan perusteita»') on tervetullut kirjoitus-
ja painatustekninen opas kenelle tahansa
julkaisun kirjoittajalle. Teoksessa on kisi-
telty kaikkia tédrkeimpia tutkijan eteen
tulevia julkaisuongelmia kirjainlajeista ja
piirrosmalleista tekijdnoikeuskysymyksiin.

Uuden tiedon tuottaminen on monesti
vaikea tehtdvi ja vieldpid tutkimusraportin
laadinta saattaa muodostua kompastukseksi.
Puheena oleva teos on tarkoitettu ensisijassa
kidytdnnon oppaaksi aloitteleville tutkijoille
ja opinnéytetoiden laatijoille, mutta varttu-
neempikin kirjoittaja loytda siitd runsaasti
hyodyllisid ohjeita mukaanlukien kisikirjoi-
tuksen tarkastuksen. Oppaan pidédpaino on
metsdntutkimuksessa, mutta monet siini
esitetyt nédkokohdat ovat siind méérin
vleisid, ettd ne sopivat esimerkiksi muiden-
kin alojen tutkijoille.

Opaskirjan ilmestymistd on tervehdittivi
ilolla erityisesti siksi, ettd tutkimusraportin
laadinnasta ei ole tutkijoiksi aikoville jir-
jestetty varsinaista opetusta opinniytetoistd
saatavaa arviointia lukuunottamatta. Oppi-
minen on siten monesti tapahtunut erehty-
misen ja virheiden kautta. Suomen Metsi-
tieteellisen Seuran julkaisusarjojen entiseni
toimittajana Kirkkiinen on seurannut ld-
heltd julkaisemiseen liittyvii ongelmia, jo-
ten on varsin luonnollista, ettd hin on néh-

) Matti Kérkkainen: Tutkimusraportin laadin-
nan perusteita. Helsingin Yliopiston monistus-
palvelu. Helsinki 1979.
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nyt vialttamiattoméksi auttaa Kkirjoittajia
laajalla kokemuksellaan.

Kirjassa annetaan aluksi hyodyllisid tek-
nisid ohjeita kirjoitusvaikeuksien voittami-
seksi ja Kkirjoittamisen tuloksellisuuden pa-
rantamiseksi. Ndmé vaikeudet lieneviit tut-
tuja monelle aloittelevalle tutkijalle. Tut-
kimusraportin sisillolle ja muodolle asetet-
tavat vaatimukset kidydiddn yksityiskohtai-
sesti ldpi. Tadmién jilkeen Kirkkiinen esit-
telee havainnollisesti kirjallisuuden luokitus-
jarjestelmii, joiden tunteminen on edellytys
kulloinkin tarpeellisen tietoaineksen 16yti-
miseksi. Téssd yhteydessd on erityisesti ai-
heellista mainita uudet vuoden 1978 alussa
kiayttoon otetut FA ja FPA jirjestelmiit.
Muutoinkin kirjasta 16ytyy runsaasti hyvii
ohjeita, jotka helpottavat tutkijaa loyti-
miidn Kkirjallisuutta tutkimusongelman tar-
kastelua wvarten.

Erityisen hyodyllisind kokenee moni Kkir-
joittaja taulukoiden ja piirrosten rakennetta
ja havainnollisuutta koskevan yksityiskoh-
taisen tarkastelun. Samalla selvitetdidn piir-
rosten laadinnassa kirjapainon kannalta huo-
mioon otettavia seikkoja seki taulukoiden ja
kuvien vaikutusta taittoon.

Ryhtyessddn oppaan kirjoittamiseen Kirk-
kédinen on tarttunut wvaikeaan tehtidviin,
vaikka ohjeiden antaminen on monesti
helpompaa kuin niiden noudattaminen. Opas
on kuitenkin pédidosaltaan helppolukuinen ja
sanomaltaan selked. Jossain maéairin yllat-
taviltd tuntuu kuitenkin se, ettd erdit
yksittdiset esimerkit on jéatetty melko tri-
viaaleiksi muutoin perusteelliseen tarkaste-
lutapaan néhden.

Tamaéa kisikirja olisi hintansa arvoinen jo
pelkistédin siihen koottujen liitteiden, kuten
UNESCOn antamien julkaistavaksi tarkoi-
tettujen tieteellisten kirjoitusten laatimis-
ohjeiden, metsiitieteellisten sarjojen lyhen-

teiden sekd mittayksikoitd koskevan stan-
dardin ansiosta. Lisdksi teokseen liitetty
kirjapaino- ja kirjastoalan keskeisin termino-

logia helpottaa asiointia kirjapainon kanssa.

Eino Midlkénen
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