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The purpose of this study was to examine the use of the local adaptation of the non-para-
metric Most Similar Neighbour (MSN) method in estimating stand characteristics for 
wood procurement planning purposes. Local adaptation was performed in two different 
ways: 1) by selecting local data from a database with the MSN method and using that 
data as a database in the basic k-nearest neighbour (k-nn) MSN method, 2) by selecting 
a combination of neighbours from the neighbourhood where the average of the predictor 
variables was closest to the target stand predictor variables (Locally Adaptable Neighbour-
hood (LAN) MSN method). The study data used comprised 209 spruce dominated stands 
located in central Finland and was collected with harvesters. The accuracy of the methods 
was analysed by estimating the tree stock characteristics and the log length/diameter 
distribution produced by a bucking simulation. The local k-nn MSN method was not 
notably better than the k-nn MSN method, although it produced less biased estimates on 
the edges of the input space. The LAN MSN method was found to be a more accurate 
method than the k-nn methods. 
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1 Introduction
In order to evaluate cutting possibilities in avail-
able stands, custom oriented wood procurement 
requires more accurate information than what is 
available on the characteristics of a marked stand 
(cutting area). Better and more accurate informa-
tion on reserves of marked stands would result 
in more optimal allocation of cutting operations. 
With the help of additional information sawmills 
may reduce trimming losses, avoid unmarketable 
raw materials and steer the fl ow of wood to the 
best secondary processing destinations (Uusitalo 
1995).

Information on marked stands should contain 
log length-diameter distributions produced by 
a simulator with the relevant bucking control-
ling parameters. Although forest management 
planning information on marked stands may be 
available, in most cases it is not directly useful 
for bucking simulation (Räsänen 1999). Pre-
measurements made while buying may be accu-
rate enough, but these methods (Lemmetty and 
Mäkelä 1992, Uusitalo 1995) have turned out to 
be too expensive or not suffi ciently reliable.

Tommola et al. (1999) used a non-parametric 
k-nn regression method to estimate the character-
istics of a marked stand from data measured by 
means of log-measurement instruments installed 
at various sawmills. The results were encourag-
ing, although estimates could be achieved only 
for previously used log length-diameter distribu-
tion constraints. For a situation where values or 
demand change, the method is not appropriate.

Malinen et al. (2001) developed an application 
of k-nn MSN-inference (Moeur and Stage 1995) 
for estimating characteristics of a marked stand 
using a stem database. The stem database was 
collected while harvesting stands with modern 
harvesters, which collect diameters for every 10 
centimetres from cut stems and save this detailed 
data into a specifi c fi le. The application developed 
was found to be a useful and fl exible tool for pre-
dicting stand characteristics. The usefulness of 
the k-nn MSN-method compared to previously 
used k-nn regression methods lies in automated 
weighting calculation, where canonical correla-
tion produces a weighting matrix to be used as a 
neighbourhood selection. The weighting matrix 
summarises the best (i.e. maximally correlated) 

multivariate linear relationship between design 
attributes and planning attributes. Furthermore, 
when comparing to the method used by Tommola 
et al. (1999), this method has the additional ben-
efi t that the stem database estimates could be pro-
duced for new log constraints and their infl uence 
on the expected outcome could be tested.

Although non-parametric methods have been 
found to be useful tools in many forestry situ-
ations (Haara et al. 1997, Maltamo and Kangas 
1998, Tommola et al. 1999, Malinen et al. 2001), 
there are some disadvantages in the use of these 
methods. The question of the optimal shape of the 
selected bandwidth or the number of neighbours 
to use is diffi cult because the answer usually 
depends on the shape and location of the data in 
the input space. In general, the approaches used in 
such situations vary from the simplest case, which 
ignores the variation of the function throughout 
the input space, to more complex algorithms, 
which attempt to select a number of neighbours 
appropriate to the interpolation scheme and the 
local properties of the function. This is not simple. 
At the boundary of the predictor space, the neigh-
bourhood is asymmetric and models tend to be 
highly biased. Bias can also be a problem in the 
interior if the predictors are non-uniform or if the 
regression function has a substantial curvature. 
These problems are particularly severe when 
the predictors are multidimensional (Hastie and 
Loader 1993). By increasing the number of neigh-
bours we can enhance the local validity of a model 
but at the same time the bias of results increases. 
This is the classic bias/variance dilemma, which 
greatly complicates the use of non-parametric 
methods. 

In addition to the bias/variance dilemma, non-
parametric methods that depend on the notation 
of ‘neighbourhood’ generally scale unfavourably 
to high dimensions. The reason for this behaviour 
comes from the non-intuitive effect that in high 
dimensional spaces all data points are approxi-
mately the same distance away from each other, 
thus destroying the discriminative power of 
neighbourhood relations. Given this ‘curse-of-
dimensionality’, the ability of non-parametric 
methods to succeed seems to be limited. 

Many practical applications demand transfer-
ability and therefore parameter tuning is out of the 
question. Although the term non-parametric refers 
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to a methodology without parameters, there are 
often plenty of parameters to be considered. 

An ideal non-parametric method for this prac-
tical problem needs to eliminate redundancy in 
the input data, detect irrelevant input dimen-
sions, keep the computational complexity low 
and achieve accurate function approximation 
and generalisation. A route to accomplish these 
goals can be sought from local models, which 
adapt without external parameters in each case 
according to the local input space.

Local adaptation of non-parametric methods 
has been the subject of several studies. Yang 
(1981) defi ned a new type of nearest neighbour 
regression estimate using the empirical distribu-
tion function with the predictors to defi ne the 
window over which to average. This has the 
effect of forcing the number of neighbours to be 
the same both above and below the value of the 
predictor of interest.

Friedman (1994) introduced a fl exible metric 
nearest neighbour classifi cation method, which 
estimated the local relevance of each predictor 
variable, or their combinations, for each indi-
vidual point to be classifi ed. That information 
was then used to separately customise the metric 
used to defi ne the distance from that point to its 
nearest neighbours. The procedure introduced 
is a hybrid between a regular k-nn method and 
tree-structured recursive partitioning techniques 
popular in statistics and machine learning.

While the performance of non-parametric meth-
ods is infl uenced by the curse-of-dimensionality, 
much research has focused on reducing this effect 
(Hastie and Tibshirani 1996, Schaal et al. 1998). 
If globally high dimensional data has locally only 
low dimensional distributions, it is advantageous 
to perform a local dimensionality reduction before 
further processing the data.

Hastie and Tibshirani (1996) proposed a locally 
adaptive form of nearest neighbour classifi ca-
tion, discriminant adaptive nearest neighbour 
classifi cation (DANN), by using local linear 
discriminant analysis to estimate an effective 
metric for computing neighbourhoods. They 
determined the local decision boundaries from 
centroid information and then shrunk the neigh-
bourhoods in directions orthogonal to these local 
decision boundaries and elongated them parallel 
to the boundaries.

Schaal et al. (1998) examined several tech-
niques for local dimensionality reduction. They 
found that locally weighted partial least squares 
seems to be the most favourable technique for 
local dimensionality reduction for high dimen-
sional regressions, even outperforming the statis-
tically appealing probabilistic factor analysis.

Despite the fact that developed local dimen-
sionality reduction techniques are theoretically 
able to exploit low dimensional distributions, they 
quickly become computationally unfeasible and 
tend to be numerically less robust. Vijayakumar 
and Schaal (1998) proposed a method called 
locally adaptive subspace regression, which pre-
processes data using local principal component 
analysis. 

The aim of this study was to develop and test 
properties of two local adaptation methods for 
non-parametric estimation. Local adaptation 
methods were compared to the k-nn MSN-
method (Malinen et al. 2001) by using harvester 
collected stem data to predict stand characteris-
tics. The fi rst locally adaptable non-parametric 
method presented uses the k-nn MSN-method 
and a sub-region of the data for estimating 
new local weighting for the predictor variables. 
Another method uses MSN-distance to calculate 
a combination of neighbours that minimises the 
distance between target stand and the weighted 
average of the predictor variables. 

2 Material

This study used harvester collected stem data. It 
was measured and stored by Finnish forest enter-
prises in order to be used as the stem database 
prototype (Table 1). Due to different measure-
ments and data collection in enterprises the data 
also includes information which was not usable 
as actual study material. The uniform study data 
consist of 209 stands located in central Finland. 
151 stands were dominated by Norway spruce 
and 58 by Scots pine. Due to the small amount of 
Scots pine and birch data only the Norway spruce 
data was used in the study.

Stand variables of this material were calculated 
as means and sums of standwise measurements. 
Other variables such as forest site, location and 
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stand development class were registered when 
these stands were originally pre-measured.

3 Method

3.1 Non-parametric Methods

Non-parametric regression methods predict the 
value of the variable of interest as the weighted 
average of the values of neighbouring observa-
tions, the neighbours being defi ned with the 
predicting variables (e.g., Härdle 1989, Altman 
1992). Before non-parametric methods can be 
implemented the following aspects must be con-
sidered: the distance function used, the smoothing 
parameters and the weighting function. 

3.1.1 Distance Function

Non-parametric methods are critically dependent 
on the distance function. The relative importance 
of the predictor variables in generating the dis-
tance measurement depends on how the predictor 
variables are scaled. However, a distance measure 
does not need to satisfy the formal mathematical 
requirements for a distance metric. By altering 
the distance function using scaling predictor vari-
ables it is possible to tailor the method used to a 
particular planning objective. 

There are many ways to defi ne and use distance 
functions (Scott, 1992):
– Global distance functions. The same distance func-

tion is used in all parts of the input space.
– Query-based local distance functions. In each query 

the form of the distance function with its param-

eters is set by an optimisation process that typically 
minimises cross validation errors or related criteria. 
Stanfi ll (1987) refers to this approach as a uniform 
metric.

– Point-based local distance functions. Each stored 
data point has a distance function associated with 
it and the values of corresponding parameters. 
Stanfi ll (1987) refers to this approach as a vari-
able metric.

In this study the distance in all methods presented 
is measured using the Most Similar Neighbour 
Inference (Moeur and Stage 1995). The simi-
larity function used in the MSN method is the 
generalised Mahalanobis distance (Mahalanobis 
1936). Canonical correlation analysis provides a 
unifi ed multivariate approach to the computation 
of the weighting matrix in the distance function 
by summarising the relationship between a set of 
search attributes and a set of design attributes. The 
MSN similarity measure derived from canonical 
correlation analysis is:

Duj
p p p p

2

1

2

1

1= − ′ − ′
× × ×

( ) ( )X X X Xu j u jΓΛ Γ ( )

where Xu is the vector of the known search vari-
ables from the target observation, Xj is the vector 
of the search variables from the reference obser-
vation, Γ is the matrix of canonical coeffi cients of 
predictor variables and Λ is the diagonal matrix 
of squared canonical correlations.

In the MSN similarity function, the weighting 
matrix simultaneously weights the elements of 
the search variables according to their predic-
tive power, while incorporating the covariance 
between the elements of the design attributes.

3.1.2 Bandwidth Selection

Smoothing bandwidth parameter h defi nes the 
scale of the range over which generalisation is 
performed. There are two ways to use this param-
eter (Atkeson et al. 1997):
– Fixed bandwidth selection (kernel method): h 

has a constant value. The distance of the farthest 
neighbour possible is constant. 

– Nearest neighbour selection (k-nn method): h is 
set to be the distance to the k:th nearest data point. 

Table 1. Mean stand characteristics in study data.

 Min Mean Max

Stand area (ha) 0.3 2.3 20
Stand age (y) 58 93 160
Basal area (m2) 0.1 14.2 47.4
Basal area mean diameter (cm) 12.9 25.8 35.0
Height of basal area  11.38 21.1 28.2
median tree (m)
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The distance of the farthest neighbour depends on 
the density of nearby data.

These two ways to select bandwidth can be used 
globally or locally. In global bandwidth selection 
h is set globally by an optimisation process that 
typically minimises cross validation error over all 
the data. In the local bandwidth selection process 
h can be set on each query or each stored data 
point has bandwidth h associated with it.

A fi xed bandwidth and a weighting function 
that goes to zero at a fi nite distance can have large 
variance in regions of low data density (Atkeson 
et al. 1997). This problem is present at the edges 
or between data clusters. In addition, a fi xed band-
width smoother cannot have any data within its 
span, which leads to undefi ned estimates. Using 
a nearest neighbour based bandwidth fi xes this 
problem. More generally, nearest neighbour 
methods tend to produce less dramatic swings in 
variance than a fi xed bandwidth (Cleveland and 
Loader 1994).

3.2 Comparison of Estimation Methods

3.2.1 k-nn MSN Method

The k-nn MSN method is based on distance-
weighted nearest neighbour estimation, where k 
most identical stands are used for predicting the 
characteristics of the target stand. The k-nearest 
neighbour MSN method can be summarised as 
follows.
1) Obtain search variables. Complete coverage of 

search variables on all parcels.
2) Determine design variables. Concentrating on the 

relationship of search and design variables allows 
the MSN analysis to be tailored to a particular set 
of interesting characters.

3) Estimate the canonical coeffi cients and correlations 
from search and design variables for the MSN dis-
tance function.

4) Select the number of nearest neighbours to be 
used.

5) Perform the k-nearest neighbour MSN analysis, 
selecting the most identical neighbours from the 
reference data to assign to each target observation, 
while minimising the squared distance function.

6) Form estimates from selected most identical neigh-

bours using weighted averages.

The optimal number of neighbours used in the 
k-nn MSN method can be determined by using 
a cross validation method, for example by mini-
mising the RMSE of certain characteristics. The 
minimisation of RMSE emphasises local accu-
racy of estimates more than average accuracy of 
estimates.

3.2.2 Local k-nn MSN Method 

Although k-nn methods are more resistant to the 
curse-of-dimensionality than might be expected, 
they are not immune to it (Friedman 1994). 
The curse-of-dimensionality can be reduced by 
taking advantage of the fact that at least locally 
correlations between search attributes and design 
attributes may not vary with equal strength or in 
the same manner in all directions. By choosing 
locally proper weights for features we can give 
the most infl uence to those directions in which 
the correlation is biggest and scale insignifi cant 
directions to zero. The resulting shape of the 
neighbourhood will be thereby elongated along 
the de-emphasised directions and constricted 
along the infl uential ones. 

In this method the reference data was reduced 
to consist only of locally important observations 
by using the k-nn MSN method to select the 
local neighbourhood. This local neighbourhood 
was then used to calculate a new local weighting 
matrix, which concentrates on local correlations 
between search attributes and design attributes. 
The fi nal k-nn MSN analysis was performed by 
using this local weighting matrix and local refer-
ence data.

3.2.3 LAN MSN

Large neighbourhoods can affect the bias in 
boundary situations or in situations where the ref-
erence data is distorted. Nearest neighbours may 
be located on the same side of the input space, 
even in the situations where observations exist 
on the other side of the input space. Recognising 
these situations, adjusting locally the amount of 
the neighbours and selecting the combination of 
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neighbours symmetrically can reduce the bias of 
estimates. 

The information used in the selection of the 
local neighbourhood must be produced from 
neighbourhood observations and the predictor 
variables of the target stand. In the proposed 
LAN MSN method every possible combination 
of neighbourhoods is examined in turn and the 
averages of the predictor variables of the neigh-
bourhood combinations are calculated (Eq. 2). 
Every vector of the average predictor variables 
of all possible neighbourhood combinations is 
compared to a vector of the predictor variables 
of the target stand using MSN metrics and the 
combination of neighbours which is most identi-
cal to the target stand, i.e. minimizing the distance 
between target stand and average of neighbour-
hood combination, is chosen to be used in the 
calculation of estimates.

Dua
p p p p
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2

1
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× × ×
( ) ( )X X X Xu a u aΓΛ Γ ( )

where Xa is the vector of the averages of the 
search variables from the neighbourhood com-
bination. 

The neighbourhood from which the optimal 
neighbourhood is selected is limited to 15 
neighbours due to computer time consumption. 
When the size of the maximum neighbourhood 
(n) is expanded the demand for computer time 
increases by 2n. 

3.3 Forming Stand Characteristics

The stand characteristics of a target stand were 
formed according the estimated diameter distri-
bution by selecting actual stems from the stem 
database using selected neighbour stands. In the 
selection the probability to pick actual stem from 
database was weighted according similarity of the 
chosen neighbour stands and the target stand. The 
estimated stem population was bucked with the 
bucking simulator to obtain an estimation of the 
log length-diameter distribution of the target 
stand. The log length-diameter distribution was 
also estimated from the corresponding character-
istics of the reference stand by using weighted 
averages of each log length-diameter class. The 

estimated diameter distributions were scaled to 
the measured basal area of each target stand, 
which were assumed to be known.

In the bucking simulator the stem was divided 
into 10-cm sections. For each section the thin-end 
diameter was obtained from the taper curve. Opti-
mal bucking was performed by using dynamic 
programming (Bellman 1954) and bucking to 
demand. 

3.4 Comparison of Results

The method used to estimate the accuracy of 
estimates was cross-validation. A target stand is 
a stand which was excluded from the reference 
stands and for which estimates were calculated. 
Each stand from the reference data, in turn, was 
used as the target stand.

The search variables (Table 2) were chosen 
from among commonly measured stand char-
acteristics. According Malinen et al. (2001) 
the mean tree variables are the most important 
search variables, while the signifi cance of the 
other variables is small. The design attributes 
used were obtained diameters in percentages of 
0% (the smallest diameter), 20%, 40%, 60%, 80% 
and 100% (the largest diameter) of accumulated 
basal area, a and b of Näslund’s height parameters 
(Näslund 1937) and volume of tree species. 

The weights for the reference stands were 
calculated inversely according to similarity dis-
tance (Eq. 3). Thus, the nearest reference stands 
are weighted according to the similarity distance 
when target stand characteristics are formed. The 
weights are scaled between 0 and 1, where value 

Table 2. Variables used in selection of the nearest 
neighbours.

Variables describing  Variables describing 
site growing stock

Location  Number of tree storeys
Temperature sum Relative proportion of spruce
Stand area Basal area per hectare
Stand age Basal area mean diameter
Forest site type  Height of basal area median tree
Logging method  Volume of basal area median tree
Dominant species
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1 means identical observations. The weight Wij 
of reference stand i for target stand j, belonging 
to the nearest stand, was then:

W
d

ij
ij

=
+
1

1
3( )

where dij is the distance between target stand and 
reference stand.

The accuracy of the methods was measured by 
using relative standard error. The relative root 
mean squared error (RMSE%) was defi ned as:

RMSE%
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where n is the number of observations, yij is the 
real value of the variable i in stand j, ŷij is the 
estimated value of the variable i in stand j and ŷi 
is the mean of the estimates of variable i.

The bias of the standwise estimates was cal-
culated for the study data as a whole and for the 
10% of the stands with the greatest mean height. 
Although the systematic error has not been a 
problem with non-parametric methods on a global 
level, the averaging effect of an increased number 
of neighbours produces a bias at the borders of 
the data. The estimations of length-diameter class 
distribution achieved through bucking simulation 
were compared to the length-diameter class dis-
tribution achieved through bucking simulation of 
actual stand values. These two distributions were 
compared using a distribution level (Dl):

Dl = ∗ −
−
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∑
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where Drj is the length-diameter class distribution 
of actual output in stand j and Dej is the length-
diameter class distribution of estimated output 
in stand j.

Distribution level is a simple and illustrative 
variable, which has been used in comparisons 
between demand and actual output distributions 
(Lukkarinen and Vuorenpää 1997). Distribution 
level indicates the similarity of two distribu-

tions. Identical distributions get a value of 100 
(%) and the smaller the value is the more dif-
ferent the distributions are. It is also suitable for 
comparisons between predicted and actual output 
distributions.

4 Results

The k-nn methods yield more information when 
the number of reference stands is increased. 
However, if the number of reference stands is 
too large, the averaging effect of the method is 
also increased. In several studies where the k-nn 
method has been used in forestry the suitable 
number of reference stands has been set between 3 
and 10. In this study the size of the neighbourhood 
in the k-nn MSN and local k-nn MSN method was 
set to 5 neighbours to give the best performance 
within the RMSE criteria (Malinen et al. 2001). 
A smaller neighbourhood would reduce the bias, 
but the RMSE would indicate weaker local valid-
ity of estimates.

With this data the accuracy of the local k-nn 
MSN method was not notably better than that of 
the k-nn MSN method (Fig. 1). Had the study data 

Fig. 1. Relative change of RMSE in the local k-near-
est neighbour MSN method with different input 
space sizes.
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Fig. 2. Relative error of volume for the k-nn MSN method, local (75%) k-nn 
MSN method and LAN MSN method.
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been more heterogeneous, the local data reduction 
may have yielded more accurate results compared 
to the global model. 

The results of the local k-nn MSN method 
(Fig. 1) show that improved accuracy of one 
estimated character may lead to worse accuracy 
of another character. For example the accuracy 
of volume and mean height are negatively corre-
lated. It is a question of balancing the weighting 
of the predictor variables. 

The accuracy of the volume and sawtimber 
ratio was clearly better when using the LAN 
MSN method than with the k-nn MSN method 
(Table 3). However, the LAN MSN method did 
not yield a better accuracy of the sawtimber sized 
stems ratio and mean height . While relative errors 
of volume are displayed as a function of volume, 
it can be seen that the LAN MSN method outper-
forms the k-nn methods on the edges of the study 
data (Fig. 2). 

Even though the bias of results increases as 
the number of neighbours increase, the nearest 
neighbour methods does not produce systemati-
cally biased estimates (Table 4). In stands with 
the greatest mean heights the bias of the mean 
height was notably lower with the local k-nn 
MSN method than with the k-nn MSN method 
(Fig. 3). The local weighting matrix concentrates 

on those input space dimensions where the local 
correlation is greatest and therefore fi nds the most 
identical neighbours at the boundaries better than 
the k-nn MSN method. The LAN MSN method 
did not yield less biased estimates than the k-nn 
MSN methods. 

Table 3. Relative RMSE (%) of the k-nearest neighbour MSN method and 
locally adaptable MSN method.

 Volume Sawtimber  Sawtimber sized  Mean 
  ratio stem ratio height

k-nn MSN 5.41 7.10 24.09 2.27
LAN MSN 4.03 5.51 24.36 2.28

Table 4. Bias of the k-nn MSN method, local (75%) k-nn MSN method and 
locally adaptable MSN method.

 Volume (m3) Sawtimber  Sawtimber sized  Mean 
  ratio (%) stem ratio (%) height (m)

k-nn MSN 0.821 –0.4307 1.8715 –0.047
local k-nn MSN 0.483 –0.5938 1.4084 –0.093
LAN MSN 0.930 0.1089 2.8511 –0.105

Fig. 3. Bias of mean height for the k-nn MSN method, 
local (75%) k-nn MSN method and locally adapt-
able MSN method.
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Although distribution level is a simple and 
illustrative parameter when comparing two dif-
ferent log length-diameter distributions, it does 
not work well if the number of logs is too small 
compared to the number of different classes 
(Fig. 4). However, it can be clearly seen that dis-
tribution level emphasise more average goodness 
of estimates than RMSE. At the distribution level 
errors are weighted equally, independent of the 
error level, while RMSE is more sensitive to some 
large errors.

5 Discussion

Local adaptation of a non-parametric MSN 
method was tested in two different ways. The 
main principle was to keep the number of tuning 
parameters low. The method should be transfer-
able to different databases and be automatically 
updated as harvesters collect new data from 
harvested stands. 

The local reduction of input space in the local 
k-nn MSN method did not yield expected results. 
It would be more informative to use larger and 
more heterogeneous data to fi nd out how local 
data reduction performs. In the local k-nn method 
the question of local input space size remains to 

be decided with each problem and data before the 
method can be used.

Another problem with local reduction of input 
space was that even though the weighting matrix 
was calculated locally, the local input space was 
elongated according to global input space prop-
erties. It would be more appropriate to fi nd local 
dimension of input space and use these properties 
in the calculation of the weighting matrix. 

However, the bias of volume and mean height 
estimates was reduced on the edges of the input 
space. It would be justifi ed to use the local k-nn 
method as a method to reduce bias of estimates 
in the edge situations, where bias is the biggest 
problem.

The accuracy of the LAN MSN method was 
clearly better than the accuracy of the k-nn MSN 
methods. The bias of the LAN MSN method 
was, quite surprisingly, not at the expected level. 
Estimates were not less biased than in the k-nn 
MSN methods.

The use of distribution level in comparison 
of methods failed due to coincidentally placed 
log distributions. Even small differences in stem 
diameter in certain points may produce different 
log combinations. When the number of bucked 
stems is too small, these differences affect the 
usability of distribution level as an indicator of 
accuracy. According the results of this study, 
the distribution level improves when size of the 
neighbourhood grows, i.e. when estimates are 
more averaging. 

Distribution level is extensively used as an 
indicator of similarity of demand and actual 
output matrixes in forestry even though it has 
clear weakness. There are studies (e.g. Kirkkala 
et al. 2000) where improvements or alternative 
choices to distribution level have been sought, 
but the results have not been expected. 

In the wood procurement planning context 
the estimates needed from available stands are 
complex. The length-diameter class estimate 
of log distribution contains information of size 
distribution of trees, volume, height and shape 
of individual trees, etc. While the estimation 
method concentrates more on one character of 
a stand, the other characters may get less weight 
in estimates. The question of optimal weighting 
of estimated properties is diffi cult and is affected 
by the method itself, but also by the selection of 

Fig. 4. Distribution levels from the k-nn MSN method, 
local (75%) k-nn MSN method and LAN MSN 
method.
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used input variables and search variables. The 
effect of different methods on accuracy and bias 
may be distorted by properties of the data studied 
and a universally applicable conclusion cannot 
be made. 

In this paper two local adaptation methods for 
non-parametric estimation were proposed. The 
results are not unambiguous and neither of these 
methods can be recommended as being superior 
in every situation. It would be easy to fi nd situ-
ations where these methods are at their best and 
vice versa it would be equally easy to fi nd situ-
ations where they do not work. The usability of 
these methods depends greatly on the application 
situation and the data used. 
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