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In recent years, optimal inventory accuracy has been analyzed with a cost-plus-loss methodol-
ogy, where the total costs of inventory include both the measurement costs and the losses from 
the decisions based on the collected information. Losses occur, when the inaccuracies in the 
data lead to sub-optimal decisions. In almost all cases, it has been assumed that the accuracy 
of the once collected data remains the same throughout the planning period, and the period 
has been from 10 up to 100 years. In reality, the quality of the data deteriorates in time, due to 
errors in the predicted growth. In this study, we carried out a cost-plus-loss analysis account-
ing for the errors in (stand-level) growth predictions of basal area and dominant height. In 
addition, we included the inventory errors of these two variables with several different levels 
of accuracy, and costs of inventory with several different assumptions of cost structure. Using 
the methodology presented in this study, we could calculate the optimal inventory interval 
(life-span of data) minimizing the total costs of inventory and losses through the 30-year 
planning period. When the inventory costs only to a small extent depended on the accuracy, 
the optimal inventory period was 5 years and optimal accuracy RMSE 0%. When the costs 
more and more heavily depended on the accuracy, the optimal interval turned out to be either 
10 or 15 years, and the optimal accuracy reduced from RMSE 0% to RMSE 20%. By increas-
ing the accuracy of the growth models, it was possible to reduce the inventory accuracy or 
lengthen the interval, i.e. obtain clear savings in inventory costs.
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1 Introduction
Typical decisions for a forest owner include such 
decisions as to when a given stand is treated (if 
at all), and how the stand is treated. All the deci-
sions include uncertainty, concerning which state 
of nature will occur (Hirsleifer and Riley 1979). 
For example, the realized amount of timber in the 
future may vary due to 1) the uncertainty in initial 
estimates of standing stock obtained in a forest 
inventory, 2) errors in the predicted development 
(growth) of the stand or 3) events such as fire or 
insect attacks. The decision maker has then two 
options: either to make the optimal choice with 
the current information or to reduce the uncer-
tainty by collecting more information. 

Value of information (VOI) in decision making 
(ex ante) can be defined as the difference between 
the expected value of a given decision with and 
without the information (e.g. Hirshleifer and 
Riley 1979, Lawrence 1999, Birchler and Bütler 
2007, Kangas 2010). Thus, the value of informa-
tion stems from the possibility of making better 
decisions if new, more accurate information is 
available. In forestry, practical analyses about the 
value of information are rare (see, however Knoke 
2002, Amacher et al. 2005, Duvemo 2009, Kangas 
et al. 2010). The decision-related aspects of data 
acquisition have been studied using cost-plus-
loss analysis, however. In cost-plus-loss analysis, 
the expected losses due to sub-optimal decisions 
caused by inaccurate data are added to the total 
costs of the forest inventory (e.g. Hamilton 1978, 
Burkhart et al. 1978, Ståhl et al. 1994). 

In the studies carried out so far, it has been 
assumed that decision maker is maximizing the 
net present value (NPV) of the forest area (e.g. 
Eid 2000, Holmström et al. 2003, Eid et al. 2004, 
Duvemo et al. 2007, Borders et al. 2008, Islam 
et al. 2009, Mäkinen et al. 2010). The decisions 
have been about scheduling of thinnings and 
clearcuts (Holmström et al. 2003, Eid et al. 2004). 
The losses are then due to carrying out the treat-
ment out too late or too early, with respect to the 
predicted development. Most of the studies have 
concentrated on a set of basic forest inventory 
variables, obtainable from a specified inventory 
method. An exception is the work of Eid (2000) 
which considered pre-defined accuracy levels 
rather than specified methods. In all cases it has 

been assumed that the data quality is constant 
throughout the planning period (from 10 up to 100 
years), although this assumption is known not to 
be correct (Duvemo and Lämås 2006). In practice, 
the inventory interval has typically been 10–15 
years (Koivuniemi and Korhonen 2006). 

Predictions concerning the future development 
are made with growth models. The errors of initial 
data and growth predictions propagate in time, 
meaning that the longer the prediction period, the 
lower the quality of the predictions at the end of 
the period (Gertner and Dzialowy 1984, Gertner 
1987, Mowrer 1991, Kangas 1997). It should be 
the more profitable to invest on accurate data, 
the longer the period in which this data can be 
used, i.e. the more decisions can be made with the 
collected data (e.g. Karnon 2002). As the errors 
propagate through the system, the expected losses 
are assumed to increase and at some time the 
expected losses increase to a level where collect-
ing new data is more profitable than using the old 
data. This defines the optimal inventory interval, 
i.e. the life span of the initial data. There may also 
be interactions between the prediction errors and 
the initial accuracy, meaning that an initial data 
set with given accuracy is more valuable when 
the growth models are more accurate (c.f. Ståhl 
et al. 1994). Holopainen et al. (2010) concluded 
that the errors in growth models were the most 
important source of error in the expected NPVs, 
but the combined effect of growth prediction 
errors and initial errors was less than the sum of 
the individual effects. It indicates that the different 
(random) errors to some extent may compensate 
each other.

The first attempt to analyze the effect of growth 
errors on the life-span of inventory data was car-
ried out by Ståhl et al. (1994), but it only included 
a very crude growth model and presented a couple 
of fairly theoretical examples. A following attempt 
(Pietilä et al. 2010) included a real stand-level 
growth and yield simulator, SIMO, and error 
models that were based on observed errors in 
predictions. The results show that the expected 
losses from updating the data with growth models 
can be as high or in long term even higher than the 
expected losses from the errors in the initial data 
(at worst 900 €/ha/60 year period for the studied 
area). However, their study did not include the 
errors in the initial forest inventory, the inventory 
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costs nor the interaction between the errors in the 
initial data and growth predictions.

The aims of this study are: 1) to present a 
method for estimating the optimal inventory inter-
val with given assumptions on growth prediction 
errors and inventory errors, 2) to test the method 
by evaluating the expected losses due to growth 
projection and forest inventory errors in a simple 
harvest scheduling (or forest planning) problem, 
3) to estimate the optimal inventory interval (i.e. 
life-span of data) for various assumed inventory 
cost structures and 4) to examine how adjusting 
the growth model to each stand would affect the 
life-span. In the last two tasks, several different 
assumptions of the relation of inventory costs 
and accuracy are used. Assumptions are needed 
as the errors are simulated and not related to any 
real inventory method.

2 Materials and Methods

2.1 Materials

As the input data for the forest planning computa-
tions we used a sample of 99 forest stands from 
a stand-wise field inventory database collected 
from central Finland. This type of data has been, 
and still is, the most common input data in Finn-
ish forest planning. In this study, this data was 
assumed to be error-free. The data was used to get 
a distribution of stand properties that represents a 
typical forest estate.

The average size of a single forest stand was 
~2 ha. Each stand record contained information 
about stand location, site class, soil characteristics 
and a number of aggregate attributes describing 
standing stock properties such as basal area (G), 
mean diameter (basal area median diameter DgM), 
mean stand age (T), mean height (height of the 
mean tree HgM) and dominant height (Hdom). As 
a large proportion of the stands contained mul-
tiple tree species, the aggregate attributes were 
stratified by tree species so that each stratum in a 
stand had its own standing stock properties. For 
a more detailed description about the data, see 
Pietilä et al. (2010).

2.2 Methods

2.2.1 Forest Planning Computations

The forest planning computations, i.e. growth 
simulation and harvest scheduling, in this study 
were done using SIMO (SIMulation and Opti-
mization) software (Rasinmäki et al. 2009). It 
consists of modifiable simulation and optimiza-
tion modules with built-in capability for Monte 
Carlo analysis. 

The planning period for which the simula-
tions and optimization were done was 30 years, 
consisting of six five-year time steps. A 30-year 
period was selected for this study based on the 
earlier work by Pietilä et al. (2010). Based on 
that study, 30-year period most likely includes the 
optimal inventory interval. A forest planning, or 
harvest scheduling problem, was solved by first 
generating multiple alternative harvest schedules 
for each stand with the simulator module and then 
using the optimizer module for finding a schedule 
that maximizes the net present value of the whole 
forest without any forest estate-level constraints. 
The interest rate used for calculating the present 
values was 3%.

The growth projections in non-seedling stands 
were based on stand-level growth models of G 
and Hdom by Vuokila and Väliaho (1980) for Scots 
pine (Pinus sylvestris) and Norway spruce (Picea 
abies); growth model of G by Mielikäinen (1985) 
for silver birch (Betula pendula) and white birch 
(Betula pubescens); and growth models of Hdom by 
Oikarinen (1983) for silver birch and by Saramäki 
(1977) for white birch. The response variable in all 
of the growth models was the increment percentage 
Ix of attribute x during a five-year simulation time 
step. The explanatory variables in Scots pine and 
Norway spruce G growth models were G, Hdom, T, 
and site class, and in Hdom growth models the vari-
ables were T, Hdom and site class. For birches and 
other deciduous species, the explanatory variables 
were G, T and site class for G growth models and 
Hdom, T and site class for Hdom growth models. 
Other stand-level forest attributes were updated 
on each time step using various models with G 
and Hdom as explanatory variables (for details, see 
Pietilä et al. 2010).

The growth of Scots pine seedling stands was 
predicted using models of Huuskonen and Miina 
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(2006). In Norway spruce and birch seedling 
stands the growth was predicted using simple 
models, which predict the age T for the stand to 
reach 1.3 meter mean height, using tree species 
and site class as explanatory variables (Hynynen 
et al. 2002). This approach was used as no other 
model for the development of seedling stand 
growth has been published. 

For simulating harvests (e.g. thinnings and 
regeneration harvests), tree lists were generated 
for each stand on each time step using theoreti-
cal diameter distribution models by Kilkki et al. 
(1989), Siipilehto (1999) and Kangas and Maltamo 
(2003). The distribution models predicted diameter 
distributions with one-centimeter classes using 
stand-level forest attributes as explanatory vari-
ables. The bucking of each stem in the tree list was 
optimized for maximum value by constructing stem 
profiles with a taper curve model (Laasasenaho 
1982), applying a bucking algorithm and using 
different prices for sawlogs and pulpwood. 

The optimizer module was used for selecting 
the optimal harvest schedule for each stand from 
the set of simulated alternatives. We used a simple 
heuristic HERO algorithm (Kangas and Pukkala 
1998) for the optimizations and the objective 
function at single stand-level was to maximise 
stand’s NPV defined as

NPV =
+
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where Ct is cash flow, i.e. net income or cost, at 
year t, r is the rate of interest, and P30 and PL,30 
are net present value of standing stock and land 
for the stand at the end of the 30-year planning 
period, respectively. The P30 and PL,30 values 
were predicted using models by Pukkala (2005) 
that use standing stock characteristics, site fertil-
ity, stand location and timber assortment prices 
as explanatory variables. As there were no estate-
level constraints, the optimization algorithm could 
easily find the optimal solution just by iterating 
through each schedule in the limited set of simu-
lated schedules per stand and selecting the one 
yielding the highest objective function value.

The stochasticity in the forest planning com-
putations was accounted for by adding random 
variation into the growth predictions and by simu-

lating a forest inventory procedure with random 
forest inventory errors.

2.2.2 Simulation of Growth Projection Errors

Growth prediction errors in non-seedling stands 
were generated by introducing a random error 
component εt,x to the predicted increments of 
attributes G and Hdom. The growth prediction 
error was composed of between-stand variation ux 
and within-stand (i.e. periodical) variation et,x so 
that the total error of attribute x at time t was

εt,x = ux + et,x

The stand effect u can be interpreted as the aver-
age growth level of the stand over time, when 
compared to the expected curve, and the periodi-
cal variation as the variation around this average 
growth level between subsequent periods. Nor-
mally distributed random error component ux was 
generated once at t0 for each stand and normally 
distributed component et,x was generated at the 
beginning of each simulation time step. The cor-
relation between the random error components of 
variables G and Hdom and between the strata in 
each stand was accounted for when the values of 
ux were generated (see Pietilä et al. 2010). The 
variance of the error term εt,x was taken from the 
observed growth prediction errors in Finnish con-
ditions (Haara and Leskinen 2009) and divided 
into components ux and et,x by applying the results 
of Kangas (1999) and using proportions 0.365 
and 0.635 for ux and et,x, respectively. This means 
that the correlation of total errors between the 
periods is assumed to be constant, i.e. var(u)/
(var(e) + var(u)) = 0.635 (for details see Pietilä et 
al. 2010). Thus, the value of attribute ( x̂), affected 
by prediction error, at time t + 5 was given by

ˆ ˆ ,
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where It,x is the predicted increment percentage 
of attribute x and εt,x was the prediction error at 
time t. 

Projecting forest growth using the stand-level 
growth models and random error components 
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described above yielded in quite similar variances 
in the growth predictions as observed by Haara 
and Leskinen (2009, see Pietilä et al. 2010 for 
details). Haara and Leskinen (2009), however, 
only studied two periods, and the development 
of the error variance in longer time periods is 
very poorly known.

In Norway spruce and birch seedling stands, the 
variation in the growth predictions was accounted 
for by adding a normally distributed random error 
to the initial stand age (T) of reaching the 1.3 
meter mean height. The error εT was also divided 
into between-stands and within stand error com-
ponents. Thus, the initial erroneous age T̂  for a 
stand was given by

ˆ ( )T T T= +1 ε

where T is the true age of the stand. In Scots pine 
seedling stands, the errors were simulated in the 
same way as in advanced stands (see Pietilä et 
al. 2010).

In addition to the growth simulations affected 
by the growth prediction errors, the forest growth 
was simulated also without the error components. 
This was done in order to simulate forest inven-
tory, in which the attribute values affected by the 
growth prediction errors ( x̂) were replaced with 
the true attribute values (x), unaffected by the 
growth prediction or forest inventory errors.

We estimated the effect of adjusting the models 
to each stand, by examining what would happen 
if the local stand-level bias could be removed. In 
effect, it means that the u-term in the error model 
was assumed to be zero, and only the within-
stand (between-period) effects εt,x were included 
in the analysis. It means that we assumed that 
the growth predictions could be improved with 
additional measurements (i.e. measurement of 
the stand effect, or the mean growth level in the 
stand). Similar improvements could, of course, be 
obtainable by estimating new improved growth 
models.

2.2.3 Simulation of Forest Inventory Errors

The random growth prediction errors were respon-
sible for a certain proportion of the total variance 
in the forest attribute values at any given time t. 

The rest of this variance was due to forest inven-
tory errors.

Forest inventory errors were taken into account 
by simulating a forest inventory every nth year, 
where n is the forest inventory interval. In forest 
inventory, the values of Ĝ and Ĥdom were substi-
tuted with the true values of G and Hdom. After 
that, random forest inventory error components 
δG and δHdom were added to the values of G and 
Hdom. Forest inventory errors δG and δHdom were 
generated from normal distribution N(0,σ2) with 
no bias and standard deviation σ getting values 
0%, 5%, 10%, 15%, 20% and 25%. The possi-
ble correlations between δG and δHdom were not 
regarded for the sake of simplicity. As normal 
distribution is not limited, generating random 
errors to the forest variables can in principle lead 
to both negative and extremely large variable 
values. However, as the errors were relative, and 
the highest standard deviation we used for the 
forest inventory errors was 25 (%), the probability 
of getting random relative errors outside limits 
[–100%..100%] was only ~0.00006. Because of 
this there was no need to limit the random errors. 
The same applies for the random growth projec-
tion errors.

The inventory interval n had values 5, 10, 15, 
20 and 30 years for every inventory error level 
σ, so that the total number of (n,σ) combinations 
was 6 × 5 = 30. The simulation of forest inventory 
was a four-step procedure:
1) Substitute the current values of attributes Ĝ and 

Ĥdom, affected by cumulated growth prediction 
errors and the previous forest inventory errors, 
with the true values G and Hdom unaffected by the 
errors (but affected by all the decisions, subopti-
mal or optimal, carried out within the period).

2) Generate normally distributed random forest 
inventory errors δG and δHdom.

3) Add the forest inventory errors to the values of G 
and Hdom so that 

 

ˆ ˆG G H HG
dom dom

Hdom= +






= +




1

100
1

100
δ δ

and








4) Update other forest stand-level attributes using the 
new Ĝ and Ĥdom values.

The top-level simulation logic is depicted in flow 
chart format in Fig. 1. The flow chart contains 
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Fig. 1. Simulation logic fl owchart (adapted from Pietilä et al. 2010). 
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both the deterministic components, such as the 
growth prediction and harvest simulations, and 
the stochastic components for simulating forest 
inventory errors and growth prediction errors.

2.2.4 Simulating Inoptimality Losses with 
Monte Carlo Method

The inoptimality losses due to the forest inven-
tory and growth prediction errors were studied 
using Monte Carlo simulation approach with 100 
realisations for each stand and (n,σ) pair combina-
tion. The number of realisations was considered 
to be sufficient as the inoptimality loss estimates 
seemed to be very stable using 100 realisations. 
The stability was verified by repeating the analysis 
with the same inventory error and interval levels 
for 20 times. The relative standard deviation of 
the average losses between the repeats was under 
1%. More realisations would have stabilised the 
estimates even more, but also the computational 
time would have grown notably.

Optimal harvest schedule s for any stand with 
given input data vector X can be computed apply-
ing a simulation and optimisation model fs giving 
s = fs(X). In case of stochastic forest inventory 
and growth prediction errors with given inventory 
interval n and inventory standard error level σ, the 
model gives ˆ ( ˆ , , )s f ns= X σ . Due to the stochasticity 
involved in the growth predictions and inventory 
errors, each realisation of ŝ generated with the 
model may be different. 

A net present value v for any stand with given s 
can be computed with model g(X,s). Model g uses 
a similar simulation module as model fS, but with 
predefined set of harvests and no optimisation, as 
alternative harvest schedules are not generated.

In order to determine the inoptimality losses 
due to the growth prediction and inventory errors, 
we needed to determine a true NPV value vk 
(unaffected by errors) for each stand k (k = 99). 
First we defined the optimal schedule sk by

s fk s k= ( )X

after which we could get the true NPV value vk 
by

v g sk k k= ( , )X

where Xk is an input attribute vector for stand k.
Next, the inoptimality losses Lijk were deter-

mined for every (n,σ) combination i (i = 1,…,30), 
realisation j (j = 1,…,100), and stand k (k = 1,…,99) 
by

ˆ ( ˆ , , )s f nijk s jk i i= X σ

ˆ ( , ˆ )v g sijk jk ijk= X

L v vijk ijk k= −ˆ

where Xk is input attribute vector for stand k and 
X̂ jk is the jth input attribute vector with simulated 
inventory errors for stand k.

2.2.5 Cost Assumptions in Cost-Plus-Loss 
Calculations 

We did not want to restrict the “inventory method” 
to any specific method used, but wanted to include 
all possible ways to produce stand-level informa-
tion for planning, e.g. traditional, partly visual 
stand inventory, sampling and modern remote 
sensing based (ALS, aerial photos or satellite 
images) methods. Thus, we simulated the error 
levels rather than used the published errors from 
any method. As the inventory errors were simu-
lated, and did not “mimic” any known inventory 
method it was not possible to include any real 
costs for the analysis, and it would have been dif-
ficult to make a detailed model for the costs. The 
calculations were thus carried out with several dif-
ferent assumptions on the cost structure. The costs 
were assumed to depend on three parameters: 
the number of inventories carried out in 30 year 
period (m), the level of costs in the least accurate 
inventory (cl), and the dependency of additional 
costs on the accuracy of the inventory (p). 

The number of inventories carried out m was 
calculated from the inventory interval: if the inter-
val n is 5 years, then number of inventories is 
30/5 = 6. Thus, the used values of m were 6, 3 
(n = 10), 2 (n = 15), 1.5 (n = 20) and 1 (n = 30). 
Each inventory was assumed to cost the same 
amount of money, but inventory costs occurring 
in the future were discounted in the same way as 
the incomes, using an interest rate of 3%.

The level of the costs in the inventory with 
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lowest accuracy, cl, was defi ned based on pub-
lished costs. Uuttera et al. (2002) estimated that 
the traditional Finnish fi eld inventory with an 
Root Mean Square Error (RMSE) 20% (depend-
ing on the variable in question) had a cost 7.9 €/
ha, and Uuttera et al. (2006) gave a cost of 9.2 
€/ha. Eid et al. (2004) gave cost 5.53 €/ha for a 
visual interpretation of aerial photos in Norway 
with accuracy ~25% and 11.39 €/ha for a laser 
scanning inventory with accuracy ~10%. Based 
on these, we used as a level of cost for the lowest 
accuracy inventory method 4–16 €/ha.

Holmström et al. (2003) gave a cost of 50 
SEK/5 ha (about 1 €/ha) for an inventory based on 
stand registers (with accuracy ~25%), and 2080 
SEK/5 ha (about 46 €/ha) for the most accurate 
inventory with 10 sample plots in a stand (~5%) 
in Sweden. Thus, the costs were assumed to 
increase 40-fold when the accuracy increased. 
Based on these, we used different power param-
eters (powers p 1, 1.5, 2, 2.5, and 3) giving the 
increase from lowest to highest accuracy from 
2.25-fold (p = 1) to 126-fold (p = 3).

In this study, we used a formula

c = m(cl + 2p)

to calculate the costs of the inventory per hectare. 
The resulting inventory costs for level cl = 8 and 
different power parameters p are shown in Fig. 2. 

The highest accuracy here was an inventory with 
zero RMSE, which would be possible only if all 
trees were measured, without any error, in the 
fi eld.

3 Results

The total average losses per hectare during the 
30-year period are shown in Tables 1 and 2. Quite 
obviously, the losses were smallest with short-
est inventory interval (meaning smallest possible 
growth prediction errors) and perfectly accurate 
inventory with relative RMSE 0%. The difference 
between the 0% RMSE and 5% RMSE was, how-
ever, quite small. What is most notable from these 
fi gures is that when the losses with the 5-year 
interval increase from 188 to 591 (3.14-fold) as 
the inventory accuracy decreases, they increase 
only 1.65-fold when the inventory period is 30 
years (Fig. 3). In other words, with the least accu-
rate inventories the losses do not much increase 
as inventory interval increases, but with the most 
accurate inventories the trend is very clear.

When the cost models were included, the level 
was assumed medium (cl = 8) and the dependency 
of cost on accuracy was linear (p = 1), the estimated 
optimal inventory (cost-plus-loss 265.1 €/ha) was 

Fig. 2. The costs of one inventory, as a function of accuracy level, with the different 
power parameters p and level parameter 8 €/ha.



219

Mäkinen, Kangas and Nurmi Using Cost-Plus-Loss Analysis to Defi ne Optimal Forest Inventory Interval and Forest Inventory Accuracy

Table 1. The average losses, in €/ha with different inventory periods 
(n) and accuracy levels (σ).

σ n

  5 10 15 20 30

0 –188.06 –250.27 –293.58 –374.22 –419.97
5 –208.68 –271.99 –300.03 –391.76 –466.04
10 –307.00 –339.10 –358.63 –427.79 –482.92
15 –399.74 –442.84 –461.65 –497.41 –559.66
20 –509.14 –531.66 –588.60 –594.21 –625.22
25 –591.25 –638.53 –653.70 –694.32 –695.25

Table 2. The average relative losses. in percentage, with different 
inventory periods (n) and accuracy levels (σ).

σ   n

  5 10 15 20 30

0 –2.66 –3.31 –3.95 –4.77 –4.72
5 –2.80 –3.69 –3.86 –4.99 –5.61
10 –3.98 –4.40 –4.60 –5.44 –5.91
15 –5.18 –5.55 –5.70 –6.38 –6.84
20 –6.50 –6.71 –7.28 –7.45 –7.50
25 –7.17 –8.05 –7.83 –8.48 –7.86

Fig. 3. The losses due to inventory and growth prediction errors at different inven-
tory intervals.
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Fig. 4. The total costs and losses with 5 different power parameters (p) in the cost model, with cl = 8. The legends 
are as in Fig. 3, solid black line RMSE = 25%, solid grey line 20%, dashed black line 15%, dashed grey line 
10%, long dashed black line 5% and long dashed grey line 0%.
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inventory with RMSE 0% and inventory period of 
5 years (Fig. 4a). When the dependency of cost 
and accuracy was “steeper”, i.e. power p was 1.5, 
the estimated optimal inventory interval was still 
5 years and the estimated optimal accuracy 5% 
(b). When the power increased to 2, the estimated 
optimal accuracy level remained at 5%, but the 
estimated optimal inventory interval changed to 
15 years (c). With yet steeper dependency, p = 2.5, 
the estimated optimal accuracy was 10% and the 
estimated optimal inventory interval remained 
at 15 years (d, see also Table 3). With the steep-
est dependency, p = 3 (e), the estimated optimal 
interval dropped to 10 years and the estimated 
optimal accuracy to 20%. Thus, with the high-
est costs it was more profitable to reduce the 
interval than to improve the accuracy (σ). Thus, 
when increasing the accuracy of inventory is 
more and more expensive, the optimal accuracy 
reduces from 0% to 20%, and the optimal inven-
tory interval increases from 5 years to 15 years. 
With our assumptions, longer intervals are never 
optimal, however, neither is the worst accuracy 
level, 25%.  

Changing the cost level (cl) from 4 to 16 had 
almost no effect. The only changes were observed 
with power parameter p = 1.5. Then, when the cl 
was 12 or 16, the RMSE 0% and 10-year interval 
were estimated to be optimal. At lower cost levels, 
the estimated optimal accuracy level was 5% and 
the optimal inventory interval alternated between 
5 and 10 years. 

When the results were calculated with an 
adjusted growth model (i.e. u was set to 0), the 

results were calculated only with 10-year inven-
tory interval and inventory RMSE 0%. In this 
case, the total losses were reduced by 30.8%, i.e. 
from about 250 to about 175 €/ha. If the similar 
reduction was assumed to all losses, and the 
cost level was assumed to be 8, the results were 
exactly the same as in the original case of growth 
model accuracy in all but two cases. In the case 
of power parameter p = 1.5, the improved growth 
model increased the life span from 5 to 10 years, 
but the optimal RMSE reduced from 5% to 0%. 
This meant 40.1 €/ha/30 years (30.6%) savings in 
actual inventory costs. In the case of p = 2.5, the 
optimal inventory interval remained at 15 years 
but the optimal RMSE level increased from 10% 
to 15%, giving a saving of 92.4 €/ha/30 y (58.4%) 
in inventory costs (Fig. 4f, see also Table 4). 
Thus, in some cases the improved growth model 
either allowed for a longer inventory interval or 
less accurate data. Even then, with all the tested 
cost structures, the estimated optimal RMSE was 
never higher than 20% and the estimated optimal 
inventory interval never longer than 15 years.

Naturally, there was certain amount of variation 
in the losses and also in the estimated optimal 
inventory intervals. The relative standard devia-
tions of the losses for each (n,σ) combination 
are found in Table 5. The relative SDs vary from 
2.65% to 9.23% so that the relative SDs are 
smaller when inventory interval is short and data 
is accurate and larger when interval is longer and 
data more inaccurate. For the estimated optimal 
inventory interval and accuracy combinations, the 
relative SDs varied from 4.51% and 6.15%.

Table 3. The average absolute total costs plus losses, in €/ha with 
different inventory periods (n) and accuracy levels (σ), with 
cost parameters cl = 8, and p = 2.5. The optimal accuracy and 
inventory period is given in bold.

σ   n   

  5 10 15 20 30

0 –1575.7 –995.3 –825.9 –878.0 –744.2
5 –1017.7 –706.3 –610.4 –685.4 –655.1
10 –718.6 –560.1 –516.5 –577.2 –579.1
15 –570.9 –534.7 –527.3 –559.6 –599.7
20 –567.6 –563.0 –611.0 –615.4 –638.9
25 –625.5 –656.9 –666.8 –706.7 –703.3
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4 Discussion

In this paper we have continued the analysis of 
the effect of growth prediction errors (Pietilä et 
al. 2010) on the expected losses in a more general 
case. We simplified the assumptions from the 
previous study so that we did not assume an auto-
correlation in the within-stand error component, 
but they were assumed to be mutually independ-
ent. Here we also assumed the stand effect to be 
constant rather than depend on stand age. It meant 
that the final autocorrelation within each stand 
was assumed as fixed, 0.635. This meant smaller 
total autocorrelation especially in the younger 
stands (see Pietilä et al. 2010).

In this case, all the simulated scenarios proved 
to be feasible. In Pietilä et al. (2010) 10 simulated 
scenarios (out of 54900) had to be rejected as the 

simulated values were in the end so unrealistic 
that SIMO was unable to produce a result for 
them. It means that the assumptions used here 
are probably more realistic, although no new 
evidence on the true autocorrelation exists. It 
seems, however, that the autocorrelation param-
eter is very important to know, if accurate esti-
mates of losses due to growth prediction errors 
are required. It can be seen from the estimated 
losses: the estimated losses in the longest inven-
tory intervals (30 years) used in this study were 
308 €/ha, while the similar losses in the earlier 
study were 768 €/ha (Pietilä et al. 2010). Partly 
this difference is due to the fact that in the earlier 
study the losses were calculated for 60 years, and 
here only for 30 years: more years means more 
decisions and, in turn, more decisions mean more 
expected losses. However, the difference is too 
large to be explained purely by the time scale 

Table 5. The relative standard deviations (SD) of the losses, in 
percentage with different inventory periods (n) and accuracy 
levels (σ).

σ   n   

  5 10 15 20 30

0 2.65 3.42 4.00 4.85 7.04
5 2.99 3.61 4.26 5.06 7.01
10 2.99 4.51 5.06 5.27 6.67
15 5.10 5.49 6.15 6.15 7.99
20 6.27 6.40 7.19 7.09 8.56
25 7.09 7.48 8.20 8.06 9.23

Table 4. The average absolute total costs plus losses, in €/ha with 
improved growth predictions, different inventory periods (n) 
and accuracy levels (σ), with cost parameters cl = 8, and p = 2.5. 
The optimal accuracy and inventory period is given in bold.

σ   n   

  5 10 15 20 30

0 –1517.8 –918.2 –735.5 –762.7 –614.8
5 –974.2 –649.7 –548.0 –604.0 –558.1
10 –654.8 –489.6 –441.9 –488.2 –478.7
15 –487.8 –442.6 –431.3 –456.1 –483.2
20 –461.7 –452.5 –488.6 –491.8 –508.8
25 –502.5 –524.1 –530.9 –562.3 –558.6
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(earlier 12.8 €/ha/y, now 10.27 €/ha/y), especially 
as all the incomes and costs are discounted. Thus, 
the remaining difference is due to the changed 
assumptions, i.e. the autocorrelation.

In this study, we also added the effects of inven-
tory errors into the analysis. The losses increased 
with increasing RMSE of inventory, and shorter 
inventory interval elevated the rate of the increase 
in losses. With least accurate inventories the 
inventory interval did not affect much. It means 
that inventory errors and growth prediction errors 
”interact”, i.e. the different errors may somewhat 
cancel each other out. It also means that increas-
ing the accuracy of inventory does not seem to be 
as useful when the inventory period is long, than 
when the inventory period is short. 

We also included cost-plus-loss analyses with 
different assumptions of the cost structure. The 
results were remarkably stable: 25% RMSE, which 
is close to the traditional field inventory used in 
Finland until recently, was not optimal in any of 
the studied cases, and 20–30 year inventory inter-
vals were neither ever optimal. Thus, it seems that 
with any reasonable costs and accuracy levels (i.e. 
with RMSE > 0, and p > 1), the estimated optimal 
interval is either 10 or 15 years with the current 
growth models. The results thus seemed very robust 
to the assumptions made. To define if the optimal 
interval is 10 or 15 years, the additional cost of 
more accurate and precise data is crucial.

Even improving the growth models so that the 
losses could be reduced by 30% did not change 
the estimated optimal interval. Again, the esti-
mate on optimal inventory interval was either 10 
or 15 years. Improving the growth model made 
it possible in some cases either to lengthen the 
life span of data or to reduce the accuracy of the 
initial data. This would mean direct cost savings, 
in the example studied here as much as 30–58%. 
However, here we assumed that improving the 
growth model does not introduce additional costs, 
while in reality adjusting the growth models for 
the stand effect would mean measurements of 
past growth. This would increase the inventory 
costs. In addition, we assumed that the stand 
effect could be estimated without error. Thus, 
this study gives the value of perfect information 
about stand effect, and real savings from sample 
information would be smaller. This remains to be 
studied in the future.

In this study we assumed also that the improve-
ment of growth models would be similar with 
each inventory interval and each inventory accu-
racy level. It is possible that adjusting the growth 
models for local bias would reduce the losses less 
in shorter inventory interval than in long ones, 
which could possibly make the long intervals 
more advantageous in some conditions. If the 
stand effects were larger in mature stands than 
in young stands, it might have an effect on the 
life span. This needs to be studied in further 
analyses, however. Likewise, the effect of the 
autocorrelation coefficient needs to be analysed 
in future studies. For instance, assuming the stand 
effect constant in time may also overestimate the 
value of adjusting the model, as the stand effects 
(average stand growth) may be less than perfectly 
correlated in time (see e.g. Holm 1980).

In this analysis, the forest inventory error was 
introduced to basal area and height measure-
ments, and these variables were assumed to have 
the same accuracy level. If the effects were ana-
lysed separately for all variables, it would be 
possible to find out if one of the variables would 
be more important than the other, i.e. if the efforts 
should be concentrated on a certain variable. 
For instance, in Kangas et al. (2011), it seems 
evident that a similar error in basal area is much 
more dangerous than in height. However, in real 
forest inventory method, the height is typically 
assessed much more accurately than basal area, 
as there is much within-stand variation in basal 
area. Moreover, laser scanning based forest inven-
tory directly measures the height, but basal area 
is model based.

In order to implement the complex simula-
tion model used in this study, we had to make a 
number of assumptions. For instance, we assumed 
the diameter distribution models, height, volume 
and taper models perfect, as well as the stand 
productive value models. As these error sources 
are similar to all inventory accuracy levels and 
inventory intervals, they do not affect the optimal 
inventory intervals (unless there are very complex 
interactions between the models). They could 
affect to the estimated losses, however, which 
are most probably underestimates. We believe 
that these assumptions were justified in order to 
concentrate on the addressed sources of uncer-
tainty.
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Although this study seems to give a definite 
recommendation of 10–15 years inventory period, 
there is still a lot of work that needs to be done. 
The effects of biases in the models and inven-
tory estimates, for instance, may have a more 
pronounced effect on the losses than random 
errors. Had we considered a specific inventory 
method, these complications could have been 
taken into account in inventory errors (see Mäki-
nen et al. 2010). With respect to the growth 
prediction errors, the effect of possible biases 
needs to be studied in future. As the bias in 
growth predictions might vary according to the 
site quality, species, stand age and region, this is 
not a simple task.

Due to the uncertainties discussed above, the 
estimates of the losses are also uncertain. The 
uncertainties can be measured by the standard 
deviations (Table 5) of the losses in the 100 
realization to the extent the sources of uncertain-
ties were included in the analysis. The estimated 
losses may be quite close to each other near the 
estimated optimal inventory accuracy/inventory 
interval combinations (Tables 3 and 4). Thus, the 
loss function is rather flat around the optimum. 
When this is combined to the effect of uncertainty 
in the estimated losses, it can be concluded that 
small deviations in the inventory interval or inven-
tory accuracy are not detrimental. 

5 Conclusions

In this study, we proposed a cost-plus-loss –based 
method for estimating the optimal inventory inter-
val that takes into account the given forest inven-
tory errors as well the errors in forest growth 
projections. This method is not restricted to any 
single forest inventory method, but can be applied 
to any combination of forest inventory meth-
ods for which the accuracy and the true costs 
are known. The methodology can be utilised in 
calculating how the errors in different variables 
affect to the optimal inventory interval, so that the 
inventory efforts can be concentrated optimally. 
We showed that there is an important link between 
the quality of forest growth and yield models and 
inventory accuracy that should be acknowledged, 
both when estimating growth models and in plan-

ning forest inventory. The results also imply that 
measuring past growth from the stands and using 
that for improving the growth predictions may 
be a very efficient way to improve the quality of 
forest planning databases.
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