Vol. 28(1), 1994




SILVA FENNICA

a quarterly journal of forest science

Publishers

Editors

Editorial Office

Managing
Board

Editorial
Board

Aim and Scope

The Finnish Society of Forest Science
The Finnish Forest Research Institute

Editor-in-chief Eeva Korpilahti
Production editors Tommi Salonen, Seppo Oja

Unioninkatu 40 A, FIN-00170 Helsinki, Finland
Phone +358 0 857 051, Fax +358 0 625 308, E-mail silva.fennica@metla.fi

Erkki Annila (The Finnish Forest Research Institute), Jari Kuuluvainen (The Finnish Forest
Research Institute), Esko Mikkonen (University of Helsinki), Lauri Valsta (The Finnish Forest
Research Institute), Harri Vasander (University of Helsinki), and Seppo Vehkamiiki (University
of Helsinki).

Per Angelstam (Grimso Wildlife Research Station, Sweden)

Julius Boutelje (Swedish University of Agricultural Sciences, Sweden)
Finn H. Brzkke (Norweéian Forest Research Institute, Norway)

J. Douglas Brodie (Oregon State University, USA)

Raymond L. Czaplewski (USDA Forest Service, USA)

David Ford (University of Washington, USA)

George Gertner (University of Illinois, USA)

Martin Hubbes (University of Toronto, Canada)

William F. Hyde (Virginia Polytechnic Institute and State University, USA)
Jochen Kleinschmit (Lower Saxony Forest Research Institute, Germany)
Michael Kohl (Swiss Federal Institute for Forest, Snow and Landscape Research, Switzerland)
Noel Lust (University of Gent, Belgium)

Bo Langstrom (Swedish University of Agricultural Sciences, Sweden)
William J. Mattson (USDA Forest Service, USA)

Robert Mendelsohn (Yale University, USA)

Hugh G. Miller (University of Aberdeen, United Kingdom)

John Pastor (University of Minnesota, USA)

John Sessions (Oregon State University, USA)

Jadwiga Sienkiewicz (Environment Protection Institute, Poland)

Richard Stephan (Federal Research Centre for Forestry and Forest Products, Germany)
Elon S. Verry (USDA Forest Service, USA)

S.E. Vompersky (Russian Academy of Sciences, Russia)

A.G.D. Whyte (University of Canterbury, New Zealand)

Claire G. Williams (North Carolina State University, USA)

Silva Fennica publishes original research articles, critical review articles, research notes report-
ing preliminary or tentative results, and discussion papers. The journal covers all aspects of
forest research, both basic and applied subjects. The scope includes forest environment and
silviculture, physiology, ecology, soil science, entomology, pathology, and genetics related to
forests, forest operations and techniques, inventory, growth, yield, quantitative and management

sciences, forest products, as well as forestry-related social, economic, information and policy
sciences.

SILVA FENNICA

a quarterly journal of forest science

Vol. 28(1) - 1994

The Finnish Society of Forest Science

The Finnish Forest Research Institute



New Scope of Silva Fennica

In today’s world, forests continue to be a natural resource essential to many
individual nations and vital to all mankind. Research is required to increase
our knowledge of this resource, of issues such as ecological interactions and
variety of forest ecosystems, silvicultural management, sustainable utiliza-
tion of natural resources, technical development and facilities, and social and
cultural values of forests and forestry. Many problems are encountered and
shared by scientists working in different countries, while other problems are
specific to particular areas but equally important.

For decades, it has been the policy of Silva Fennica to concentrate on
research articles relevant to Finnish forestry. In recent years, the journal has
published a growing number of submissions dealing with forestry elsewhere
in the boreal zone, and even in the more southerly conditions of developing
countries. In view of the above considerations and the growing interaction
within the scientific community, the publishers have now decided that Silva
Fennica will start publishing papers over the entire range of forest science.
With the new international dimension, Silva Fennica will be a forum for
dissemination of research results and exchange of ideas among the forest
research community in its widest sense. Manuscripts of original research
articles and constructive reviews are welcome from authors in all countries.

It is my intention to maintain and improve the scientific standard of the
journal and arouse ever greater interest in its contents. I aim at a competent
and constructive review of manuscripts. In this endeavour, [ am happy to be
supported by the expertise of the newly appointed international editorial
board consisting of recognized experts in various fields of forest research. I
also strive to preserve Silva Fennica’s record of speedy printing: the average
time for a paper to appear in print has been about four months from accept-
ance.

I expect that the renewed Silva Fennica will be able to cater interesting
research results and stimulating discussion papers to all concerned. I would
also like to call the attention of scientists worldwide to the new scope of the
journal, hoping that Silva Fennica will prove able to serve their needs for a
publication forum.

Eeva Korpilahti
Editor-in-Chief
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In this study, model based and design based inference methods are used for estimating
mean volume and its standard error for systematic cluster sampling. Results obtained
with models are compared to results obtained with classical methods. The data are from
the Finnish National Forest Inventory. The variation of volume in ten forestry board
districts in southern Finland is studied. The variation is divided into two components:
trend and correlated random errors. The effect of the trend and the covariance structure
on the obtained mean volume and standard error estimates is discussed. The larger the
coefficient of determination of the trend model, the smaller the model based estimates of
standard error, when compared to classical estimates. On the other hand, the wider the
range and level of autocorrelation between the sample plots, the larger the model based
estimates of standard error.
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1 Introduction

The concept of superpopulation models was first
introduced into sampling theory by Cochran
(1946). In the last two decades, new methods
based on superpopulation models have been in-
creasingly studied in different fields. In the liter-
ature on forest inventory methods, hardly any
attention had been paid to superpopulation mod-
els, apart from in the studies of Matérn (1960),
until recently.

In recent years, the possibilities of new meth-
ods have been noted in forestry, too. Model based
estimation allows the combination of different
sources of information or sources of error. Man-
dallaz (1991) used the GIS to provide the auxil-
iary information needed in the superpopulation
models. Information from previous surveys was
used as prior information of forest inventory in
Kangas (1991).

In model based estimation, the characteristics
of a population are described with a model. In-
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ference about the population depends on the as-
sumed model, not on sampling design, as in
classical methods. If the sampling units can be
assumed to be independent, variation in the pop-
ulation can be described by a simple regression
model. If sampling units are correlated, these
correlations have to be given consideration in
model assumptions. If the population is properly
described with the model, the same model based
estimators can be used for any sampling design,
for complex sampling designs, and even for sam-
ples which are not selected by any objective
method.

Measurement errors and errors due to volume
and height models can also be taken into account
when model based inference theory is used (Kan-
gas 1993). Also, the inventory design does not
have to be as precisely determined as in classical
methods: additional sample plots can be meas-
ured after the initial inventory, or the inventory
design can be changed without any major prob-
lems.

If there is a trend in the population, part of the
variation of y is due to the trend. This situation
can be presented by means of a superpolation
model as

Yi=a+PBx; +e; 1)
where
E(e,)=0 and E(e?)=o0? )

The errors may be either correlated or non-corre-
lated. In (1) x; is a variable (or a vector of varia-
bles) whose value is known for each sampling
unit in the population.

In model based methods, the sampling error is
estimated from the error terms of the superpopu-
lation model. Thus, the part of the variation due
to the trend is first removed. In the presence of
the trend, the precision of estimators is higher,
because the trend component reduces the vari-
ance of the model.

In the case of autocorrelated sampling units,
the precision of systematic sampling can be higher
than that of simple random sampling (SRS). This
is the case if the correlation between sample
points is positive, decreasing with increasing dis-
tance and convex, and, if the sample is an equi-

lateral lattice (Bellhouse 1988, p. 134, Ranneby
et al. 1987). Cochran (1977, p. 220) has given
three examples of correlation functions which
satisfy these conditions. These are linear, expo-
nential, and hyperbolic tangent. Any linear com-
bination of these functions can also be used. If
the sampling design is a cluster design, system-
atic cluster sampling is more precise than ran-
dom cluster sampling, under the same condi-
tions.

The theory of systematic sampling has been
one of the most problematic parts of classical
sampling theory. Classical methods require that
each sampling unit has a known, positive proba-
bility of selection. In systematic sampling the
whole sample is determined, when the first sam-
pling unit is selected and thus, this assumption
does not hold. The most difficult thing in sys-
tematic sampling designs, with respect to classi-
cal sampling theory, is that no general estimators
of sampling errors can be found. The standard
error can be presented with a general formula
(e.g. Ripley 1981), but this formula cannot be
used in most practical situations, since the auto-
correlation function required in the formula is
usually not known.

In forest inventory, systematic sampling meth-
ods have been used since the beginning of this
century. Many formulas have been proposed for
estimating standard error in systematic sampling.
The estimators that have proved to be useful in
practice are based on quadratic forms or on spa-
tial smoothing of interesting variables (Matérn
1947). In these estimators, the part of variation
due to the trend is removed, in the same way as
in model based methods. The formulas of Linde-
berg (1924) and Langsaeter (1926-27) for line
surveys are pioneer work in this field. The for-
mulas for plot surveys were first investigated in
Matérn (1947, 1960) and later in Ranneby
(1981a).

In model based methods, the estimated model
is also used for estimating the population mean.
In classical methods, the trend component is usu-
ally not considered when the mean values are
calculated. The trend can, however, also be tak-
en into account in formulating the classical esti-
mators of mean (Bellhouse 1988, p. 130). For
example, the mean of the smallest and largest
values in the sample can be used in the estima-
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tion of population mean, in addition to the ordi-
nary sample mean.

The formulas presented first by Matérn (1947,
1960) and further developed by Ranneby (1981a),
have been used in the Finnish National Forest
Inventory for as long as the systematic cluster
design has been in use. Yet, the covariance struc-
ture in different parts of Finnish forests and its
effect on estimators has not been thoroughly stud-
ied. Different standard error estimators were com-
pared by Piivinen (1987), but the effects of vari-
ation in the covariance structure were not stud-
ied. The effects of distance between sample plots
within the clusters, on the standard errors have
been studied by Korhonen and Maltamo (1991).
In this study southern Finland was divided into
three parts in which the covariance structure was
studied separately.

The aim of this study is to compare different
model based estimators of mean and standard
error with classical estimators in different condi-
tions. The classical estimates of standard error
are calculated by quadratic forms. The covari-
ance structure is described by a trend and covar-
iance functions. These functions are estimated
for ten forestry board districts, which are differ-
ent with respect to size, and to other characteris-
tics. The effect of covariance structure on esti-
mators is discussed.

2 Material and Methods

2.1 Material

The material used in the calculations is from the
VIII National Forest Inventory of Finland, from
ten forestry board districts in southern Finland.
The study area is presented in Fig. 1. The meas-
urements took place in 1986-1989. The sample
plots were measured in clusters, which are called
tracts. The shape of the tract is a half-square
(Fig. 2). The distance between tracts is 8 km in
north-south direction and 7 km in west-east di-
rection. The distance between sample plots with-
in the tracts is 200 m.

There are 21 sample plots in each tract, three
of which are sample tree plots. In sample tree
plots, the height and upper diameter of each tree

Fig. 1. The study area.

2050 m

tally tree plot

@ sample tree plot

Fig. 2. The tract scheme.
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is known. In the tally tree plots, only diameters
were measured, and the height of the trees is
estimated using height models (Henttonen, un-
publ.). For each tree, the volume is estimated
using volume models (Laasasenaho 1982) and
then the volume per hectare on the plot is calcu-
lated.

2.2 Models Describing the Covariance
Structure

The model used for describing the variation of
volume can generally be presented as (e.g. Man-
dallaz 1991)

yi=XiB+e; (3)

In this model the surface is divided into large-
scale variation (X'8) and small-scale random
process. The vector X; contains the values of
additional variables at point i. The values of
these variables have to be known at each point of
the study area.

It would have been possible to use a model
without the trend component as

Yi=u+E 4)

but the standard error of the model can be re-
duced if the trend component is included. Also,
the range of autocorrelation can be reduced with
a trend component. In many cases, making the
difference between the trend component and ran-
dom, correlated variation is a matter of personal
consideration (Cressie 1986). In this study; the
reduced model was used for testing the signifi-
cance of independent variables in model (3).

The fitted trend of mean volume was a quad-
ratic surface

¥i =Bo +Bixii +Baxai +Baxy +Baxd +Bsx3 5
+Bex3 +BrXuXai + PsXuXs +PoXaiXyi +€; )

where x,,x, are the coordinates and x; is the
altitude.

For a two-dimensional model, the full quad-
ratic surface should be estimated, although all of
the parameters are not statistically significant. In
this way, the surface is invariant under the rigid

motions of the coordinate scheme (Ripley 1981,
p. 35). In this study, the full model was estimat-
ed for the three-dimensional case, although, for
the altitude, all the terms might not have been
necessary.

If the process is assumed to be isotropic, the
covariance functions have to satisfy certain re-
strictive conditions besides the positive-definite-
ness condition. Thus, it is not possible to use just
any function as a covariance function. In this
study, Whittle’s function (Ripley 1981)

o? r r
C(r)-m('—“) K'(r—.,) 6)

was used, because of its flexibility in short dis-
tances.

In (6) the term K, is a modified Bessel func-
tion of second kind and order v, and T is the
gamma function. The parameters to be estimated
are ro(km) and v. Parameter r, describes the range
of correlation (Fig. 3a) and parameter v describes
the level of correlation (Fig. 3b).

The parameters of the trend model and covari-
ance functions were estimated by the maximum
likelihood method (Cook and Pocock 1983).
The ML estimation for a particular parametriza-
tion of correlation matrix R (3 = o’R) and
€;~N(0,0%), amounts to finding R = R, which
minimizes

g(R) = log|R| + Nlogs? )
where

&= %(Y— XB) R-1(Y - XB) ®)
and

B = (X/R-IX)1 X/RY ®

The estimation was carried out using the grid
search method. The step size in the grid search
for parameter r, was 0.5 and for parameter v
0.005.

The variance-covariance matrices were very
large, which makes inverting of the matrices
quite difficult. Thus, it had to be assumed that
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Fig. 3. (a) The Whittle correlation function with v = 0.02 and different values of
1. (b) The Whittle correlation function with r, = 1.0 and different values of v.

correlation between the sample plots diminishes
rapidly. Calculations were made according to
the assumption that the sample plots in each tract
are correlated with the plots in surrounding eight
tracts. In Kangas (1993), correlations were not
restricted, and the results obtained support this
assumption. In this case, the variance-covari-
ance matrix is band-diagonal, although the band
is quite broad. With this assumption, it was pos-
sible, although very time-consuming, to calcu-
late the parameters of covariance matrices even

for districts with 3 200 sample plots. The calcu-
lations were made using IMSL procedures with
a VAX-VMS computer.

The Cholesky decomposition of correlation
matrix R, R = LL', was utilized in parameter es-
timation (Ripley 1981). The equation (9) was
modified into form

B = (LX) (LX) (LX) (LY) (10)

in order to simplify the calculations.
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The significance of the trend surface was cal-
culated using the error sum of squares of the
reduced model (SSE, eq. 4) and the full model
(SSE;, eq. 3) as follows:

_ (SSE-SSE()/(p: ~p)
SSE(/(n-pr) an

In (11) p is the number of predictors in the re-
duced model and py is the number of predictors
in the full model. The R? was calculated using
the same error sum of squares as (Kvélseth 1985)

_SSE,
SSE

R?=1

(12)

and the adjusted R? by dividing the error sums of
squares in (12) with their degrees of freedom,
(n—py) and (n—p), respectively.

A simpler assumption is a mixed model

yi =X +cj+ej (13)

where ¢~N(0,0.%) is the random cluster effect
and e;~N(0,0.?) is the random plot effect, and ¢
and e are independent. This model means that a
constant correlation

o¢

(14)

ol +0;}

is assumed within a cluster, and clusters are as-
sumed to be mutually independent. Estimation
of random effects is much easier than estimation
of covariance functions, which makes this model
a desirable alternative to the general model. Var-
iances of the random effects were estimated us-
ing Henderson’s fitting constant method (Searle
1971).

2.3 Methods for Estimating the Mean
Volume and Standard Error

In classical methods, the estimate of population
mean for systematic sample design is usually
obtained by sample mean as in simple random
sampling. Because some of the sample plots are
not totally on forest land, the mean volume in the

Finnish NFI is obtained by weighing the sample
plots in proportion to the percentage of forest
land of the total area of sample plots.

The standard error of mean volume (on forest
land) in the Finnish NFI is estimated with the
quadratic form (Paivinen 1987; Salminen 1973)

q ST,
var(§) = z (15)

n?

where
y = the estimate of mean volume,

n = total number of sample plots,
m = total number of tract groups,
q = number of tracts each tract group represents
and
1 2
T; 'Z(Zil —-Zip = Ziz +Zig) (16)
and
zy =(y; = y)nj, a7
where
y; = mean volume on forest land in cluster j (tract
)X
y = sample mean volume on the area and
n; = number of sample plots on forest land in the

tract j.

One tract group consists of four tracts (Fig. 4). In
this study the tract groups are formed in such a
way that each tract belongs to four groups. Thus,
each tract group represents 1 tract, i.e. the value
of q is one. In Fig. 4 the two tract groups are
formed so that each tract belongs to one tract
group and the value of q thus is 4.

If the correlation decreases slowly as a func-
tion of distance, this quadratic form gives over-
estimates of standard error (Matérn 1960). Also,
the quadratic form has quite a large variance
(Ranneby 1981a), which may affect the results
for small areas. It has been recommended not to
use this formula in calculating variance estimates
for small areas. There should be at least 30,
preferably 100, tract groups in the area, in order
to ensure good estimates. (Salminen 1985).

Kangas
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Fig. 4. Formation of two tract groups for calculation of standard error. The two

tract group represent 4 tracts each.

The standard error for random two-stage clus-
ter sampling can be estimated by (Loetsch et al.
1973)

}Jjn,(y,—y)z
var(§) = E——
(}'_‘ln,)u—l) {5

where J is the number of tracts. The other nota-
tions are as above.

The formula of two-stage cluster sampling has
been used to illustrate the behaviour of model
based estimators in different situations.

In model based methods, all inference about
the population depends on the assumed model.
The predictor of the population mean is then

§=Xp =X/ (X/EX) 1 X/E1Y (19)

and standard error of mean volume can be esti-
mated, for example, by

var(§) = X/ var(B)X = X/ (X'Z-'X)X (20)

The autocorrelations between the sample plots
are taken into account in the variance-covari-
ance matrix 3.

If the model is biased, variance (20) can be a
poor estimate of the mean square error of esti-
mated mean volume. When the number of obser-
vations is large, the sample is representative for
the population, and the sample plots are selected
by an objective method, the variance estimator
can be used quite safely. The sample can be
considered as representative, if the sample is
balanced, i.e. the sample moments are close to
those of the population (Cassel et al. 1977).

3 Results

The trend component, described by a quadratic
surface (5), in the general model (3) was signifi-
cant, with the risk level 0.05 in all of the districts
except for 0 and 9 (Table 1). In district 0, the
number of sample plots is small, and this affects
the degree of significance. In district 9, the trend
clearly has no effect: the adjusted coefficient of



Silva Fennica 28(1)

articles

Table 1. Coefficient of determination (%), adjusted
coefficient of determination (%), standard error of
estimated model and F statistics for each district.

Table 2. The parameters of covariance functions (6)
and estimated within-cluster correlations (14) for
each district

District R2% R2,j % Se F n District v 1o, km p

0 3.595 0.664 1142 0.2781 306 0 0.025 1.0 0.046
1 4.095 3.537 1043 0.0000 1550 1 0.060 1.0 0.085
2 3.406 2.989 95.8  0.0000 2095 2 0.025 55 0.073
3 2730 2399 91.0 0.0000 2657 3 0.040 2.0 0.085
4 1.193 0.719 105.5 0.0073 1886 4 0.065 1.0 0.066
5 3.304 3.041 95.8 0.0000 3010 5 0.060 1.0 0.058
6 1.976 1.591 97.4  0.0000 2301 6 0.045 1.0 0.060
7 0.776  0.493 97.6 0.0034 3173 7 0.050 1.0 0.042
8 2.252 1.888 97.3  0.0000 2429 8 0.035 1.0 0.045
9 0.474 0.000 107.1 0.4907 1783 9 0.050 1.0 0.076

determination is zero. The standard error of the
model was also largest in these districts.

Differences in the covariance structure between
the districts are mainly revealed in the variation
of values of parameter v (Table 2). In districts 0
and 2, the parameter v has its smallest value. In
other districts differences are not so clear.

The value of parameter r, is the same, 1.0 km,
for most of the districts. This means that there is
only within-cluster correlation after the effect of
the trend is removed. In district 2, however, the
value of ry was 5.5 km. This district is partly
coastal region and partly inland. The model used
obviously does not sufficiently decribe the trend
surface in this district, which probably causes
this result.

This result indicates, that the quadratic trend
model is not the best choice for all of the dis-
tricts: with a more flexible model, correlations
between the tracts could be reduced. Thus, it
would be possible to assume that the between-
cluster correlations equal zero, in which case
calculations would be much easier.

The mean volumes obtained with different
methods are shown in Table 3. The stronger the
correlation within the clusters, the nearer the
mean volume obtained with the general model
(3) (SYS) or mixed model (13) (MIX), the un-
weighted mean of cluster means (CLU). In SRS
estimators, autocorrelation between sample plots
is not considered, and the weight of each cluster
depends on the number of forest sample plots in

10

Table 3. The mean volumes for each district estimated
with simple random sampling (SRS), general
model (3) (SYS), mixed model (13) (MIX) and
cluster (CLU) estimators

District SRS SYS MIX CLU
0 1543 1528 1509 1416
1 157.8 1585 159.1 1633
2 1415 1415 1421 1472
3 1212 1215 1221 1262
4 1546 1559 1553 158.8
5 128.1 1293  129.1 1362
6 1442 1446 1444 1463
7 1338  133.7 1340 1335
8 1273  127.7  127.7  129.6
9 137.1  138.0 138.1 143.1

the cluster. In cluster sampling estimators, the
weight of each cluster is the same. The clusters
can, however, be weighted according to their
size, in which case the weight of each sample
plot would be equal.

When autocorrelation between the sample plots
is taken into account, the weight of single sam-
ple plots in the cluster is reduced, but the clusters
with many forest sample plots still have more
weight than those with few forest sample plots.
However, if there were the same number of for-
est sample plots in each cluster, estimates ob-
tained using different methods would be equal.

Kangas
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Table 4. The standard errors of mean for each district
estimated with simple random sampling (SRS),
quadratic form (15) (QUAD), general model (3)
(SYS), mixed model (13) (MIX) and cluster (18)
(CLU) estimators

District SRS QUAD SYS MIX CLU
0 6.83 7.93 7.59 8.09 7.27
1 279 3.57 3.49 3.69 3.58
2 2.18 2.64 3.54 2.85 2.94
3 1.82 2.49 2.57 2.59 271
4 2.50 275 3.35 3.31 3.28
5 1.81 2.60 242 2.38 2.72
6 2.09 2.57 2.65 2.77 2.80
7 1.77 1.95 2.31 221 2.26
8 2.02 2.50 245 2.54 2.57
9 2.58 3.14 3.32 3.60 3.42

Table 5. Correlations between the differences in stand-
ard error estimates and R,, parameter v, and the
standard error of the model.

R2 v Se
SYS-QUAD —0.78 0.53 -0.13
CLU-SYS 0.87 -0.31 0.07
CLU-QUAD —0.60 0.60 -0.15

The larger the difference between the cluster
mean and simple random sampling mean, the
greater the effect of within-cluster correlations
on the estimated means.

The standard errors obtained with different
methods are presented in Table 4. Differences
between the standard errors estimated by quad-
ratic form (15), two-stage cluster sampling (18)
and the model for systematic sampling (20), were
calculated for each district. Then correlations
between the differences and the characteristics
of the model were calculated (Table 5). District
2 is not included in the following calculations,
because the covariance structure in this district
differs so much from the other districts. Although
the coefficient of determination has not as
straightforward an interpretation as in OLS mod-

els, the differences between the different meth-
ods can be illustrated by R2.

The difference between the standard error of
cluster sampling and systematic sampling (CLU-
SYS) had the biggest correlation with R?, 0.87
(Table 5). This could be expected, because the
trend component is not at all taken into account
in the estimate of cluster sampling. From the
correlations it can be concluded that the larger
the value of R?, the larger is the difference, when
other parameters remain unchanged. Thus, the
larger the R?, the larger is the standard error
obtained with cluster sampling (CLU), when
compared to the model based estimate (SYS).
Correlations with the standard error of the model
were almost negligible. This may be due to the
fact that standard error depends mostly on the
number of sample plots, but the differences do
not.

The difference between model based standard
error and standard error based on quadratic form
(SYS-QUAD) was also strongly correlated with
the value of R?, the correlation was —0.78 (Table
5). From the correlation it can be concluded that
when the coefficient of determination increases,
the difference decreases. Consequently, the stand-
ard error based on trend model is smaller than
the standard error estimated with quadratic forms,
when the coefficient of determination of the trend
is sufficiently large. This supports the fact that
the quadratic forms give overestimates of stand-
ard errors if there is large-scale correlation in the
district (Matérn 1960). This situation occurs in
districts 1 and 5.

The correlation of (SYS-QUAD) with param-
eter v was somewhat smaller, 0.53. When the
value of parameter v increases, the difference
increases, if other parameters remain unchanged.
Thus, the smaller the parameter v of the correla-
tion function, the smaller the standard errors ob-
tained using model based method, when com-
pared to the quadratic form. The range of corre-
lation, 1y, most probably affects in the same way,
but since there was not much variation in the
values of this parameter, this assumption could
not be tested.

In districts 2, 4, and 7, the standard error esti-
mate obtained with the trend model is even big-
ger than that obtained with cluster sampling. If
the variation in the forests is mainly small-scale
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rnvariation, the quadratic form probably describes
the structure of forests better than the quadratic
surface model. In this case, a more flexible mod-
el, a non-parametric model for example, would
probably describe the variation better than the
quadratic trend.

In district 0, the smallest district, the model
based estimate of standard error is smaller than
that obtained with quadratic forms. This may be
partly due to the trend model and the small value
of parameter v, and partly due to the fact that
there are only 39 tracts in the district. For calcu-
lating the standard error accurately with quadrat-
ic forms more tracts are required. However, stand-
ard errors of the parameters of covariance func-
tion are also the bigger the less sample plots in
the district.

Ordering of forest sample plots within the clus-
ters has an effect on the differences between the
general systematic sampling model and the mixed
model (SYS-MIX). The correlation between the
differences and the mean number of forest sam-
ple plots per cluster was —0.70, and between the
differences and the mean distance of forest sam-
ple plots within the clusters —0.66. The shorter
the mean distance, or the smaller the mean
number of forest sample plots, the bigger the
standard error of the mixed model, when com-
pared to the general model.

The general model can take into account the
differences in the ordering of forest sample plots
within the cluster, but the mixed model can not.
For example, if there are only two forest sample
plots in the cluster, in the mixed model covari-
ance is the same if they are subsequent to each
other or at different ends of the tract.

4 Discussion

In this paper, the covariance structure in ten
forestry board districts in southern Finland has
been studied. The effects of the covariance struc-
ture on the mean volumes and standard errors
estimated according to different methods has been
considered. The results obtained show that the
covariance structure in the districts, which were
studied, differs from each other. The covariance
structure also has an effect on the estimated re-
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sults, regardless of the method used.

In the districts where large-scale variation is
clear, model based estimators give smaller stand-
ard errors than quadratic forms, and in districts
where the range and level of autocorrelation of
random errors is large, quadratic forms give
smaller estimates than model based estimators.
When the trend in the population is clear, it
might be reasonable to use the model based esti-
mators, because quadratic forms are known to
give conservative estimates of standard errors in
this case.

Autocorrelation also had an effect on the esti-
mated mean volumes. Model based estimators of
mean volume might be preferable to classical
estimators when there is variation in the number
of sample plots on the tracts. The weights of the
sample plots used in model based estimators are
probably more precise than the weights used in
classical estimators.

The problem with model based estimation is
the need for computer resources. These prob-
lems can, however, be reduced by more efficient
methods. Other methods, which do not need ma-
trix inversion, have been proposed for estimat-
ing correlation functions by Vecchia (1992).
These methods seem very promising because
covariance functions will be needed for even
larger areas in the future.

The other possibility is to use more flexible
models in order to reduce the range of the corre-
lation. If the trend model is flexible enough,
autocorrelation may be reduced to within-cluster
correlation. This would make calculations much
easier. Besides, a more flexible model could also
describe forest areas without clear large-scale
trend component better than the models used in
this study.

A more flexible model could be obtained by
including additional variables, the distance from
the sea, for example, or classifying variables in
the model. The area could be stratified by a
satellite image, and these strata could be used as
dummy variables in the model. A non-paramet-
ric regression model for autocorrelated observa-
tions (e.g. Hart 1991) or a spatial moving aver-
ages approach (e.g. Ripley 1981) could be used
in order to obtain a flexible model. In these
methods, the volume of a certain point is esti-
mated with the aid of nearby observations. Non-
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parametric methods might also be the most at-
tractive solution to the calculation problems.

Model based estimates obtained were quite
near the corresponding classical estimates in most
districts. The quadratic trend model, however, is
probably not the most reasonable choice for eve-
ry district. The estimation of the model has to be
made with care, and the characteristics of the
area have to be considered in order to obtain a
flexible enough model. The advantage of model
based estimation is that the characteristics of the
districts and the effects of these characteristics
on estimators have to be described and studied
thoroughly, and these results can be used when
the results are interpreted.
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