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1 Introduction

Estimation in statistical models is governed by
principles, such as the least squares principle,
the maximum likelihood principle, Bayes princi-
ple, etc. In fitting a stipulated model to data, we
explicitly or implicitly employ one of these prin-
ciples together with an appropriate technique to

meet a specific criterion. Computing the coeffi-
cients for a regular linear regression model with
a statistical package, for example, typically in-
vokes the ordinary least squares principle. The
criterion is the minimum sum of squared residu-
als which is achieved by finding the roots of the
derivatives of the sum of squares in closed form.

The choice of an estimation principle is not
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always governed by convenience. We want also
estimates that are good in some sense. That is, to
select a principle among a suite of candidates
one may formulate minimal properties the esti-
mator must possess and properties that guide
final selection. The reason for the necessity of
such an approach is that in any situation no
single best estimator emerges. Whatever the cri-
terion that governs selection, it should be em-
phasized that the understanding of optimality
depends on it and needs to be defined. There is
no optimal method or estimator per se. Optimal-
ity can be achieved only when conditions such
as unbiasedness, minimum variance, minimum
mean square error, etc. are imposed.

The coincidence of classical estimation princi-
ples in quite different settings should prompt a
curiosity to find their common denominator. The
large number of alternative methods provides
impetus to seek a more unifying approach to
statistical estimation. This contribution introduces
Estimating Function (EF) theory to the forestry
literature as such an approach with potential to
deal successfully with many typical modeling
problems. Special emphasis will be placed on
modeling serially or spatially correlated data,
which arise often in forestry. Modeling of both
continuous and categorical responses will be treat-
ed. Section 2 highlights the important concepts
behind Estimating Function Theory. Necessary
theoretical developments are deferred to the Ap-
pendix. In Section 3 an optimal function is intro-
duced that can serve in many situations as an
efficient means to statistical modeling. Section 4
discusses several examples using forestry data
and depicts the results from a simulation study.

2 Estimating Function Theory

Godambe (1960) published a fundamental arti-
cle about what he termed “the optimality of reg-
ular maximum likelihood”. It is here that the
idea of estimating-function-based inferences orig-
inated. To be specific let X denote a sample from
a distribution p(x, 6), that depends on a scalar
parameter 6. The vector parameter case is dis-
cussed in Section 3. We are interested to find an
estimator 6 of 6 that is a function of the data.
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All classical estimation principles solve an equa-
tion of the form

g(x,6)=0 (1]

for 6. If the root of [1] exists, it serves as the
estimator 6 = T(x) of 6. For example, the ordi-
nary least squares principle invokes

8(x,60) = 3,(xi - E(x:))9E(x:)/ 36 = 0.

While classical analysis focuses on evaluating
the properties of 6 = T(x), Estimating Function
theory focuses on properties of the function
g(x, 6). Among all possible g(x, 6), which are
functions of data and the parameters, one selects
that which is optimal in some sense.

This appears to be a natural extension of clas-
sical estimation where one searches for the esti-
mator that is in some sense optimal. Not surpris-
ingly, just as there is typically no single best
estimator, neither does there appear to be a uni-
formly best estimating function. However, since
all classical estimating equations are of the form
[1], it seems reasonable to restrict the search to
the class & of unbiased EF’s, which are defined
as having zero expectation regardless of the
value of 6, i.e. E(g(x, 6)) =0 V 6. It should be
noted that unbiasedness of g(x, 6) does not
necessarily mean unbiasedness of 6, the im-
plied estimator of 6. We restrict this discussion
to EF’s that are linear in the observables X, but
can be non-linear in 6.

Godambe (1960) defined g(x, 6), as an opti-
mal estimating function (OEF), provided that

E(g(x,B)z) E(g'(x,B)z)

7= . 2
{E( ag(x, 9))} {E( ag (x,G))}
a6 a6

for all 6, where g*(x, 6) is any other unbiased
EF in €. Godambe and Kale (1991) term
&(x, 6) = g(x, 6)/ E(dg(x, 6)/ 36)a standardized
estimating function (cf. Godambe and Heyde
1987, Godambe and Thompson 1989). [2] is
thus equivalent to stating that an OEF is the
standardized EF with smallest variance in €.

This latter interpretation has appeal for several
reasons.
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(i) If gy(x, 6) is linear in 6, var(gy(x, 6)) = var(é),
where 6 is the estimator obtained by solving
8s(x, 6) = E(gy(x, 6)) = 0. Choosing an OEF thus
yields a minimum variance unbiased estimator
(MVUE).

(ii) If g«(x, 6) is non-linear in 6, an iterative algorithm
may be necessary to estimate 6. Solving g(x, 6) =
0 via Fisher scoring applies a directional incre-
ment

: ag(x,0))”"
66 = —E{T} g(x,B)

to current solutions. Hence the estimate at itera-
tion number u + 1 is

Ousr = 6, +66 = 6, +8:(x,6,).

The directional increment is a standardized EF
evaluated at the current solution. Choosing the
8s(x, ) with minimal dispersion results in fast
convergence, since the correction term will be
small on average.

(iii) Godambe (1960) showed that the likelihood score
function is an OEF in the sense of smallest stand-
ardized variance in the class &. This corresponds
to highest information, since the variance of the
score function is Fisher’s information number.
Godambe and Heyde (1987) show that selection
of the minimally dispersed gy(x, 6) is equivalent
to maximizing the closeness to the likelihood score
function, which may be unknown. This allows
one to find an efficient means for estimation in
cases where maximum likelihood estimation is
infeasible or impossible with minimal loss of in-
formation about the parameter 6.

Succinctly stated, when estimation is based on
an OEF, the properties of the estimator are of
minor importance, because the OEF utilizes the
maximum of information in the data about the
parameter. It is remarkable, that the OEF’s in
many situations correspond to well-known clas-
sical estimation equations, mostly least squares
normal equations and likelihood score equations.
The advantage of EF theory though, is not to
keep the classical principles distinct, but to search
for the OEF in any situation, regardless of whether
the results correspond to classical estimators.

The greater importance and contribution of EF
theory to the recent developments in statistical
estimation is that it provides consistent estimates
in situations where classical methods do not. For
example let y; = f(a) + &, where E(g;) = 0, var(;)
= 0% ). In this location model, variances and
means are functionally related through the pa-
rameter a. It is well-known that least squares
estimates obtained under these circumstances are
biased and inconsistent. An optimal estimating
function yielding consistent estimates, exists how-
ever (Godambe and Kale 1991).

In other situations, one may want to employ
the maximum likelihood principle, but the joint
distribution of the responses may be inscrutable
or impossible to evaluate. An OEF that does not
require a specification of the entire distribution,
hence the likelihood, may provide a viable alter-
native means of estimation.

3 A General Estimating
Function

For many who are well trained in classical meth-
ods of modeling and analysis, two related as-
pects of EF theory are difficult to appreciate at
first glance. One, the need to identify an OEF in
any given situation and two, that we are mainly
concerned with the first two moments of g(x, 6),
rather than the moments of the estimator itself.
In this section an EF is presented which is opti-
mal in many classical and special situations, re-
duces to classical estimators in many settings
and has interesting properties that transpire into
properties of the obtained estimator. It is be-
lieved that the acceptability of EF theory de-
pends on the existence of such a function.

To fix ideas, let Y; =[Ya,...,Yin } i = 1,.,K
be the vector of observed responses for the ith
subject. No restriction is placed on #;, the number
of measurements made for subject i. In the case
n; =1, V i, we have a classical (unrepeated) data
structure, if n; = n > 1, Vi this is a balanced
repeated measurement structure. It is assumed
throughout this contribution that the Y,’s are
uncorrelated, but repeated measures on the same
subject (the Y;’s) are dependent. The spacing of
the Y;; will often be associated with some meter
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of time or space. But this is not required. In
modeling the responses we postulate a location
model, i.e. a statistical description for the expec-
tation of Y;, with an additive error:

Yi=nX# +Zb) + & [3]

In [3], B is a (p*1) vector of fixed effects, b; is a
(g*1) vector of random variables with E(b;) = 0,
var(b;) = B. & are random errors with E(¢;) = 0,
var(&) = R;. X; and Z; are design matrices associ-
ated with 8 and b;, respectively. If n(e) is the
identity function and Z;= 0, [3] is a linear regres-
sion model Y; = X8 + ¢ for the ith subject. If Z;
=0, b; = 0, a linear mixed model of the Laird-
Ware form (Laird and Ware 1982) emerges as Y;
= X + Zb; + ¢. Gregoire, Schabenberger and
Barrett (1995) analyzed models of this form. If
7(e) is an invertible, non-linear, monotonic trans-
form, [3] is a Generalized Linear Model (GLM)
if the distribution of ¢; is in the exponential fam-
ily of distributions (Nelder and Wedderburn 1972,
Bickel and Doksum 1977, McCullagh and Nelder
1989). The inverses, 17'(e), are known as link
functions. This construction allows for categori-
cal response variables, i.e. binary, nominal, ordi-
nal responses and count data.

In the cases where 7)(e) is either the identity or
non-linear monotonic, the matrices X; and Z,; are
of size (n;#p) and (n;*q), respectively, and X8 +
Zb; is called the linear predictor &;. For contin-
uous responses Y;, one oftentimes models more
general non-linear functions than link functions.
A typical example are growth models. In this
case we allow 7(e) to be an arbitrary non-linear
function and conformity between X; and 8 on
one hand, and Z; and b; on the other hand is not
required. To indicate general 7(e) we write

Yi=n(Xi Z, B, b)) + & [4]

Models [3] and [4] have a very broad scope.
Linear and non-linear regression, mixed linear
(Laird and Ware 1982) and mixed non-linear
models (Lindstrom and Bates 1990, Wolfinger
1993), as well as Generalized Linear (McCul-
lagh and Nelder 1989) and Generalized Mixed
Linear Models (Breslow and Clayton 1993) are
contained in it, all of these either with or without
repeated measurements.
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3.1 Known Variance-Covariance
Structure

To find an optimal estimating function for [3],
[4] we initially focus on the fixed models only,
i.e. b; = 0, where the elements in Y; have known
dispersion V,. Stack all matrices and vectors to
dispose of the subscript i for the time being. That
is we let

Y =[Yi,..,Yk],var(Y)= V,N = 3.n;.

Under these and some regularity conditions (Ap-
pendix A1), the optimal EF in the class & of
unbiased EF’s linear in Y; is

UGB, y) = D'V-I(y - E(Y), 5]

where D = JE(Y) / dp is of dimension (N*p). A
proof is outlined in Appendix A2. But what does
this result imply about the estimator of 8 ob-
tained from solving U(, y) = 0? To see this we
first need a device to solve U(f, y) = 0. Since
n(e) may be non-linear in the parameters, an
iterative procedure such as the Newton-Raphson
algorithm with Fisher scoring is needed. Starting
from an initial guess f}, compute directional in-
crements

_E(%ﬁ’”) UB,y)= (D'V-'D)(D'V'l((y = E(Y)))
and then compute

B = B+ (VD) (DVA(y - EV)) [6]

For computational purposes [6] can be re-
expressed as

-1

~ a K K
Pusi = B+ ( zn,'-v,.-ln,.) SOV (yi - i)

i=1 i=1

At convergence the asymptotic moments of B
are f§ ~ (B, (D'V-'D) ™)), i.e. B is an asymptoti-
cally unbiased estimator, with known variance-
covariance matrix. Whenever [6] has a closed
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form, non-iterative solution, this result holds for
any sample size. Zeger and Liang (1986) fur-
thermore showed that the distribution of f is
asymptotically Gaussian.

A few examples will show that [5] and [6]
together lead to classical estimates in many situ-
ations:

1) Lety = X + & € ~ (0, 0?1y). Then [5]
becomes U(f, y) = X'(y — Xp), and [6] re-
duces to

b= +(X'x)“X'(y-x/i,)
=(x'X)"'X"y,

the familiar OLS estimates.
2) Lety=XB + & £~ (0, V). Then UQB, y) =
X'V-(y - X(f8) and

B B+ (X VX)X V13- X
=(X'V-1X) ' X V-ly,

As in 1) the solution exists in closed form,
does not depend on the starting value f}) and
is the classical generalized least squares esti-
mator.

3) Lety = n(B) + ¢, £ ~ (0, 0*Iy) where n(B) is
an arbitrary function, non-linear in f8. [5] be-
comes U(B8,y) = D'(y — n(B)) and the esti-
mates are calculated as

oA om) (0o -of)

This is non-linear least squares using a Gauss-
Newton algorithm.

4) Let Y = n(x;B)+ & &; ~ (0, h(E(Yy))),
where 7)() is an inverse link function and 4()
is a variance function, depending on the means
E(Y;). This is a generalized linear model. If
the distribution of &; belongs to the exponen-
tial family of distributions with canonical link
1n7'() (McCullagh and Nelder 1989), the like-
lihood for the #jth observation can be written
as

FE(Y;)

1(B.yi) = a—p;alm(m - E(Yy ))

This is just [5] for a single observation and
under the assumption that the Y;;’s are uncor-
related, the likelihood for Y; is exactly [5]
and the OEF produces the maximum likeli-
hood estimates. The Fisher scoring algorithm
is then equivalent to iteratively reweighted
least squares (cf. McCullagh and Nelder
1989).

We have seen that the estimating function [5]
appears reasonable in many cases, for one rea-
son, since it coincides with many classical esti-
mates. The quality of the classical estimates is
well established. Under the conditions of 1), 8
is the best linear unbiased estimate. If we add nor-
mality to 1), we furthermore obtain the property
of being a uniformly minimum variance unbiased
estimate (UMVUE). The properties of [i under
conditions 3) depend among other things on the
size of the sample, since we are dealing with an
iterative solution and asymptotic results.

From the standpoint of Estimating Function
theory, [5] has been found to be the optimal
function in its (restricted) class &, and it can be
shown (see Appendix A3) that estimators de-
rived from [5] are asymptotically minimally dis-
persed. This result can be viewed as an exten-
sion of the Gauss-Markov Theorem to Estimat-
ing Function theory. For extensions of other im-
portant theorems in statistical inference, such as
the Cramér-Rao lower bound or the Rao-Black-
well theorem see Bhapkar (1991).

Another important property of the estimating
function [5] is its invariance with respect to line-
ar transformations, a property shared with maxi-
mum likelihood estimates, but not, for example
with UMVU estimates. To see this let Z = GY
where G is a conformable non-singular matrix
of real values (constants). Then var(Z) = GVG/,
E(Z) = GE(Y), JE(Z) / 3B = GD. The optimal
EF for B is still U(B,z) = D'G'G'VIG'G(y -
E(Y)) = D'V (y - E(Y)) = UB.y).

3.2 Variance-Covariance Structure
Subject to Estimation
In this section we examine [5] in situations when

the weight matrix V is not known completely a
priori and subject to estimation. Only the first
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two moments of the distribution of Y must be
known to invoke [5], the first moment, E(Y) is
the objective of modeling and var(Y) is a feature
of both the data and the model. However, a com-
plete specification of the distribution is not nec-
essary and only first derivatives of E(Y) are re-
quired. In fact, all that is necessary to yield the
asymptotic properties at this point is that E(£;) =
0, V i, that is, the model is correctly specified.

If one were to use [5] in models with correlat-
ed observations, V must be known. In the case of
unequal variances or correlated observations, V
is typically at least partially unknown. For ex-
ample, with repeated binary responses where Y;
is a (n;*1) vector of zeros and ones, the variances
of the Y;; are completely determined by the bina-
ry nature of the response: var(Yy) = E(Yj)
(1-E(Yy)). However, the off-diagonal elements
in V are non-zero and unknown a priori. The
standard approach is to make V a function of
parameters in 6, and to replace the weight matrix
during iterations by V = V(8). This causes the
coefficient estimates to depend on 6 also and
one proceeds with a two-step procedure: after
estimating f(6) new estimates are obtained for
6. These are used to obtain next estimates for f§.
The scheme is continued until convergence.

Two different approaches exist to introduce
the parameters 6 into the model. One way is by
using random terms b; in the predictor. In this
case 6 comprises the unique elements in var(b;)
= B(6). For example consider a linear mixed
model

Y;=XpB +Zb; + £, & ~ (0, R; = o).

The marginal variance var(Y); becomes var(Y);
=V, = Z;B(0)Z; + 0°1. Having estimates 6 and
6?2 available, one can estimate V.. Similarly, the
random terms enter non-linearly into the model.

Another way to accommodate correlated ob-
servations is by stipulating a possible correlation
pattern and estimating the associated correlation
parameters. In this approach a so-called working
covariance matrix replaces V. This is profound-
ly different from using random effects. By sim-
ply estimating a working correlation pattern one
is entirely free to stipulate the correlation struc-
ture. Estimation of this pattern focuses on R;
only. In the above linear mixed model however,
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as soon as Z; is determined, the marginal vari-
ance is completely specified and governed by
the shared subject effects b;. In accordance with
Zeger et al. (1988) we term approaches based on
random effects, subject-specific (SS) and those
based on working assumptions, population-aver-
aged (PA). The distinction between these ap-
proaches is important with respect to the inter-
pretation of the coefficient estimates. In a PA
model, the coefficients describe changes in the
population averaged response with changes in
the covariates. In a SS model they describe chang-
es in a subject’s response. It should also be not-
ed, that for linear models this distinction is of
minor importance. In the above example, if Z; =
X;, B would be considered the population aver-
aged coefficients, 8 + b; the subject specific co-
efficients. Linear models thus yield both inter-
pretations naturally. If one omits random terms
and models a working structure directly, howev-
er, only PA coefficients can be obtained.

Both approaches of modeling correlations can
be combined. Gregoire, Schabenberger, and Bar-
rett (1995) use direct modeling of R; based on
continuous autoregressive processes with ran-
dom terms in a linear mixed model.

Zeger and Liang (1986) and Liang and Zeger
(1986) proved that if V; is replaced by a consist-
ent estimator V;, say, the asymptotic normality,
unbiasedness and efficiency of the EF estimator
of B is retained. The covariance estimator of f3
is obtained as var(f8) = (D'V-1D)-! substituting
the estimated covariance parameters for 6.

Estimating function [5] does not require speci-
fication of more than the variances and the means
of the responses. In contrast to likelihood-based
estimation, distributional assumptions are not
needed. Oftentimes, fully parametric estimation
of 6 is computationally more cumbersome than
necessary (Gregoire and Schabenberger 1994,
Schabenberger 1995b). It is important to esti-
mate 6 consistently to obtain consistent estimates
of V;. A simple, consistent estimator may prove
sufficient. The basic scheme of [5] and [6] re-
mains the same, with A2 replacing V;, i.e.

U(B.y)= SOV (yi - E(Y)))

i=1
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1
ii,q = I} - ( § D,"Vf'D,‘) gD,’{'i‘l(y,‘ - ﬂ,‘ )

i=1 i=1

In a mixed model, we use the model structure
itself to estimate 6. When the mixed model
is linear, we directly obtain var(Y;)) = V; =
ZBZ; +R; and E(Y;) = XB. If n(e) is anything
other than the identity function we have to find
the marginal expectation and variance-covari-
ance matrix from the conditional moments

E(Yi|b) = n(X;, Z;, B, b)
V, = var(E(Y, | b)) + E(var(Y, | by).

How this is accomplished differs for General-
ized Linear Models and arbitrary non-linear func-
tions. For GLM’s the marginal mean can be
calculated or approximated from the conditional
ones by use of attenuation correction factors.
They are described for the most frequently en-
tertained link functions (log, logit, probit) in Zeger
et al. (1988). For the ijth observation they typi-
cally apply a multiplicative offset to x;8. The
marginal variance is obtained by using Taylor
series expansions around b; = 0 in the two condi-
tional pieces above. The resulting variance can
be written as

var(Y;) = LiZZ,BZ/L; +R;

where L; is a diagonal matrix with elements
an(x;iB)/ xji. We can also write

var(Y;) = ZBZ; +R; 7]

where Z; is an(XiB +Zb;)/ by, ., is called a
local design matrix with respect to the random
terms.

Schabenberger (1995b) has adapted Zeger et
al.’s approach for Generalized Mixed Linear
Models to accommodate arbitrary 7)(e). The mar-
ginal variance is derived along the same lines,
but the marginal mean is also developed through
Taylor series around b; = 0. Consequently, E(Y;)
= n(X;, Z; B, 0). D is replaced by another local-
ized design matrix, based on this Taylor series,
ie. D;=on(Xi,Z,B,0)/p=X;. Xiis the
same derivative matrix one would use in fitting a

non-linear model by least squares without any
random terms. After iterating for 8§ once an esti-
mate of V; is needed. For simplicity, assume that
there are no additional parameters in R; apart
from a possible scalar 2. For continuous re-
sponses R; = 0?I,,, for categorical responses,
R; is a diagonal matrix with the variance func-
tions h(E(Yj)) on its diagonal. Then all covari-
ance parameters of interest are the unique ele-
ments of B. From [7] one obtains after solving
for B:

B-(2iZ) Z(v.-R)Z(ZiZ))"

suggesting the simple and consistent moment
estimator

L1 K(s o\l oA Y
B 3(22) Z [(yi -X.B)(vi-X.8) -R;] .
z(zz)".

At convergence of the algorithm, the Best Linear
Unbiased Predictors (BLUP) for the random ef-
fects can be computed as (c.f. Laird and Ware
1982, Breslow and Clayton 1993)

b = Bz,'-\",.-l(y,- - i(,-ﬁ).

Population averaged approaches require the mod-
eler to stipulate an appropriate structure for the
variance-covariance matrix R; and to provide
consistent estimates for its parameters without
resorting to distributional assumptions. Since one
typically specifies R; in terms of correlation pa-
rameters we put V;(6)=Al>C;(6)A!? where
C(0) is the correlation matrix for the ith subject
and AY? is a diagonal matrix with the standard
deviations of the Y;’s on the diagonal. Typical
structures for C4(6) are

1) compound symmetry: C(6) =

S DD D~

where it is assumed that all pairs of observations
are equicorrelated,
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1 6 00

6 1 6 0
2) 1-dependence: C(6) =

() 0 6 1 6

0 6 1

1 6 .. 6 0

6 1 6 .. 6
3) k-dependence: C{(6)= |6, 6, 1 6,

i )

0 6 ... 6 1

Independence is a special case of these struc-
tures where 6 = 0.

Compound symmetry is a structure that does
not imply any ordering among the measurements
within a subject. For example, in ophthalmolo-
gy, where measurements on the two eyes of an
individual are taken, there is no prevalence of
one eye over the other. In forestry, however,
there usually is an implied ordering of the re-
peated measurements in time or in space. For
such data one of the k-dependence structures
may seem more appropriate. They imply that
measurements are correlated as long as they are
less than k units of remeasurements apart. If
plots are revisited in 3 year intervals and the
dominant heights recorded, a 3-dependence cor-
relation structure implies that measurements are
correlated unless they are more than 9 years
apart. The compound and dependence structure
can be combined. Such a correlation matrix would
estimate a common correlation coefficient 6 and
set all correlations > k to zero. Obviously there
is much latitude and freedom in experimenting
with different correlation structures. If prior in-
formation about the likely structure is available,
it should of course be utilized, since closeness of
Ci(0)to the actual C; increases the efficiency
of B.

To estimate 6 in a PA model we utilize residu-
als and their cross-products as building blocks.
In general we write the standardized residual for
the ijth observation as

i (yii iog ﬁij)
y vzir(}’,j)m
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where var(Yy) is typically 62 for a continuous
response and h(E(y;)) for a categorical response.
The correlation parameters are then functions of
rij = riri which will be averaged over specific
subsets of the sample to obtain consistent esti-
mates of all elements in 6. For the k-dependence
structure we can estimate

K
6 = Y ririgey /(K - p)

i=1

and combine these estimates to obtain the 1-
dependence estimates

é-kz_lo,- /(k=1).

J=1

Under a compound symmetry structure we can
average over all individuals and residual combi-
nations as

0= r;jr;jr

P -p+ ﬁ%m(n; —1).

=l

M=

The estimates 6 are not difficult to compute and
the iterative algorithm is simpler than for the
mixed models, since no Taylor series expansions
of any kind or attenuation corrections are re-
quired.

4 Examples

Several examples and a small scale simulation
study are presented in this section to demon-
strate the broad scope of the Estimating Func-
tion concept and especially of function [5]. The
examples are concerned with forestry data in
which repeated measurements of some sort are
correlated. The unifying appearance of estimat-
ing function [5] allows one to program the esti-
mation algorithm with any high-level matrix pro-
gramming language, since at the present time no
commercially available statistics package sup-
ports [5]. The analysis of the following exam-

Schabenberger and Gregoire

A Conspectus on Estimating Function Theory ...

ples has been facilitated by a program written in
GAUSSDY which is available from the senior au-
thor upon request.

4.1 Non-Linear Mixed Models, Continu-
ous Response

Equations to predict the accumulated bole vol-
ume to any upper diameter of a tree are impor-
tant devices to assess merchantable volume. In
the past, it has been common practice to fit sepa-
rate volume functions depending on the upper
diameter of interest. This is a wasteful approach,
since what is considered merchantable in a spe-
cific sector is non-merchantable timber in anoth-
er. Furthermore, such merchantability limits are
constantly changing over time. Hence attempts
have been made to include upper diameters in
volume equations to enable predictions to any
arbitrary upper diameter. The resulting models
are typically of the form

Vi, = VoBR(B2)

where V, is a total volume function depending
on covariates like diameter at breast height D,
total tree height H, etc. and parameters in f3;.
R(B,) depends on the upper diameter d, and ad-
justs Vy(B;) downward depending on values of
d,. Amateis and Burkhart (1987) used V,(f;) =
Bo + Bi1D?H together with

R(B2)=1+B2d? | DPs. [9]

Even if both V(f8;) and R(f3,) are linear, Vg, isa
non-linear function of the parameters. Non-line-
ar estimating techniques are required to fit utili-
zation models of this type. The correction terms
R(B) have to obey some simple and a few less
obvious constraints to be useful. Obviously R(,)
has to be bounded by 1 to guarantee V, = V(1)
at the tree tip. Plotting empirical cumulative vol-
ume functions on a relative scale (see Fig. 1) one
can generally depict a sigmoid shape reminis-
cent of empirical cumulative distribution func-
tions. The correction term R(3,) thus has to have

1) Gauss is a trademark of Aptech Systems, Inc., 23804 S. E. Kent-
Kangley Road, Maple Valley, Washington, U.S.A.

an interior inflection point. A less obvious con-
straint is that transcendent forms in the deriva-
tives dV,;/ dB should be avoided. The reason
herefore is simply that in the course of a non-
linear fit derivatives have to be evaluated at the
current solutions, which can be negative.

A correction term that meets these criteria,
depends on only two parameters, and is easy to
fit, since parameters are only involved as powers
of e, is

R(B:)= exp{-ﬁn*exp{ﬁy}} where t = %

This correction term together with a total vol-
ume function V,(,) = By + BiD*H is used here
to model upper diameter volume of sweet gum
(Liquidambar styraciflua L.). 39 sweet gum trees
were felled and measured in the East Texas re-
gion. Tree outside-bark diameters and section-
wise volume were obtained at 3 foot intervals
along the boles. The total number of cumulative
bole volumes was 1058. On average there were
27 measurements per tree. While it can be as-
sumed that trees are independent, the measure-
ments on any single tree are of course correlated.
The goal of the study was not only to develop
and test a new correction term R(f3,) and to ac-
count for serial correlation, but also to model
each tree’s volume profile most accurately. This
calls for random terms so that the BLUPs can be
used to individualize the predictions. The actual
model fitted was

Vas =10+ 0+ 20 exp |- By}
[10]

with a random intercept. Note that this construc-
tion makes the variances of V,, a function of the
upper bole diameters which are likely to be a
sensible proxy for the correlations, i.e. as two
diameters become distant, it is likely that the
correlations will decrease, compared to directly
adjacent measurements. Although a random in-
tercept is used, the multiplicative nature of the
model makes the marginal variance of the re-
sponses a function of the meta meter of correla-
tions.

Nonlinear mixed models such as [10] can be
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Table 1. Results from fitting non-linear mixed model
to sweet gum data. Asymptotic standard errors in

parentheses.

Statistic

Non-linear least squares

OEF under independence

Mixed model

OEF with random intercept

Bo 331113 4.88284
: (0.7129) (2.5552)
B 2.11338 2.1024
) (0.0210) (0.0655)
B 15.7994 5.51959
R (3.0605) (0.7022)
Bs 6.03415 6.35841
(0.2661) (0.1525)
&2 126.98 41.0306
B 113.0545

fit by approximate likelihood techniques based
on linearizations. This requires specification of
the distributions for b; and the model errors,
which for convenience are typically presumed
Gaussian. A classical algorithm to accomplish
this task was presented by Lindstrom and Bates
(1988). Schabenberger (1995b) demonstrated a
more efficient implementation based on theoret-
ical results by Wolfinger (1993). However, the
computational demands of likelihood methods
for non-linear models are still considerable and
compare poorly to the speed of the estimating
function based algorithm, which does not in-
volve distributional assumptions.

Table 1 displays results from fitting model
[10] to the data using the OEF [5] and the mixed
model algorithm outlined in Section 3.2.2.

The estimates obtained from a non-linear least
squares fit under the incorrect assumption of
uncorrelated observations are profoundly differ-
ent from the estimating function results. Of
special interest is the reduction in residual varia-
tion 62. A considerable amount of variation has
been explained by inclusion of the random inter-
cept. The residual sum of squares in the mixed
model is only 43,246 compared to 133,837 in the
least squares fit. At the cost of only one addition-
al parameter, var(b;) = B, variation was distribut-
ed in across and within subject sources. Making
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the slopes or terms in R(f8,) random showed no
improvement over model [10].

Motivations for inclusion of the random term
was (i) to accurately attribute variation to sepa-
rate sources, and (ii) the desire to individualize
the fit. Fig. 1 depicts the observed and fitted
volume profiles for four trees. The sigmoidal
shape of the empirical profiles is apparent. The
solid line denotes predictions using only the fixed
effects of model [10]. Apparently, for trees 5, 7,
and 8, there is a severe overprediction of cumu-
lative volume. Tree 6 shows underpredictions
based on only the fixed effects. The reason here-
fore is that the fixed effects alone target the
average behavior in the population. Whether pre-
dictions using only B provide a good descrip-
tion of a tree’s profile depends on how close the
individual profile mimics the population aver-
age. The dashed lines in Fig. 1 include the BLUPs
in the linear predictor. The improvement over a
prediction based on f only is remarkable.

4.2 Linear Mixed Models, Continuous
Response

One motivation for entertaining semi-parametric
estimating functions instead of complete likeli-
hood analysis for non-linear mixed models is to
reduce computational effort. While providing
excellent answers, that have been found to be
hardly distinguishable from the likelihood re-
sults (cf., Gregoire and Schabenberger 1994,
1995) the computations are much less involved.
Fitting model [10] to the sweet gum data set with
1058 observations required a mere 12 seconds
on a 486/66 PC which includes all aspects of
inference and calculation of predictions. The full
likelihood implementation can take up to several
minutes. When mixed models are linear, this
advantage vanishes. Starting with Release 6.07
of SAS/STAT?, PROC MIXED has been availa-
ble that provides normal theory inference for
mixed linear models efficiently. Estimating func-
tions, however, do not lose their comparative
merits. Normal theory inference depends on dis-
tributional assumptions, which oftentimes are

2) SAS is a registered trademark of SAS I

Carolina, U.S.A.

Inc., Cary, North
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Fig. 1. Upper diameter volume model with random intercept for sweet gum data fitted via optin?al
estimating function. Observed values denoted with bullets, fixed effects predictions with
solid line, and predictions based on BLUPs with dashed line.

wrong. Much of mixed linear model work today
assumes b; ~ N(0, B), & ~ N(0, R;) simply be-
cause software is available that supports this as-
sumption. Gregoire, Schabenberger, and Barrett
(1995) present mixed model diagnostics that help
to address the question of normality. The validi-
ty of distributional assumptions will, however,
always be subject to question.

Gregoire et al. (1994) analyzed a data set of

eastern white pine (Pinus strobus L.) to develop
a model for log(basal area) that appeared to sup-
port the normality assumption reasonably well.
On 59 plots located in New Hampshire, the basal
area along with several plot level covariates were
measured. Remeasurements varied between 3 and
23 years, the number of remeasurements per plot
ranged from 2 to 6 between 1960 and 1991. The
data set comprises 268 observations. The best
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fitting model identified by Gregoire et al. (1994)
was

ln(BAij) =Po+pi ln(Hi,»)+,32 ln(ij)+ﬂ3( I:‘N,j)
;
1nH,,-)+b_ 1

(
i Aj Ay

Here, BA;, Nj;, and Hj; denote basal area (m2),
trees per hectare and height (m) at the jth re-
measurement of plot i. That is four fixed effects
were accompanied by a random coefficient in
the reciprocal of the ijth age (A;). Although the
random term b; is a characteristic of the ith plot,
the marginal variance-covariance matrix for the
measurements of the ith plot are a function of the
ages, since the rows of the Z; matrix vary within
a subject.

The model for In(BA;) was fit in three differ-
ent ways. Using the OEF without accounting for
the serial correlation in any way leads to ordi-
nary least squares estimates one would obtain
from any statistical regression package. PROC
MIXED was used to provide a fully parametric
fit, here a restricted maximum likelihood analy-
sis was chosen. Finally the model with random
coefficient was fit employing the estimating func-
tion [5] and the moment estimator B described
in Section 3.2.2. Results of these three analyses
are summarized in Table 2.

The OLS results are again much different from
the mixed model analyses. The estimate of resid-
ual variation 62 under OLS is order of magni-
tude larger. This sheds some light on how much
variation has been explained by the inclusion of
the random coefficient. The agreement between
the REML and the OEF/Mixed B estimates is
very satisfying. The minute differences are caused
entirely by the differences in the B estimates,
since the normal theory scoring algorithm for f8
can actually be written in the form of [5]. If the
covariance parameters B and 0? would have been
estimated by maximum likelihood instead of re-
stricted maximum likelihood the agreement be-
tween OEF and parametric analysis would be
even greater, since ML estimates of covariance
parameters are slightly downward biased (Searle
et al. 1992). The ML estimates of B and o? are
135.209 and 0.0019, respectively, showing per-
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Table 2. Results from fitting linear mixed model to
white pine data. Standard errors in parentheses.

Statistic OLS Mixed model ~ Mixed model
OEF OEF with Fully
. under random parametric
independence coefficient REML
Bo -0.8086  —0.4175  —0.4197
R (0.3091)  (0.3426)  (0.3459)
B, InH;; 0.8815 0.5777 0.5778
‘ (0.0907)  (0.0624)  (0.0629)
B2, InN; 0.2837 0.4983 0.4986
; (0.0272)  (0.0314)  (0.0317)
Bs, (InN,)/A; —0.6903 43778 4.3824
X (28687)  (0.7801)  (0.7872)
Ba, (INH,) /A, 259138  —24.4023  —24.422
(2.8687)  (24903)  (2.5133)
a2 0.01762 0.00190 0.00193
B 135.961 139.084

fect agreement with the OEF estimates for the
mixed model.

However, the results for the mixed model us-
ing the estimating function approach have been
obtained without any distributional assumptions.
Fig. 2 displays the predicted values for the 59
plots obtained from the REML and the OFF fit,
utilizing the BLUPs. The solid lines in Fig. 2

754

20 30 40 50 60 70 8 % 10 1m0 120
Age (years)

Fig. 2. White pine data. Mixed linear model with ran-

dom coefficient. Predicted values from REML fit

denoted by lines, values obtained from OEF de-
noted by circles.
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connect the REML predictions, the circles de-
note predicted values from the OEF. For all prac-
tical purposes, the two are indistinguishable and
it can be asked, what has been gained by making
a rather strong assumption about the distribution
of the b,’s and the &’s.

4.3 Categorical Response

Modeling categorical responses has attracted
much interest in the last years. One reason for
this is it allows one to model and predict proba-
bilities and/or counts, which are important quan-
tities in many areas of scientific research. An-
other reason is that researchers have become
more aware of the necessity to use appropriate
tools for non-continuous responses and have re-
sorted to generalized linear models, that are of
specific importance in categorical data analysis.
Commercially available software such as PROC
LOGISTIC of SAS/STAT for example has con-
tributed much to the recently developed appreci-
ation of logistic and probit analyses. In this sec-
tion, cumulative link models, a special type of
categorical response models, are used to model
multinomial responses. They are important be-
cause they allow ordering in more than just 2
response categories but reduce to classical mod-
els for binary response when only two possible
outcomes are observed.

Assume a random experiment where we ob-
serve a categorical response C which can fall
into one and only one of P mutually exclusive
categories. If P > 2 we assume tacitly that the
categories are ordered and not merely nominally
scaled. To develop a model that allows one to
predict the outcome of such a random experi-
ment we recode C initially as

Y, =1 if Cis in category p
=0 otherwise.

By construction, if we find a model for the ex-
pectation of Y,, we will model the probability
that C falls in category p, since

E(Y,) = Pr(Y, = 1) + 0+Pr(Y, = 1) = Pr(C = p).

Since the categories are exclusive, there is a
linear constraint ¥,_,Y, =1 and one category
can be omitted. Hence, if P = 2, only a model for
E(Y) is needed, if P > 2, this is a multivariate
setting, where E(Y}),...,E(Yp_) are modeled. Mod-
els in the first group are known as binary or
dichotomous response models and belong to the
family of Generalized Linear Models. If P > 2,
we can use similar constructs, but are required to
employ what is known as composite link func-
tions. One particularly useful class of composite
links is the family of cumulative links (McCul-
lagh and Nelder 1980, Agresti 1990). Instead of
modeling Pr(C = p) one models Pr(C = p). The
link function itself is often chosen freely, and
commonly employed functions include the log-
link 1771(¢) = log(¢), logit link 171(¢) = log(#/1 — £),
log-log link 17!(¢) = —log(-log(?)), and the probit
link corresponding to the inverse cumulative
standard normal distribution. For binary and
multinomial responses, the logit link has enjoyed
particularly frequent usage because it leads to
interesting interpretation of the model coeffi-
cients in terms of odds and because it is the
canonical link for binomial and multinomial dis-
tributions. Details can be found in McCullagh
and Nelder (1989), Agresti (1990), and Schaben-
berger (1995a).

Schabenberger (1995a) introduced a particu-
larly simple cumulative logit model into the for-
estry literature. It is known as McCullagh’s pro-
portional odds model (McCullagh 1980) and can
be motivated in the following fashion: Assume
one observes only the category in which the ith
subject responds, but recognizes a putative, un-
derlying continuous scale Z, say, which is divid-
ed into intervals by the categories of C. An ex-
ample is the observation of tree breast height
diameters in DBH classes. Presume a linear
model holds on the continuous scale

Zi=€-xip

where ¢; follows a distribution law with cdf n(e).
This construction is possible since the link func-
tions above are the inverse functions of cumula-

3) It is important, however, that the existence of Z is only a device to
motivate the development of the following model, it is not required
for its existence or validity.
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tive distribution functions. The cut-off points on
the scale of Z that divide its range into categories
are denoted ¢, where o = — %, ap = . There
are only P — 1 unknown cut-off parameters. Then

Pl‘(C,' = jIX,‘) - Pr(Z,- = a,-|x,») = Pl’(Ei = x;ﬂ = ajlxl)
= Pr(s, saj+ x:ﬂ) - n(aj + Xiﬂ)~
[11]

The negative sign in the model for Z; is a con-
vention, to ensure that the linear predictor in
[11] is in standard form. Model [11] states that
the probability to be in any category given x;
depends on the cut-off points only. This is also
known as the parallel lines or proportionality
assumption (McCullagh 1980, Anderson 1984,
Schabenberger 1995a). Although this appears
restrictive at first, it allows a very parsimonious
description of a multivariate response and
?sures strict stochastic ordering, since ¢; < .4,

i

Applying a logit link 177'(r) = log(¢ / (1 - 1)) to
[11] yields

" {Pr(C,- < jlxi)

= '
2 _(_” Co } a;+xip [12]

which is known as the proportional odds model.
To express this in terms of the Y it is useful to
redefine Y; as a cumulative indicator, Yp=1ifC;
is in category p or less, 0 otherwise. Whether
cumulative or direct indicators are used does not
make a difference for a binary response, but

simplifies the analysis when P > 2. [12] can be
rewritten as

log{ E(¥,) )}- a, +xip

1-E(Y,

or

E(Y,-,,) = n(a,, + x,‘ﬁ) - %.
P i

If P = 2 we of course have only 1 cut-off point
that serves as intercept and the cumulative logit
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model reduces to a logistic regression model.
The potential uses for the proportional odds model
in forestry are plentiful, ranging from mortality
models to the classification of disease propensi-
ties, stand density assessments, etc. Schaben-
berger (1995a) lists other potential applications
and provides examples. The potential of [12] to
serve as a classification tool has been examined
by Greenwood and Farewell (1988). Regardless
of P, model [12] can be fit with the optimal
estimating function [5]. Assuming independence
among the responses, [5] yields maximum like-
lihood estimates. For P > 2 the estimating algo-
rithm [6] is a multivariate extension of iterative-
ly reweighted least squares (McCullagh and
Nelder 1989, Seber and Wild 1989). The inde-
pendence assumption often will be not tenable
however. If categorical (binary, ordered) respons-
es are obtained repeatedly for any subject, serial
or spatial correlation is introduced which has to
be accounted for. Since maximum likelihood is
to date the most important principle for estima-
tion in GLM’s it seemed natural to extend the
GLM to allow for random terms in the linear
predictor. Maximum likelihood analyses are dif-
ficult in this context, however, because one has
to commence estimation from the marginal dis-
tribution of the observables, Y;, which requires
integration over the random effects distribution.
The non-linearity of the link function makes this
difficult, because the integrals do not exist in
closed form in most instances. One can employ a
quadrature method to evaluate the integrals nu-
merically (Jansen 1990, Longford 1993, Hedek-
er and Gibbons 1994) or approximate the mar-
ginal likelihood by response surface methods
(Longford 1993), but both approaches are rather
computationally intensive. The estimating func-
tion [5] provides a simpler and less cumbersome
means of estimation.

For an ordered response with P categories,
observed for subjects i = 1,...,K at time points j =
1,...,n;, one records C;; and defines the cumula-
tive indicators as

Y,‘j =1 lfC,l =p
=0 otherwise.

The model for the mean response using a logit
link function is
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’ expia, + X
E(Yip) = uiip = n{atp +x5B) = m}:—[ﬁ%ﬂ'
P+ Xj

[13]

The responses are stacked as Yj; = [Yjji,...,Yiip1],
Y= [Y,’l,...,Y,’,., ]’, the means accordingly as u;;
= [Wijseeothijpr], Hi = [y/,,...,y,-’,,, ]’. Under the as-
sumption of uncorrelatedness across subjects [5]
can be rewritten as

K
Ulan,...apas, Biyi) = SDIVF(yi - E(Y:)).

i=1

The elements of D; are given by the derivatives
of [13] with respect to the cut-off parameters and
B. If the observations within a subject were un-
correlated V; would be block-diagonal with ele-
ments

cov(Yijp, Yijp?) = ijp(1 = tip)s P = P' (14]

where each block is of size (P — 1)*(P — 1). These
are the nominal variances and covariances of a
cumulative multinomial random variable. In a
mixed model where

E(yijp|bi) = Uijp = ﬂ(ap + Xffﬁ*lfibi)v b; ~(0,B)

V, is given by [7] where R; is the block-diagonal
matrix with elements [14].

The application of a mixed POM for a repeat-
edly measured ordered response with four cate-
gories is illustrated with the following example.

The East Texas Pine Plantation Research
Project (ETPPRP) is a long-term research pro-
gram designed to investigate factors that affect
management of loblolly pine (Pinus taeda L.)
and slash pine (Pinus elliottii Engelm.) planta-
tions in East Texas. We focus here on the slash
pine data. Plots were visited in three year inter-
vals and among other characteristics the status
of each tree with respect to fusiform rust (Cron-
artium quercuum (Berk.) Miyabe ex Shirai f. sp.
fusiforme) was recorded in 4 categories: healthy,
branch infected, stem infected, and dead. For
ease of identification the scores {0, 1, 2, 3} are
assigned to the four categories in the analysis.

Owing to the large number of plots and their
geographical dispersion, only one third of all
plots were visited in any year, creating a rotating
panel design with three measurement waves. One
of the research questions of interest is, whether it
is possible to predict fusiform rust disease prob-
abilities from classical inventory data such as
site index, tree dbh, quadratic mean diameter,
age, etc. and at the same time account for the
serial correlation obviously present. Such mod-
els can be developed either on the plot, or the
tree level. We focus on plot models in this exam-
ple.

While the development of the rust disease is
well understood (c.f. Powers et al. 1981), it is
still a matter of investigation, if, and how well
one can predict rust association with inventory
data (Borders and Bailey 1986). Fitting only plot-
level covariates that vary across time points (trees
per acre, stand height, for example) or remain
constant for a plot (site index, slope of terrain,
etc.) one can make use of the fact that a number
of trees on a plot share the same response and
covariate pattern. This simplifies the analysis
since the plots can serve as subjects and the
outcome vector can be represented by a vector of
counts representing the number of trees on a plot
in any of the four states.

The four categories are clearly ordered, hence
only models that preserve this ordering are mean-
ingful, the POM is a convenient choice. The
correlations between multiple measurements of
the same plot are taken care of by means of
random effects. It is reasonable to assume that
the correlations between measurements on the
same plot will decrease over time. In this case, it
is advisable to chose the Z; matrix in the linear
predictor such that its rows are not constant, but
vary over time. Covariates like age, stand height,
basal area, etc. are particularly suited since they
convey plot-specific information and are an ac-
tual or biological measure of time.

From a large suite of covariates the following
have been identified as providing an adequate
description of the fusiform rust disease category
probabilities:
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Xjj = [SL,_, A,'j, TPA,‘,‘, S],', SH,j, l,]

Ajj
Z;= ﬁ]

The covariates denote:

SL;  Slope of the plot area in %

Ajj  Age of plot i at measurement j
TPA;; Trees per acre

SI; Site index in feet

SH;;  Stand height in feet

I; Indicator, 1 if initial age < 5

The covariate in the random effects design ma-
trix has been scaled to increase var(b;). This is
advisable in some cases to remove B from the
boundary point 0. Note that SL; and SI; do not
vary within a plot. The inclusion of /; was moti-
vated by experience. The fusiform rust disease
process oftentimes develops differently and more
strongly for trees that were infected at young
ages. Wells and Dinus (1978) found age 5 as a
meaningful point to subgroup the disease devel-
opment. The covariate information in this model
is typical inventory data. Table 3 depicts the
results of fitting the model to the slash pine data.
Over interpretation of the coefficients should be
avoided because the study is not a designed ex-
periment and the covariates do not explain fusi-
form rust incidence. They have simply been iden-
tified as a suite of well fitting descriptors.

The first three rows in Table 3 display the
estimates of the cut-off points c,. They are usu-
ally considered incidental parameters and no sig-
nificance tests are attached to them (Schaben-
berger 1995a). It should be noted however, that
the estimates are increasing &, < @,.; as is nec-
essary to preserve ordering. The closeness of &,
and @ is indicative of generally small probabil-
ities to observe category 1 (branch infection)
compared to the other categories.

The first column of Table 3 corresponds to a
MLE fit ignoring correlations. In the second col-
umn a population-averaged model with 1-de-
pendent correlation structure has been fitted. The
weighted sums of squares as a prediction orient-
ed goodness-of-fit criterion (Arabatzis 1990) de-
creased by 25 %. The results of the mixed model
fit show another decrease in WSS over the 1-
dependent structure. The coefficient estimates
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Table 3. Results from fitting proportional odds model
to slash pine data. WSS denotes weighted sums
of squares, a predicted oriented goodness-of-
fit criterion. Standard errors in parentheses.
Cut-off points a, are coded: 0 = healthy, 1 =
branch infected, ... .

Statistic OEF under OEF under Mixed model
independence  1-dependence OEF with
random coeff.

Qo 201987 141983  2.51490
& 224311  1.65551  2.74971
& 536329  4.86911  6.01988
B SL, 0.01321  0.02459  0.01259
X (0.0048)  (0.0063)  (0.0092)
B A, -0.02768  —0.01452  —0.00660

(0.0121)  (0.0123)  (0.0177)
Bs TPA, 000164  0.00174  0.00177
(0.00007)  (0.00009)  (0.0001)
Bs  SI, -0.02408  -0.01729  —0.03323
(0.0023)  (0.0026)  (0.0033)

Bs SH,  —002530 —0.02473 —0.02841
) (0.0037)  (0.0036)  (0.0048)
Be 1, 0.81998  0.69550  0.91371
(0.0580)  (0.0353)  (0.0606)
WSS 5644.1 423382 4108.68
B 0.23509

are close to those for the MLE fit in column 1,
except for the fact that the coefficient for A;; has
changed due to the involvement of the same
variable in the random part of the model. The
standard error estimates under the mixed model
specification are larger than the incorrect stand-
ard error estimates in the first column. Ignoring
the correlations lends too much confidence to
the precision of the coefficient estimates.

To calculate the category probabilities the co-
efficients are used in the following fashion. As-
sume the ijth measurement of a plot provides the
following information:

SLi: 10 %, Ajj: 9 years, TPA;;: 270, SI;: 65 ft, SH;;: 30
ft, I;: 0

Using the estimates in the right hand column of
Table 3, the three linear predictors are calculated
as
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o= 2.51490 + (~2.46576) = 0.04914
&= 274971 + (-2.46576) = 0.28394
£,=6.01988 + (~2.46576) = 3.55412

and the cumulative probabilities are

Pr(C;<0)= ﬁp(i_)j =0.51228
+exp| &o

Pr(Cys1)= CXP(E') =0.57051

Pr(C; s2)= I+ =0.97219
1+ex;‘ §2i

The probabilities to fall in any category are ob-
tained by subtraction as

Pr(C; = 0)=0.51228
Pr(C; =1)=0.57051 - 0.51228 = 0.05823
Pr(Cy = 2)=0.97219 - 0.57051 = 0.40168.

Consequently, on a plot with the above covari-
ates there is a 51 % chance, that a randomly
selected tree will be healthy, a 6 % chance of
having a branch infection, a 40 % chance of
being stem infected and about 3 % of the trees
will have died because of fusiform rust. It is
believed that such analyses are highly meaning-
ful to determine the risks and liabilities associat-
ed with pine management in the southern forests
of the United States.

How well the model predicts overall has been
assessed through a second, independent evalua-
tion data set that arises, since each plot was
divided into two subplots. One was used for
development of the model, the other can be used
for evaluation. The mixed model provided the
best fit to the data. Since this is an independent
data set, the BLUPs have not been used. The
proportions of observed and predicted responses
are

Category 0 1 2 3

Observed 0.5415 0.0516 0.3711 0.0358
Predicted 0.5629 0.0504 0.3589 0.0278

showing good agreement.

4.4 Monte Carlo Results

To gain additional insight about the performance
of the estimating function approach compared to
maximum likelihood, and to highlight the liabil-
itities of analyzing data incorrectly under the
assumption of independent observations, a small
scale simulation study was conducted. Observa-
tions were generated randomly for a Coile-Schu-
macher height equation (Clutter et al. 1983),
where the intercepts vary between subjects. The
model can be written on the logarithmic scale as

In(H;;) = Bo + i LS £ [15]
Ajj

where Hj; is height of the ith tree at the jth
remeasurement (j = 1,...,n,), A; is age in years
associated with the ijth measurement, b; is
a random subject effect distributed according to
b; ~ N(0, 72), and &; ~ N(0, 0?). The random
disturbances ¢, ;- were chosen independently
of each other and independently of the b;’s from
their respective distributions. The fixed effects
coefficients were chosen as By =4, B, =-15.
The error structure in [15] implies that var(H,) =
72),; + 021, and that two observations from
the same subject have a constant correlation of
p =12/(7? + 0?). It is for this reason, that the
error structure in [15] has been termed the com-
pound symmetry or exchangeable correlation
structure (Longford 1993). The values of 72 and
o? were varied in the simulations, in order to
examine the effect of differing degrees of the
dependency among elementary observations. For
each run, data were generated according to [15],
and 8 = [, B1]' was estimated by ordinary least
squares, ignoring the correlation among obser-
vations of the same subject; restricted maximum
likelihood; and the OEF [5] combined with
a moment estimator for 2. The full likelihood
implementation is described for example in Gre-
goire, Schabenberger, and Barrett (1995).
The number of repeated measurements per sub-
ject was also selected randomly between 1 and
Mg, = 10 to impose an unbalanced data struc-
ture. This process was repeated 50 times for
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Table 4. Results from Monte-Carlo study of Coile-Schumacher height growth data. K = 30 subjects, 7,,,. = 10
s‘e(f}k) denotes the estimated, se(fx)the exact standard errors of the kth coefficient.

02=0.1,72=0.01
p=

02=0.01,72=0.01

02 =0.005, 72 = 0.05

0.091 p=05 p =0.909

Statistic OLS OEF REML OLS OEF REML OLS OEF REML

f}o 3.9895 3.9883 3.9909 3.9924 3.9930 3.9930 3.9853 3.9841 3.9841
s“e(Bo) 0.0305 0.0366 0.0370 0.0129 0.0213 0.0219 0.0212 0.0401 0.0416
se(Bg ) 0.0376 0.0370 0.0370 0.0249 0.0221 0.0221 0.0521 0.0421 0.0421
ﬁ, -15.04 -15.11 -15.08 -15.05 -15.06 -15.06 -15.13 -15.04 -15.03
s‘e(/§1 ) 0.6639 0.6967 0.7228 0.2798 0.3044 0.3061 0.4592 0.2554 0.2543
se(f) 07651 0.7439 0.7439 0.4575 0.3149 0.3149 0.9256 0.2598 0.2598
o 0.1069 0.0969 0.0959 0.0192 0.0093 0.0097 0.0518 0.0048 0.0479
) 0.0115 0.0115 0.0093  0.0100 0.0464  0.0500

each setting of p and the results averaged. Table
4 lists these averages for 50 repetitions from
selected runs.

Restricted maximum likelihood has been cho-
sen over maximum likelihood for estimating the
covariance parameters 72 and o? because REML
estimators exhibit less bias in unbalanced data
sets than ML estimators. The correlation increases
in Table 4 from the left to the right panel. The
agreement between the OEF and REML esti-
mates is remarkable, regardless of the strength
of the correlation. Not much information about
the model parameters is lost in the OEF ap-
proach while at the same time only minimal
assumptions are required. The standard errors
se(ﬁk) for OEF and REML are identical, since
both are asymptotic and typically rendered con-
ditionally on the estimated covariance parame-
ters.

The moment estimator [8] is unconstrained,
i.e. its middle piece (y;— n)(y:— 1)’ — R; can take
on negative values and force B to be negative.
Table 4 shows that even small covariance pa-
rameters such as 72 = 0.01 can be estimated
without problems.

It is obvious that the estimates for By and f,
obtained under OLS remain unbiased, even if
the error structure is not correctly specified. There
is little difference between the OLS, OEF, and
REML estimates of Sy and B;. This is a well
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established result. However, it is also known,
that not taking the error structure, i.e. correla-
tions into account, affects the standard error esti-
mates in a most devastating way. As the correla-
tion increases, the OLS estimates become in-
creasingly inefficient compared to either mixed
model analysis, as the exact standard errors of
the coefficients se(fBy) and se(p) depict. For
p =0.909 in the last columns of Table 4. OLS is
3.5 times less efficient than REML or OEF in
estimating the slope f;. For p = 0.091 there is,
however, hardly a difference as one would ex-
pect.

In practical applications these standard errors
are of course unknown, and inference is based
on their estimates se(fy) and se(B;). With in-
creasing p the error model assumed by OLS, i.e.
var(H;) = 0?%1,, deviates more from the actual
variance of the observations. As this deviation
increases, the OLS estimates not only become
less efficient, the estimates of their standard er-
rors become increasingly negatively biased, there-
by giving a false sense of precision. This bias
and inconsistency of se(fx)oLs affects all as-
pects of inference, from hypothesis tests, confi-
dence intervals, to influential data diagnostics.
Typically in forestry, an analyst usually knows
or suspects when observations are correlated,
although the strength and structure of this corre-
lation may not be discernible.
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5 Discussion and Conclusion

This paper is concerned with presenting and dem-
onstrating a unified approach to statistical esti-
mation to a forestry audience. The approach is
semi-parametric in that it is entirely based on
only mean and variance specifications. This has
the advantage of requiring minimal assumptions
and leads to very efficient and well behaved
estimating algorithms. However, the cost in-
volved is the lack of a parametric basis for mod-
el inference. Much depends on asymptotic re-
sults for the model at hand. Since no likelihood
function is specified, likelihood ratio tests are
not possible to discriminate between competing
models. Different criteria have to be used. In this
paper focus was on the predictive capabilities of
the models since many models in forestry are
developed to serve as predictive tools. Good-
ness-of-fit statistics and model diagnostics for
semi-parametric estimation procedures is cur-
rently an area of active research. In a sense, one
faces the same dilemma as in regular linear re-
gression with the least squares principle. To per-
form inference under the model one tacitly makes
a distributional assumption, commonly normali-
ty, after estimates of the model coefficients have
been obtained. One is willing to accept a rather
strong assumption after estimation has taken place
in order to establish a basis for inference.

We distance ourselves from doing so in the
estimation function approach. Permitting mini-
mal assumptions is a procedural merit. These
assumptions are typically rather weak compared
to distributional requirements. Data analysts will
have more confidence in selecting a mean model
than in specifying a distribution for the random
quantities in the model. Modifying the set of
assumptions after estimation usually makes the
entire analysis more vulnerable, since added as-
sumptions are typically more stringent than the
initial ones. Research in the area of inference,
influence and outlier diagnostics, and model dis-
crimination has to provide the proper tools to
give answers based on only the minimal assump-
tions involved in the estimation step.

The estimation function used in this paper re-
sembles a quasi-likelihood function (McCullagh
1983, McCullagh and Nelder 1989, Candy 1989,
Nelder and Lee 1992). The two approaches dif-

fer in spirit, however. Quasi-likelihoods are based
on an assumed mean model, a link function, and
a functional mean-variance relationship. The idea
is to find a function that behaves like a likeli-
hood score function, i.e. has zero expectation
and whose gradient contains information about
dispersion. OEF’s are found by selecting func-
tions that are close to the likelihood score func-
tion. Since discussion was restricted to estimat-
ing functions in &, which have zero expectation
by definition, it is not surprising that OEF [5] is
the quasi-likelihood in some cases. If one broad-
ens the class of estimating functions, for exam-
ple by including EF’s that are non-linear in Y,
the correspondence between estimating function
and quasi-likelihood theory does not hold.
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Appendix: Some Technical
Details

Al. Regularity conditions

For the development of optimal EF’s some regularity
conditions are required.

Let U(x, 6) = dlog{p(x, 6)} / 6 denote the likeli-
hood score function where the parameter 6 belongs to
a space ©. We then require that
(i) © is an open interval on the real line,

(ii) first and second derivatives of the log likelihood
with respect to 6 exist,
(iii)differentiation and integration with respect to

p(x, 6) and log{p(x, 6)} are interchangeable.
(iv) The variance of the score function U(x, 6) is finite
for all 6.

These regularity conditions are known from theorems
about the Cramér-Rao bound or the information
inequality (Rao 1973, Bickel and Doksum 1977). These
conditions are met for densities in the exponential
family of distributions. It is furthermore required that
g(x, 6) is informative with respect to 6, i.e. dg(x, 6)} /
90 exists and var(g(x, 6) > 0 V 6 € ©. This is an
obvious requirement, since a function like Eix,- =0
that does not depend on 6 and implies no estimate.

A2. Optimal estimating function in &

In the class & of unbiased EF’s linear in Y, natural
candidates are of the form

U@, y)=H'(y - E(Y)) [16]

where (y — E(Y)) ensures unbiasedness and linearity
in Y, H is a (N+p) matrix that maps the expectation
into the parameter space. E(Y) depends on the (p*1)
parameter vector 8. To judge all candidates of form
[16] against each other, we need an expression for the
standardized variance of [16]. Following Bhapkar
(1991) and Godambe and Heyde (1987) for the treat-
ment of vector parameters, the standardized variance-
covariance matrix has form

’

E(ﬂ%y_)) E(U(ﬁ,y)U(ﬂ,y)')_lE(%g’Y))_

Among two competing EF’s Uy(8, y) and Ux(B, y),
say, U(B, y) is preferable iff

'

E[ 2% ) e[ 24
(%) 2w e(%)

® ] % [17]
A e )

is non-negative definite. This would imply that
U,(B, y) contains more information about the parame-
ter than Ux(B, y). A candidate against [16] is
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UB,y)=D'V(y - E(Y)),

where D=JE(Y)/df is of dimension (N*p).
But since dUs(B, y) / 38 = -H'D, E(U>U3) = H'VH,
aU\B,y)/ 3B = -D'V-D, E(UU{) = D'V-'D, [16]
reduces to

D'(V-! —H'(H'VH)'H')D

which is a residual covariance matrix, where the line-
ar effect of H'y was removed from D'V-'y, hence
non-negative definiteness is guaranteed (McCullagh
and Nelder 1989). Apparently, U(, y) is the estimat-
ing function that improves all other members in &.

A3. Minimal dispersion of ﬂ

To see, how well the estimate f8 performs compared
to other candidates in € we will give an asymptotic
result since we have to allow for the case that solu-
tions to U(B, y) = 0 do not exist in closed form.

Let Ux(B, y) = H'(y — E(Y)) denote any other esti-
mating function in € and S the root of Us(, y) = 0.
We want to know, whether var(a’f}) = var(a’[i) which
implies that var(f3)- var(B) is non-negative definite
or var(fi)-l —var(B)-! is non-negative definite. For
U (B, y) we were led earlier to var(f}) = (D'V-'D)-\.
To obtain var(f8) use a Taylor series approximation

Ux(By) = Ux(B.y)+H'D(B - B)

which implies var(f) = (H'D)"'(H'VH)(D'H)"!. Sub-
stituting these expressions into

var(By! - var(B)!
yields

D'(V-'-H'(H'VH)'H')D.
This is the same matrix found to be non-negative
definite in Al. The optimality of the estimating func-

tion [5] translates directly into asymptotically mini-
mally dispersed estimators.
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