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1 Introduction

Volume or biomass of growing stock is one of
the parameters to be estimated in most forest
inventories. Both these parameters are difficult
to measure directly if the population is large.
Therefore, two- or multi-phase sampling is ap-
plied in most forest inventory systems. The first
phase sample consists of a large number of trees
for which diameter and other easily measurable

characteristics are measured. The second phase
sample consists of trees measured more thor-
oughly. Trees in the first phase sample are called
tally trees, and the trees in the second phase are
called sample trees. Height, age and additional
diameters are the most typical characteristics
measured for the sample trees. A third phase
sample may be collected to derive volumes or
biomass from sample tree characteristics (Cunia
1986).
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If two phase sampling is applied, the sample
tree information has to be generalized for tally
trees. This means that for every tally tree an
expected value of each sample tree characteristic
with respect to measured characteristics is given.
Most methods used are based on regression tech-
niques (Korhonen 1993, Korhonen 1992, Cunia
1986, Kilkki 1979). The advantage of using re-
gression models is that unbiased estimates for
the population parameters are easily obtained. In
some cases, however, it is difficult to formulate
the model so that it is both robust to deviations
about the assumed shape and structure and pre-
cise enough.

One example of a problem of this kind is de-
scribing the effect of geographic location on stem
form. In the paper of Korhonen (1993) it was
demonstrated that, in Finland, the stem form of
Scots pine (Pinus sylvestris) depends on the geo-
graphic location. A quadratic trend surface, for
example, estimated with Ordinary Least Squares
(OLS) can be used for describing the effect, but
the fit is far from complete.

The Kriging method can be used for model-
ling spatial relationships (e.g. Ripley 1981). This
method gives the best linear unbiased predictors
for unobserved values and also provides an esti-
mate of the accuracy of the predictions. Unfortu-
nately, the Kriging method may be impractical
for large data sets due to problems related to the
inversion of the covariance matrix of observa-
tions (e.g. Henttonen 1991).

Nonparametric models can offer a more flexi-
ble solution than parametric models. In contrast
to parametric models, nonparametric models do
not require any assumptions on the shape of the
model. Nonparametric models can, however, be
difficult to apply in multi-dimensional cases (i.e.
when several regressors are necessary). There-
fore, in this paper a semiparametric approach
(see below) was tested for generalizing sample
tree information.

Ojansuu and Henttonen (1983) have applied
semiparametric models for predicting the local
values of climatic variables. They estimated the
climatic variables first with an ordinary regres-
sion model. The residuals of the model were
then smoothed with moving averages in the
neighbourhood of each observation. The main
problem in this approach was that the correla-
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tions in the observations located in clusters could
not be taken into account and the prediction er-
ror could not be estimated analytically. In this
study semiparametric models are used in a simi-
lar manner as in the study of Ojansuu and Hent-
tonen (1983) except that the residuals are
smoothed with a kernel method.

The goal of this paper is to test if semipara-
meiric estimators can be applied in large area
forest inventories such as the National Forest
Inventory (NFI) of Finland. Locally calibrated
volume functions are necessary because NFI data
are also used for estimating parameters of for-
ests for small areas with help of remote sensing
techniques and geographic information systems
(Tomppo 1992). The reliability of semiparamet-
ric models is compared with parametric estima-
tors: regression models with fixed regressors and
mixed models.

2 Material

The pine sample trees measured in the 7th Na-
tional Forest Inventory (NFI7) of Finland were
used in the study. The data consist of 28 575
pines measured from 8472 sample plots during
1977-1983. The following characteristics were
used in this study:
— diameter at breast height,
— height of the tree from ground level to top of
the tree, and
— upper diameter at the height of 6 meters
from the ground.

Sample trees were selected with a relascope (ba-
sal area factor 2). From each plot several charac-
teristics describing the site and growing stock
were registered (see e.g. Valtakunnan metsien...
1977).

3 Methods

Semiparametric approach

In this paper semiparametric and mixed models
were tested for modelling stem volume in large
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data sets. Semiparametric model is a combina-
tion of an ordinary regression model and non-
parametric model. A nonparametric estimate of
a variable y at a point i is the weighted average
of the measured values of y. The weight of a
sample point depends on the differences in the
values of the independent variables between the
point of interest and the other sample points.

In this study a nonparametric regression mod-
el (Nadaraya 1964)

iy.K{Lj ;x)}
L N | (1)

was used,
where
y is the dependent variable,
X; (xj) is a vector containing the values of the inde-
pendent variables at point j (i),
K is the kernel function, and
h is the window-parameter.

The kernel function used was a multivariate nor-
mal density function (Silverman 1986):

K(x,):(ln)"g)cxp(—%x;xj) 2)

where d is the dimension of the distribution
(number of elements in vector x; in Formula 1).

Other estimators for nonparametric models us-
ing kernel functions have been presented by Gas-
ser and Miiller (1979) and Priestley and Chao
(1972). Also, many other kinds of kernel func-
tions have been presented (see e.g. Hirdle 1989).
Other kinds of nonparametric models can also
be found in the literature, for example, models
based on spline functions (e.g. Silverman 1985),
nearest neighbour regression (Altman 1992) or
local regression functions (Miiller 1987).

One problem in applying the kernel method is
to select the window-parameter, h. The window-
parameter determines the degree of smoothing:
the larger the window, the smoother the nonpar-
ametric model. For choosing the window-pa-
rameter, mean square error is often used as a

criteria. The MSE for a given x is defined as
MSE(x,h,n) = E(f 10 (x) - £(x))’ 3)

where f(x) is the value of true function (Altman
1990). The value of true function is unknown
except for the design points. The optimal value
of h is often considered to be the one that mini-
mizes the average (or total) MSE over the design
points.

The use of nonparametric methods in the case
of several independent variables is difficult. When
the number of independent variables increases,
the data set may be surprisingly sparsely distrib-
uted in a high-dimensional Euclidean space. Thus,
the window-parameter values obtained by mini-
mizing the average MSE are too large to de-
scribe the relationships between the dependent
and independent variables properly. Further, the
model becomes difficult to interpret and impos-
sible to demonstrate in a graphic form (Hardle
1989). The model may remain as a ‘black box’
because no simple numeric presentation for a
nonparametric model is available.

Several methods for overcoming this problem
have been presented, for example, by consider-
ing the linear combinations of the independent
variables (see Hirdle 1989). One obvious solu-
tion for the problem of several independent vari-
ables is to use semiparametric methods, i.e. com-
bination of parametric and nonparametric meth-
ods. Semiparametric approaches have been used,
for instance, by Carroll and Hardle (1989) and
Engle et al. (1986).

Mixed model approach

Random parameter models and mixed models
have been successfully applied for obtaining re-
liable ‘locally calibrated’ estimates (Lappi 1986,
Lappi 1991, Ojansuu 1993). A general formula-
tion of a mixed linear model is

y=Xb+Zc+e 4)
where
y is data vector of the dependent variable,

X and Z are data matrices related to fixed and ran-
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dom regressors, respectively,

e is random error (vector) with E(e) = 0
and var(e) = R,
is a fixed parameter vector, and

c is the random parameter vector with E(c)
=0 and var(c) = D. The random parame-
ters (¢) and random error () are mutually
independent.

In this study a variance component model (5)
was applied.

Vi =x;b+ci+ejj 5)

where

yij is the sample tree characteristics of interest,

ejj is a random tree effect with var(e;)=02 and
E(ejj) = 0, and

¢; is a random plot effect with var(c;)=02 and
E(c;) = 0, and ¢; and ej; are independent.

This means that a within-plot correlation

is assumed. In the application stage plot effects
of the mixed model can be estimated with

o

& =0%—+°°£()’ij -95)

if one sample tree from each plot is measured.
The last term is the residual of the fixed part of
model (5) for the measured tree.

Reliability of the estimators

The fixed part of the mixed model and its vari-
ance components and the parametric part of the
semiparametric model were estimated using the
whole data set. At the application stage the relia-
bility of different estimators was tested by divid-
ing the data into two parts. One tree per plot was
used for estimating the plot effect (¢;) of the
mixed model. In the semiparametric approach
the residuals of the fixed part were smoothed
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with (1) using one tree per plot as a data set. The
rest of the data were used for studying the relia-
bility of the model.

The reliability of the models was studied with
the help of two criteria. Visual examination of
the spatial distribution of residuals was the main
criteria. Residual maps were plotted for studying
the residuals (see Korhonen 1993). For plotting
the maps, mean values of residuals was calculat-
ed for each tract (cluster of 21 sample plots) of
the NFI data. A weighted mean value of the tract
mean and neighbouring tracts were calculated to
smooth the data (Korhonen 1993). The purpose
of the smoothing was only to make the possible
spatial correlation more visible.

Another criteria used for studying the reliabil-
ity of the models was the MSE values. MSE was
estimated as the mean value of the squared dif-
ferences between estimated and observed vol-
umes of trees not used as data points for the
model calibration (i.e. estimation of the nonpar-
ametric component of the semiparametric model
and estimation of plotwise random effect of the
mixed model).

4 Results

Model (6) was used as the parametric part of the
semiparametric model. The OLS (ordinary least
squares) estimates of the parameter values from
the paper of Korhonen (1993) were used.

vij/d} =by+byd; +bad2 +bsIn(G;) +e; (6)
where

vij = volume of tree i on plot j, dm?

dj = diameter at 1.3 m height, cm

In(Gj) = natural logarithm of the basal area of the
growing stock of the plot j, m?/ha.

The only independent variables in the nonpara-
metric part of the model were the coordinates.
4 km was found to be the optimal value of the
window parameter when one tree per plot were
used for estimating the nonparametric part of the
model. The optimal value was obtained with
cross validation (e.g. Altman 1990).

Model (7) was used as the fixed part of the
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Table 1. GLS-estimates of parameters and variance
components for model (7).

Regressor Parameter estimate
Constant 0.0582829
d 0.0218561
d? —0.0002608
In(G) 0.0629807
RDIST —0.0562567
YC —0.0822138
YC? 0.0451772
XC 0.3012367
XC? —0.1332506
XC-YC —0.2176091

Variance of random plot effect (62) 0.0048178
Variance of random tree effect (62) 0.0038560

mixed model. The values of the parameters were
estimated with the GLS (generalized least
squares) method (Table 1).

vij/d} =bg +byd;; +byd3 +b3In(G; )+ bsRDIST;
+bsYC; +bsYC] +b7XCj +bgXC? (7
+boXC;-YCj+c¢j+ej

where

RDISTj = 0 if DIST; > 2
1/ (DIST; + 0.2), otherwise

DIST; = distance of the plot j from the coast
(of Gulf Botnia or Finnish Gulf), km

YG = (Y;=6620) / 1000

Y; = y-coordinate of the plot (distance from
the Equator), km

XG; = (X~=60) /1000, and

Xj = x-coordinate of the plot (distance from

the Greenwich meridian), km.

When the semiparametric model with one tree
from each plot as data points were tested, MSE
was 0.00779 (dm?/cm)? for the rest of the trees in
the data. The map of the residuals of the semi-
parametric model is in Fig. 3.

In Fig. 2 is the map of residuals of the fixed
part of the mixed model (7). In this model, coor-

Fig. 1. Residuals of the calibrated mixed model in the
NFI7 data. Blue colours indicate negative residuals
and red colours positive residuals (the darker the
colour, the greater the absolute value). Yellow
colour indicates residuals close to zero. White
colour is for missing values.

dinates have been used for forming a second
order trend surface. The MSE for the fixed part
of the model was 0.01036 (dm?¥/cm)>.

An MSE value of 0.00644 (dm?*/cm)? was ob-
tained when mixed model (7) and one tree per
plot for estimating the random plot effect were
applied. The map of residuals for the mixed model
is in Fig. 1.

5 Discussion

MSE is lowest for the mixed model and highest
for the parametric model with fixed regressors
without plotwise calibration. The negligible dif-
ferences in MSE values of different models are
meaningless when considering the application of
the models. Comparison of residual maps shows
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Fig. 2. Residuals of the parametric model with fixed
regressors in the NFI7 data. Blue colours indicate
negative residuals and red colours positive
residuals. Yellow colour indicates residuals close
to zero. White colour is for missing values.

that there are, however, significant differences
in the estimators. There is clear geographic cor-
relation in the residuals of fixed model (Fig. 2).
Spatial correlation is clearly lower for the semi-
parametric and mixed estimators (Figs. 1 and 3).
The semiparametric model seems to be more
efficient than mixed model in local calibration —
the difference is, however, quite small.

Both mixed model and semiparametric ap-
proach can be considered as simplified versions
of the Kriging method. The differences between
the ‘real’ Kriging and the methods used in this
study are that

1) in the mixed model approach the covari-

ances between data points are restricted to
a single sample plot whereas in the Kriging
method the covariance depends on distance
and is continuous;

2) in the semiparametric approach the covari-

ance structure of observations is described

156

Fig. 3. Residuals of the semiparametric model in the
NFI7 data. Blue colours indicate negative residuals
and red colours positive residuals. Yellow colour
indicates residuals close to zero. White colour is
for missing values.

implicitly in a nonparametric model whereas
in the Kriging the covariance structure is
modeled with a parametric function.

In this study, 4 km was found optimal value for
the window parameter of the nonparametric part
of the semiparametric model. Since the distance
between clusters in the NFI data were 8 km, the
window-parameter value 4 km means that sam-
ple trees measured at neighbouring clusters have
only negligible weight when the residual of the
parametric part of the semiparametric model is
estimated for a tree. With the multivariate nor-
mal kernel function with window width 4, for
example, the weight of a neighbouring tree from
a same sample plot is 0.63 and from an adjacent
cluster it is 0.0002.

With small window parameter values the non-
parametric model practically interpolates through
the data points. In the studied application, how-
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ever, this was not a problem, because the goal
was to generalize the sample tree characteristics
for the tally trees. It may even be desirable to use
quite small window parameter, since in this way
the natural variation of sample trees remains in
the generalization process (see e.g. Holm et al.
1979).

It would be possible, and in some cases even
desirable, to estimate the parametric and nonpar-
ametric parts of the semiparametric model with
the same optimization procedure. In this study,
however, the parametric part was estimated first
and the nonparametric approach was used to
smooth the residuals of the parametric model.
This guarantees that the parametric part is unbi-
ased and it can be used also independently of the
nonparametric smoothing. Also, the relationship
between tree volume and breast height diameter
can be described quite well with parametric func-
tions whereas the spatial relationships are diffi-
cult to describe.

In this study it was assumed that the random
effect of the mixed model is estimated by meas-
uring one sample tree for each plot. In practical
applications this would require many more sam-
ple tree measurements than are currently meas-
ured in the NFI of Finland. The semiparametric
approach offers a statistically sound method to
utilize sample trees measured at neighbouring
plots. Therefore, it is not necessary to measure
sample trees on each plot when semiparametric
models are applied. Semiparametric models re-
quire massive computations. It was not found to
be too big problem in this NFI application. The
results in this paper show that semiparametric
models can be recommended for smoothing of
geographic trends in large data, such as NFI
data.
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