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This paper deals with the testing of dynamic stratification for estimating stand level
forest characteristics (basal area, mean diameter, mean height and mean age) for a 117
ha study area in Finland. The results do not show possibilities to achieve more accurate
estimates using only Landsat TM principal components as auxiliary data opposed to
static stratification. It was found that in dynamic stratification non-measured observa-
tions should be assigned the mean characteristics of the measured observations that
belong to the same cube (class) instead of randomly selected ones. Stratification errors
tend to decrease with the lessening of stratification variable classes until a certain limit.
If only one principal component is used the number of classes has however little
influence. Low field values are overestimated and high values underestimated.

The only successful results were obtained using two variables of different origin — the
qualitative development stage class and the quantitative 1st principal compund. The
lowest root mean square error in estimating basal area was 6.40 m2/ha, mean diameter
3.34 cm, mean height 2.65 m and mean age 14.06 years. This increase of stratification
accuracy is mainly resulted by the use of development stage class as an auxiliary
variable.
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List of Symbols
PC  principal component
e €rror mean
s? error variance

rms root mean square error

Symbols used in equations

X; vector of observation i and
X; centroid vector of cluster j
S; covariance matrix of cluster j

prior; a-prior probability proportion of cluster j

1 Introduction

The SMI (shortened from Satelliittikuvat Met-
sien Inventoinnissa — satellite imagery in forest
inventory) forest inventory and management sys-
tem, developed in the Helsinki University De-
partment of Forest Resource Management, can
be best described as an application of two phase
sampling for gathering data in order to solve
forest management problems (Waite 1990). For-
est characteristics for arbitrary points are com-
monly estimated using stratification. Usually a
given point is first classified into a predefined
auxiliary data stratum using some classification
criterion. Then it is assigned the mean forest
characteristics of those field sample plots be-
longing to the same stratum. This procedure is
static by nature because the auxiliary data strata
are fixed during the process. An alternative to
this is dynamic stratification in which the auxil-
iary data strata change during the process.

The utility of dynamic stratification for esti-
mating pointwise forest characteristics in the SMI
system has not been tested so far. The principal
questions to be studied and solved are:

(i) Is it possible to achieve more accurate estimates
using dynamic stratification opposed to static strat-
ification and

(ii) What are the most appropriate dynamic stratifica-
tion strategies.

During the study empirical data set will be used

for estimating forest characteristics by both stat-
ic and dynamic stratification. Different aspects
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of dynamic stratification are studied: the use of 1
and 2 auxiliary data variables, methods to define
the upper class limits and tactics for changing
these limits during the stratification process. Strat-
ification errors will be calculated and analyzed.

2 Methods and Material
2.1 Static Stratification

Static stratification consists of (i) clustering,
which involves the formation of clusters (or stra-
ta) and (ii) classification or the assignment of
observations into clusters. K-Means unsupervised
clustering consists of three phases (i) the defini-
tion of initial cluster centroids, (ii) the iterative
derivation of the final cluster centroids and (iii)
the derivation of the covariance matrices. Classi-
fication involves the assignment of observations
to the strata they most probably belong to. Four
different classifiers (or classification criteria)
were used in the study: Euclidean distances, Ma-
halanobis distances, Gaussian probabilities and
Bayesian probabilities.

The Euclidean distance ¢;; from observation i
to cluster j is defined as:

e =(xi—%; ) (xi = %;) = dj'd; 1

The Mahalanobis distance m;; from observation i
to cluster j is defined as:

mij = dij' S\ di 2

The Gaussian probability g; of observation i
belonging to cluster j is defined as:

= (2 2 ) o
The Bayesian probability b;; of observation i be-
longing to cluster j is defined as:
8ij

8ij
Jj

bij = prior;

“)
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2.2 Dynamic Stratification

In dynamic stratification contrary to static strati-
fication, the auxiliary data strata change during
the process. Dynamic stratification has been used
in the Swedish NFI for assigning sample tree
characteristics to tallied trees (Higglund 1981).
Observations are divided into two groups: A-
observations and B-observations. Both input and
output data are known for the A-observations
(e.g. spectral principal components (PC) as x
(input) variables and field characteristics as y
(output) variables) but only input data for the B-
observations. First, a large number of small p-
dimensional boxes (classes) are defined into
which all A and B observations are classified.
Second, all boxes are checked. If any given box
includes both non-measured (B) and measured
(A) observations, the non-measured observations
are assigned randomly selected or mean charac-
teristics of the measured observations belonging
to the same box and removed from the set of
non-measured observations. If the set of non-
measured observations is now empty the proce-
dure is terminated. Otherwise the boxes are en-
larged and the process is returned to the second
phase. Classification is performed by user-de-
fined input variable class upper limits, which are
set dynamically during the process.

Dynamic stratification seems to be very simi-
lar to a nearest neighbor classification, used by
Finnish Forest Research Institute for National
Forest Inventory. The estimates of the field vari-
ables for every pixel are defined using the Eucli-
dean distance, computed in the feature space
from the pixel to be classified to each pixel whose
ground truth is known (Tomppo 1993). The main
distinctive features of dynamic stratification are
the possibility to set interactively input variable
class upper limits and iterative nature of the pro-
cedure.

The following issues should be considered in
dynamic stratification: (i) auxiliary data to be
used, (ii) the maximum number of auxiliary data
strata or classes, (iii) the methods to be used to
define class limits and (iv) the tactics for chang-
ing these limits during the process. Stratification
was started with the 1st PC because of its highest
correlation with field data. The maximum class
number implemented was 20. Non-measured ob-

servations (B) were assigned (i) randomly se-
lected or (ii) mean values of the measured obser-
vations (A). Two approaches were used in defin-
ing the class limits: (i) class widths were defined
so that the number of observations falling in
each class was approximately equal. For that
purpose Gaussian cumulative proportions of aux-
iliary variable were used. The class widths were
not equal — narrower classes could be found in
the central part of the PC’s distribution. (ii) The
class widths were set to be equal ranging from
the minimum until maximum values. It was de-
cided to start with 20 narrow 1st PC classes and
to lessen their number by changing the class
limits until all B-observations were assigned A-
observation values.

The definition of upper class limits when two
x variables are used is more complicated. The
following approach was used in this study: the
class number of one x variable was kept constant
and the class number of the other variable was
gradually lessened by expanding class widths
until all B-observations were assigned field data.
Then the stratification procedure was terminated
and repeated with a number of stable x variable
classes lessened by 1. The 1st and 2nd PC’s were
used alternately as the first and second x varia-
bles.

2.3 Computer Programmes

The SMI system currently includes programmes
for implementing both dynamic and static strati-
fication, statistical tests, accuracy assessments
and variable relationship studies. The pro-
grammes run on PC-compatible micro-computer
with the MS-DOS operating system.

2.4 Material

The study area consists of an 117 ha forest lot,
located near the forest station of Helsinki Uni-
versity in Hyytidld. A systematic set of relascope
plots (BAF 2 m?/ha, 8 plots/ha) were measured
in the area in summer 1989. The plots were
divided into three parts: (i) Ip plots (totally 874
plots), (ii) 2p plots (175) and (iii) sz plots (699).
The 2p and tst plots were acquired by dividing
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Table 1. Pearson’s correlation coefficients for 2p TM PC—field variable pairs.

Field Principal component
variable

1 2 3 4 5 6
Basal area -0.536 0.068 0.010 —0.119 0.049 0.110
Mean diameter —0.583 0.228 —0.005 —0.042 0.022 0.040
Mean height —0.582 0.221 0.008 —0.048 0.035 0.036
Mean age —0.460 0.300 —0.060 -0.020 0.030 0.010

Table 2. Assessment of static stratification.

Stratification
method
Basal area

5
e Se2 rms e Se

Mean diameter

Field variable error statistics

Mean height Mean age

rms e 2 rms z s2 rms

Euclidean distances

Bayesian probabilities
Gaussian probabilities
Mabhalanobis distances

0.79 8.12 8.16  0.71 8.04 8.07 0.67 6.38 6.41
0.69 7.96 7.99  0.68 8.00 8.03 0.65 6.35 6.39 3.84 31.45 31.69
0.70 7.97 8.00 0.63 7.96 7.99 0.63 6.33 6.37 3.53 31.17 31.37
0.79 7.92 796  0.55 791 7.93 0.57 6.30 6.32 3.13 31.17 31.33

3.87 31.54 31.78

the Ip plots into two unique groups. This was
done in order to use 2p plots as A-observations
and st plots as B-observations in dynamic strati-
fication and for assessing stratification accuracy.

The area was segmented into compartments
by the Forest and Park Service in 1986.

A LANDSAT 5 TM satellite image covering
the area and taken in June 1989 was available for
the study. Bands 1, 2, 3, 4, 5 and 7, i.e. the bands
describing the intensities of visible and infrared
light were used. The image had been resampled
to a pixel size of 25 x 25 meters.

Principal components, derived from the LAND-
SAT TM spectral variables were used as auxilia-
ry data in the stratification process. The 2p and
tst PCs are normally distributed and the differ-
ences between the distributions of PCs to be
used are not significant. The following stand
data were available for the 2p and #st plots: basal
area (m%ha), mean diameter (cm), mean height
(m), mean age (years), as well as development
stage class of the main storey. Most of quantita-
tive variables are also normally distributed (ex-
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cept mean age). No 2p and #st field means differ
significantly from each other. The distributions
of mean diameter and mean height differ from
each other. It should also be mentioned, that the
1st PC correlated most with the field variables
being analysed and that the other PCs correlated
weakly with them (Table 1).

3 Results

3.1 Static Stratification

First, forest characteristics (basal area, mean di-
ameter, height and age) for tst plots were esti-
mated using static stratification. The clusters were
formed using K-Means unsupervised clustering
and Ip PCs (the 1st, 2nd and 3rd). Both 2p and
tst observations were then classified into these
clusters (totally 20). Four different classifiers
were used: Euclidean distances, Bayesian proba-
bilities, Gaussian probabilities and Mahalanobis
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Fig. 1. Relationship between 2p mean diameters and 1st TM PC values.

distances. Each cluster was assigned the mean
field values of those 2p plots belonging to the
same cluster. The forest characteristics for all zst
plots were estimated using the calculated aver-
age basal area, mean diameter, height and age
values for each cluster. The accuracy statistics —
root mean square errors (rmse), error means (),
and variances (S?) — were calculated to assess
the stratification (Table 2).

The results are similar regardless of the classi-
fication criteria. The root mean square errors and
biases are however somewhat higher for Eucli-
dean distances.

3.2 Dynamic Stratification with One
Principal Component

Dynamic stratification was started with one aux-
iliary variable — the 1st PC. Using the equal
interval lengths approach in defining the class
limits the relationship between the 1st PC and
the field variables was examined. The mean di-
ameter appeared to be the most correlated field
variable with the 1st PC (Pearson’s correlation

coefficient —0.58). For plots with mean diame-
ters ranging from 8 to 37 cm the relationship is
nearly linear (Fig. 1). For smaller diameters and
clear cut plots there is practically no relationship
(these comprise 15 % of all observations). So the
class widths for 1st PC values ranging from the
minimum value —3.5 until 2.5 were set to be
equal for all classes. These classes should com-
prise about 85 % of the total class number. The
class limits for the rest of observations (the 1st
PC ranges from 2.5 until the maximum value
13.2) were calculated separately.

The results of dynamic stratification using only
one x variable are presented in Table 3.

The advantage of assigning the mean values of
measured observations instead of randomly se-
lected ones can be very clearly seen — the aver-
age root mean square error of the former way is
about 25 % less. Thus the latter method was
excluded from the further investigations. The
number of x variable classes has practically no
influence over the stratification procedure, be-
cause in all cases all B-observations received
values during the first run. The error statistics
are very similar except for the broadest classes,
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Table 3. Assessment of dynamic stratification with TM PCs.

Field variable error statistics

Stratification

method

Mean diameter Mean height Mean age

Basal area

rms

rms

rms

rms

0.18 10.20 10.20 045 8.18 8.19 1.97 42.50 42.54

0.88 11.05 11.09

Random assignment, 1st method

of class limit definition

1.51 43.18 43.21

8.33

0.56 8.31

0.43 10.53 10.54

Random assignment, 2nd method  0.67 10.46 10.48

of class limit definition

0.63 32.02 32.02

026 634 635

8.01

0.50 8.01

0.64 8.00 8.02

Mean assignment, 1st method
of class limit definition

030 7.99 7.99 044 634 635 1.70 31.78 31.83

0.73 8.03 8.07

Mean assignment, 2nd method

of class limit definition
2 PCs, number of 1st
PC classes changes

0.94 33.47 33.47

6.62

0.32 6.61

0.19 840 840

0.58 836 8.38

0.02 7.16 7.16 0.66 35.59 35.60

-0.03 9.04 9.04

0.07 927 9.27

2 PCs, number of 2nd
PC classes changes

0.29 823 8.23 042 6.54 6.56 1.74 32.06 32.11

0.69 8.16 8.19

Selected x variables class

combinations

Table 4. Pearson’s correlation coefficients between estimation errors using
the 1st PC and principal components for the st plots.

Estimation errors of Principal components

1 2 3 4 5 6
Basal area -0.054 -0.022 0.001 0.019 -0.008 -0.134
Mean diameter —0.034 -0.141 0.011  0.013 -0.053 -0.083
Mean height ~ -0.035 -0.144 0.016 0.014 -0.039 -0.096
Mean age -0.005 -0.187 0.015 0.014 -0.034 -0.029

where they tend to increase (Fig. 2). The ap-
proach to use Gaussian cumulative proportions
to define the upper class limits resulted in some-
what smaller errors. In most cases static stratifi-
cation resulted however in a better accuracy.

Pearson’s correlation coefficients between field
variable errors and all PCs for the tst plots are
presented in Table 4. They were used to select
the next PC to be included in further stratifica-
tion processes (a large absolute correlation coef-
ficient indicates that the PC explains the residual
stratification error well). The 2nd PC seemed to
be most correlated with the errors and it was
included in subsequent analyses.

40,00

3.3 Dynamic Stratification with Two
Principal Components

In order to define the class limits of the 2nd PC
the 2p field variable distributions were analyzed
(Fig. 3). There seems to be no clear relationship
between basal area, mean diameter, mean height
and the 2nd PC — the moving averages of these
variables lay parallel to the x-axis (PC values).
Mean age observations are distributed in two
clusters. The correlation coefficients between the
2nd PC and field variables are 0.068, 0.228,
0.221 and 0.300 respectively. The best way to
define upper limits of the classes could be the
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Fig. 2. Relationship between dynamic stratification errors and number of x variable classes (mean assignment,
2nd method of class limit definition) (values for basal area and mean diameter overlap).
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Fig. 3. Relationship between 2p field variable and the 2nd PC values.

division of the 2nd PC values into equal width
classes in the interval between —2 and 1.5 be-
cause the remaining PC values cover less than
10 % of the field plots being examined.

Table 5 presents the dynamic stratification pro-
cedures analysed — the total number of assigned
B-observations after each changing of class lim-
its. In case (a) the 2nd PC classes were left stable
and the 1st PC classes were gradually lessened
and in case (b) the 1st PC classes were constant
and the 2nd PC classes were altered.

It can be noticed, that the stratification was
completed with a rather small number of change-
able classes — usually 1 or 2. For smaller num-
bers of stable classes less iterations to end the
procedure were required.

The average stratification errors in both (a)
and (b) cases are very similar and tend to de-
crease with the lessening of total x variable classes
— the correlation coefficient between the root
mean square error and the number of the x/
classes ranges from 0.70 to 0.93 and from 0.63
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to 0.81 respectively. In all cases the root mean
square errors are higher than those resulted by
static and even dynamic with one x variable strat-
ifications (Table 3). Only by using very few (2—
4) stable classes of the 2nd PC was it possible to
achieve a better accuracy (rmse 8.38-8.89).

The final class numbers of both x variables
characterizing the best stratification results were
used as initial ones and new stratifications were
performed. In most cases they could not be com-
pleted but in some the results were a little bit
surprising. The root mean square errors were
similar to the results of stratification using only
one x variable (the 1st PC) and less than those
achieved using the same final values of two x
variable class numbers but higher than in static
stratification (Table 3).

Estimation errors were correlated with the
“true” field variables (Table 6). Lower values
tend to be overestimated and higher values un-
derestimated.
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Table 5. Dynamic stratification using different x variable class combinations.

a) Number of the 1st PC classes changes while the number of 2nd PC classes remains stable.

Number of 2nd PC classes

Number of 1st
PC classes

19

18

17

16

15

14

13

10

% of assigned B-observations

100 100 100 100 100 100 100
100 99.9 99.6 99.3 99.4 99.1 99.3 99.3

100
100 100 100 100 100 99.6 100
100 100 98.4 99.0 99.3 99.3 99.3 97.3 98.7 98.7 98.4 97.1 97.6 98.1 96.1 95.0 96.1
99.9 99.7 97.9 98.9 98.6 99.0 98.7 96.9 98.0 98.3 97.7 95.7 959 97.7 95.6 94.6 95.1

100

99.7

— NN <

99.6 99.6 97.7 98.7 98.4 98.6 98.6 96.7 97.9 979 974 956 95.6 97.1 95.1 943 948

97.6 96.1 94.7 953 95.7 934 92.7 938

99.6 99.3 97.3 98.6 98.1 97.9 97.7 95.7 96.1 96.9 95.0 93.7 943 95.0 91.8 91.6 92.7

99.6 99.6 97.7 98.6 984 98.4 98.6 96.4 97.1

99.7
99

L7

98.6 97.6 97.6 97.7 954 95.1 96.0 94.6 93.1 92.6 94.1 91.0 90.7 92.0

100 99.6 99.3 97.3

99.7

8

99 954 92 92.1 84.8 88.0 80.5 783 78.8 74.1 71.8 69.8 72.1 63.8 67.8 63.8 62.4 619 62.1

20

b) Number of the 1st PC classes is stable while the number of 2nd PC classes changes.

Number of 1st PC classes

Number of 2nd
PC classes

20

19

18

17

16

15

14

13

12

10

% of assigned B-observations

99.7 99.7 99.9 99.9 99.7 99.7 99.7 99.9 99.9 99.7 99.7 99.7

100 99.7 99.7 98.7 99.7 99.6 99.6 98.6 97.6 99.7 99.0 97.9 98.6

99.3 99.6 99.9 99.7 99.6 99.9 99.9 98.3 99.4 97.6 99.1 98.7 98.1 97.9 96.3 97.1 96.7 96.1 96.7

99.7 99.9

100

100

99.9 99.9 100 99.7 99.9 100

2

4

97.1 953 92.7 92.8 88.4 83.5 84.3 83.1 78.8 79.4 76.0 76.5 67.8 70.0 68.7 64.9 65.8 62.7 62.1

20
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Table 6. Pearson’s correlation coefficients between the
estimation errors and field variables (final values
of the 1st and 2nd PC class numbers 4 and 2).

Table 7. Relationship (R?) between the development
class, 1st TM PC and field variables.

P. s Ist TM PC Basal Mean Mean Mean

Estimation Basal Mean Mean Mean
errors of: area diameter  height age

Basal area -0.541 -0.382 -0.435 -0.360
Mean diameter —0.373 -0.576 -0.551 -0.542
Mean height  -0.434 -0.562 -0.578 -0.535
Mean age -0.322 -0.495 -0.478 -0.603

area  diameter height age

Degree of determination (R2)

Development  0.40  0.60
class

090 0.89 0.85

Table 8. Dynamic stratification procedures using development stage and the 1st TM PC as classification variables

(all development stage classes).

Number of the 1st PC classes

20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4

% of assigned B-observations

93.7 958 96.4 96.9 97.0 97.0 97.0 97.3 97.3 97.7 97.7 98.4 98.7 98.7 98.9 99.3 100

3.4 Dynamic Stratification with the Devel-
opment Stage

It was expected that the inclusion of other than
TM PC auxiliary data could improve the results
of dynamic stratification. The development class
of the main storey was chosen as such data. It
can be quite objectively and easy estimated e.g.
on aerial photographs. This qualitative variable
is described by the following 9 classes: open
stand, seed tree stand, small saplings under 1.3
m, saplings above 1.3 m, first thinning stand,
second and third thinning stand, mature stand,
shelterwood stand and uneven aged stand. The
closeness of the relationship of the development
class to field variables and the 1st TM PC values
can be characterized by the degree of determina-
tion R? (Table 7). The high relationship with
field variables and comparatively less with TM
PC values indicates better stratification results.
The development class was used as the x/ and
the 1st TM PC as the x2 variable. The stratifica-
tion procedure is illustrated in Table 8.

The errors (Table 9) are significantly less than
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those of previous dynamic stratification variants.
The root mean square errors of mean diameter,
height and age (the variables most correlated
with development stage) — 3.34 cm, 2.65 m and
14.06 years are less than half of that in static
stratification.

In order to compare the errors correctly the
development stage class was included in the PC
transformation. New PCs, based on quantitative
TM values and qualitative development stage
classes were calculated. The errors of static strat-
ification using the new PCs are presented in
Table 10. They are similar for estimating basal
area but noticeably higher for mean diameter,
height and age.

The increase of stratification accuracy is mainly
resulted by the use of the development stage
class as an auxiliary variable. The root mean
square errors when the development stage class
is used alone in dynamic stratification are simi-
lar to those with development stage and 1st TM
PC as auxiliary variables. To interpret all nine
classes with high level of accuracy may be rather
complicated. Using larger development stage

— -
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Table 9. Assessment of dynamic stratification with the development stage and 1st TM PC as auxiliary variables.

Stratification No. of develop- Field variable error statistics
method ment stage
classes Basal area Mean diameter Mean height Mean age

z 2 rms z S2  rms z Sz rms z 2 rms
Development stage 9 0.63 6.37 6.40 —0.09 3.34 3.34 0.10 2.64 2.65 0.29 14.06 14.06
and 1st PC
Development stage 0.36 6.31 6.32 -0.16 3.29 3.29 0.03 2.71 2.71 0.24 13.48 13.48
Development stage 0.71 6.41 645 0.16 4.84 485 0.28 4.01 4.02 1.58 21.79 21.85
and 1st PC
Development stage 7 0.46 6.50 6.51 -0.02 479 4.79 0.16 4.12 4.12  0.93 20.44 20.46
Development stage 0.68 6.37 6.40 0.16 4.85 486 0.29 4.04 4.05 1.66 21.83 21.89
and 1st PC
Development stage 6 0.45 645 6.48 0.01 484 484 0.18 4.17 4.17 1.04 20.47 20.50
Development stage 0.54 6.52 6.54 0.07 499 499 0.22 4.11 4.11 1.41 22.09 22.14

and 1st PC
Development stage

Development stage 3 0.52 6.56 6.58
and Ist PC
Development stage 3 0.33 6.65 6.65 -0.10 4.99 4.99

0.38 6.55 6.56 —0.05 4.91 491
0.03 5.01 5.01

0.14 420 421  0.87 20.61 20.63
0.19 4.14 415  1.18 2221 22.24

0.10 4.27 427  0.68 20.89 20.90

1 Grouping of the development stage classes:

9 classes Every class forms a separate group

7 classes 1 —open stand, 2 —seed tree stand, 3 — small saplings under 1.3 m, 4 — saplings above 1.3 m, 5 — thinning stands, 6 — mature and

shelterwood stands, 7 — uneven aged stands

6 classes 1—open stand, 2 — seed tree stand, 3 — small saplings under 1.3 m, 4 — saplings above 1.3 m, 5 — thinning stands, 6 — mature,

shelterwood and uneven aged stands

4 classes 1—open stands, 2 — seed tree stand and saplings, 3 — thinning stands, 4 — mature, shelterwood and uneven aged stands
3 classes 1 - open stand, seed tree stand and saplings, 2 — thinning stands, 3 — mature, shelterwood and uneven aged stands

Table 10. Assessment of static stratification using PCs based on TM and development stage class values.

Stratification Field variable error statistics
method
Basal area Mean diameter Mean height Mean age

e SS rms 4 Sc: rms e Scz rms e Sf rms
Euclidean distances 0.74 6.48 6.52 0.43 489 491 0.51 3.87 391 2.43 20.05 20.20
Bayesian probabilities 0.69 6.59 6.62 0.37 4.89 490 0.45 3.86 3.88 1.83 20.14 20.22
Gaussian probabilities 0.64 6.61 6.65 034 495 496 0.42 3.88 3.90 1.61 20.26 20.32
Mahalanobis distances 0.81 6.64 6.69 0.53 5.13 5.16 0.56 4.01 4.04 227 21.48 21.66

classes the inclusion of TM variables can im-
prove the dynamic stratification results, except
the mean age and in particularly cases mean
diameter estimations (Table 9). Only three class-
es — (i) open, seed tree and sapling stands, (ii)

thinning stands and (iii) other — which can be
more easily defined on aerial photographs allow
us to hope similar results in basal area and a little
bit lower in other characteristics evaluation com-
paring to the use of nine development stage class-
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es. Practically there is no need to use larger
number of development stage class groups (ex-
cept all nine), because the estimation errors are
rather similar.

4 Discussion

The results of the study do not show promise to
achieve more accurate estimates using only prin-
cipal components as auxiliary data in dynamic
stratification opposed to static stratification. On
the contrary — the errors are somewhat larger.
Extrapolation of the results may be limited be-
cause of the small study area. But, if methods are
unsuccessful at such a small site, they are un-
likely to be more successful across broader re-
gions. Using x variables of different origin (qual-
itative development stage class and quantitative
PC) dynamic stratification appears to be much
more advanced as static stratification. This in-
crease of stratification accuracy is mainly result-
ed by the use of development stage class. It was
chosen of the estimation objectivity and simplic-
ity using remote sensing.

Using only one x variable (the 1st TM PC) the
minimum number of classes should be no less
than 4, above that it has practically no influence
over the stratification procedure — all B-observa-
tions are assigned values. The average stratifica-
tion errors using two PC’s tend to decrease with
the lessening of the total number of x variable
classes. It is possible to achieve the same or even
better results using certain classes of both x vari-
ables as the initial ones in the stratification pro-
cedure. Low values are overestimated and high
values underestimated.

Significant differences in the error statistics
lead to the conclusion, that in dynamic stratifica-
tion the non-measured observations should be
assigned the mean characteristics of the meas-
ured observations that belong to the same cube
and not randomly selected ones.
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