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Partial Least Square (PLS) regression is a recent soft-modelling technique that generalizes 
and combines features from principal component analysis (PCA) and multiple regression. 
It is particularly useful when predicting one or more dependent variables from a large set of 
independent variables, often collinear. The authors compared the potential of PLS regression 
and ordinary linear regression for accurate modelling of forest work, with special reference 
to wood chipping, wood extraction and the continuous harvesting of short rotation coppice. 
Compared to linear regression, PLS regression allowed producing models that better fit the 
original data. What is more, it allowed handling collinear variables, facilitating the extraction 
of sound models from large amounts of field data obtained from commercial forest operations. 
On the other hand, PLS regression analysis is not as easy to conduct, and produces models 
that are less user-friendly. By producing alternative models, PLS regression may provide 
additional – and not alternative – ways of reading the data. Ideally, a comprehensive data 
analysis could include both ordinary and PLS regression and proceed from their results in 
order to get a better understanding of the phenomenon under examination. Furthermore, the 
computational complexity of PLS regression may stimulate interdisciplinary team-building, 
to the greater benefit of scientific research within the field of forest operations.
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1 Introduction

Performance studies in forest operations often 
produce empirical models used for many pur-
poses, including wood-flow planning, harvesting 
cost calculation and work rate setting (Björheden 
1988). At a more fundamental level, performance 
studies also allow understanding the behaviour of 
harvesting machines and systems under varying 
stand and terrain conditions (Visser and Spinelli 
2011). That is particularly important when deploy-
ing specialised industrial technology (Chiorescu 
and Grönlund 2001), which is more expensive 
and less flexible than traditional general-purpose 
equipment (Spinelli and Magagnotti 2011a).

Empirical performance models are generally 
developed by collecting field data and testing 
the statistical significance of any relationships 
with regression analysis (Samset 1990). The most 
commonly used regression type is ordinary least 
square linear regression (OLS). This technique 
is used to “calculate” an equation capable of 
representing the relationship between a dependent 
variable (typically time consumption or produc-
tivity) and one or more independent variables 
(Bergstrand 1987). Indicator (Dummy) variables 
are often used to include influencing factors that 
assume discrete rather than continuous values 
(Olsen et al. 1998).

A fundamental assumption of ordinary least 
square linear regression is that variables are inde-
pendent, and not collinear (Freedman et al. 2007). 
That can be obtained through a strict experimen-
tal design, carefully planned before data collec-
tion and eventually integrated as work proceeds 
(Howard 1989). However, a large number of 
variables can impact the performance of forest 
machines, including piece size (Nakagawa et al. 
2010), stocking density and thinning intensity 
(Eliasson 1999), type of cut and total volume 
(Suadicani and Fjeld 2001) and terrain character-
istics (Visser and Stampfer 1998). Further vari-
ation is introduced by the widely varying skills 
of both machine operators (Ovaskainen et al. 
2004) and researchers (Nuutinen et al. 2008). To 
overcome such variation, productivity models 
should be based on large samples (Nurminen 
et al. 2006). Bergstrand (1987) estimates that 
about 400 operators should be included in each 

performance study, in order to detect the exist-
ence of differences between groups at a 95% 
confidence level.

That explains why it is so difficult and expen-
sive to implement a strict experimental design 
when developing an empirical performance 
model (Spinelli et al. 2011). The large samples 
needed to obtain a reliable general model are often 
assembled by studying commercial operations, 
which makes it difficult to implement a control-
led study design (Spinelli and Magagnotti 2009). 
As a result, variables are often collinear and most 
such studies can estimate primary effects only, 
while missing secondary effects (Spinelli et al. 
2010).

Hence the interest in exploring alternatives to 
ordinary linear regression (OLS), such as mul-
tivariate predictive modelling based on the re-
combination of principal components (Principal 
Component Regression – PCR) or latent variables 
(Partial Least Square – PLS). Different authors 
(Nsofor, 2006) observed that in many cases the 
PLS approach returns better results than PCR, 
including a better goodness-of-fit and a more 
robust model. PCR is a multivariate method where 
a multiple linear regression is performed on the 
Principal Component Analysis scores. In con-
trast, PLS is a soft-modelling technique, i.e. it 
has “soft” distributional assumptions (Pulos and 
Rogness 1995) and can be used when distribu-
tions are highly skewed (Bagozzi and Yi 1994). 
PLS finds a linear regression model by projecting 
the predicted variables and the observed variables 
to a new space (projection to latent structures) 
that is component-based rather than covariance-
based. PLS is particularly useful when predicting 
one or more dependent variables from a large set 
of independent variables, often collinear. This 
technique originated within the field of economics 
(Wold 1966) but became popular first in compu-
tational chemistry (Geladi and Kowalski 1986) 
and then in sensory evaluation (Martens and Naes 
1989). Today PLS regression is becoming a tool 
of choice in the social sciences, as a multivariate 
technique for non-experimental and experimen-
tal data alike (Mcintosh et al. 1996, Costa et al. 
2010, Capoccioni et al. 2011). PLS regression 
was first presented as an algorithm akin to the 
power method used for computing eigenvectors 
and was rapidly interpreted in a statistical frame-
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work (Frank and Friedman 1993, Helland 1990, 
Hoskuldsson 1988, Abdi 2003).

The goal of this study was to explore the poten-
tial of multivariate approaches different from OLS 
(i.e. PCR and PLS), focusing mainly on PLS 
regression when developing forest operation per-
formance models. In particular, the study aimed 
at comparing the main statistical significance 
indicators associated to models calculated with 
OLS, PCR and PLS regression from the same 
original datasets, for the purpose of quantifying 
the eventual improvements obtained with the new 
techniques.

2 Materials and Methods

Three datasets were selected for comparing the 
three regression techniques: OLS, PCR and PLS. 
These datasets represented a wide variety of forest 
operations, with clearly different characteristics 
and influencing factors. The same datasets had 
already been used for published modelling stud-
ies. Dataset 1 concerned chipping whole trees, 
logs and forest residues with mobile chippers, 
and was used to estimate chipping time in min 
ton−1 as a function of eleven independent vari-
ables (Spinelli and Hartsough 2001). Dataset 2 
concerned the skidding of whole trees, delimbed 
stems and logs with forestry-fitted farm trac-
tors, and was used to estimate productivity in 
m3 hour−1 as a function of ten independent vari-
ables (Spinelli and Magagnotti 2011b). Dataset 3 
concerned harvesting short rotation coppice with 
modified foragers, and was used to estimate the 
forager harvesting rate in min km−1 as a func-
tion of five independent variables (Spinelli et al. 
2009). The complete list of dependent and inde-
pendent variables is shown in Table 1.

In order to determine the most robust PCR and 
PLS models in terms of reducing the overfitting in 
prediction, each dataset was partitioned into 80% 
to estimate the model, and 20% for the independ-
ent validation tests. The partitioning strategy is 
one of the most reliable and advanced approaches 
to validate models and correct overfitting, and 
is directly linked with model robusteness. The 
partitioning algorithm used was SPXY (Harrop 
Galvao et al. 2005, Antonucci et al. 2011). This 

algorithm accounts for the variability of both the 
dependent and independent variables, constitut-
ing the Y-block and the X-block, respectively. 
This procedure was not used for the ordinary 
models, which had been previously published as 
calculated from the whole data set without any 
partitioning. Hence, calculating them again after 
partitioning would have generated a result incon-
sistent with the published formulations.

Table 1. Variables used for the regression analysis.

Dataset 1
Y-block variables:
– Chipping time (min t−1)
X-block variables:
– Species (Austrian pine, Beech, Chestnut, Douglas, 
 Eucalyptus, Hardwood, Maritime pine, Pine, 
 Poplar, Radiata, Robinia, Spruce, Umbrella pine)
– Material (Tops, Logs, Slash, Whole, Complete)
– Wood (Fresh, Semi-dry, Dry)
– Piece size (ton piece–1)
– Lay-out (Loads, Bunched, Stacked, Aligned)
– Type (Disc, Drum)
– Power (kW)
– Feeding (Crane, Hand-fed)
– Chipping (Landing, Terrain)
– Operator (Top prof, Prof, Full time prof, Part time 
 prof, Beginners)

Dataset 2
Y-block variables:
– Skidding productivity (m3 hour−1)
X-block variables
– Power (kW)
– Operators (n)
– Chokerman (With, Wthout)
– Distance (m)
– Winching Distance (m)
– Pieces (n load–1)
– Load size (m3)
– Piece Size (m3)
– Treatment (Maturity, Thinning)
– Suspension (Full, Half)

Dataset 3
Y-block variables:
– Harvest rate: (min km−1)
X-block variables:
– Stocking (t ha−1)
– Forager Power (kW)
– Header (HS2, GBE)
– Row System (twin-, single-row)
– Stocking (t km−1)

Note: underlined variables are also significant to the model obtained 
through ordinary regression
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For the purpose of both PCR and PLS regres-
sion analyses, the X-blocks from Datasets 1 and 
2 were transformed by column centering (‘mean 
center’) procedure, while Dataset 3 was trans-
formed by column normalization (‘autoscale’ 
equal to mean centering * stand dev–1). All the 
Y-blocks were transformed using the ‘autoscale’ 
procedure.

PCR is a three-step multivariate method: in the 
first step, a Principal Component Analysis (PCA) 
of the data matrix is performed and measured 
variables are converted into new ones (scores on 
latent variables). In the second step the Principal 
Components relevant in the prediction model are 
selected on the base of the highest goodness of 
fit in the validation phase. This is followed by 
a multiple linear regression (3rd step) between 
the scores obtained in the PCA (1st step) and the 
characteristic response variable to be modelled 
(De Maesschalck et al. 1999), Because it directly 
addresses the collinearity problem, PCR can be 
said to be less susceptible to overfitting than 
Multiple Linear Regression (MLR).

PLS is used to find the fundamental relations 
between two matrix (X and Y) and represents a 
latent variable approach to modeling the covari-
ance structures in these two spaces. A PLS model 
will try to find the multidimensional direction in 
the X space that explains the maximum multidi-
mensional variance direction in the Y space.

The general underlying model of multivariate 
PLS is:

X = TPT + E (1)

Y = UQT + F (2)

where X is a n × m matrix of predictors, Y is a n × p 
matrix of responses; T and U are n × l matrices that 
are, respectively, projections of X (the X score, 
component or factor matrix) and projections of Y 
(the Y scores); P and Q are, respectively, m x l and 
p × l orthogonal loading matrices; and matrices 
E and F are the error terms, assumed to be i.i.d. 
normal. The decompositions of X and Y are made 
so as to maximize the covariance of T and U.

A number of variants of PLS exist for estimat-
ing the factor and loading matrices T, P and Q. 
In this study we used the SIMPLS (De Jong 
1993) algorithm (equal to PLS1 for univariate y) 

that constructs estimates of the linear regression 
between X and Y as (B and B0 are parameters):

Y = XB + B0 (3)

Both PCR and PLS were computed using PLS 
toolbox 6.2 (Eigenvector research) for Matlab 
7.1. The programme also calculated residual 
error indicators, such as the root mean square 
errors in calibration (RMSEC) and in validation 
(RMSECV). The predictive ability of the model 
was partially dependent on the number of the 
latent vectors used and was assessed through 
the following statistical indicators: root mean 
square error (RMSE), standard error of previ-
sion (SEP), correlation coefficient (r) and bias. 
Finally, the programme calculated the ratio of 
percentage deviation (RPD), which is the ratio 
of the standard deviation of the measured data to 
the RMSE (Williams 1987). This represents the 
factor by which the prediction accuracy has been 
increased compared with using the mean of the 
original data. Generally, a good predictive model 
should have high values for r and low values for 
RMSE, SEP and bias. The model chosen was for 
the number of LV (Latent Vector) that yielded the 
highest r, minimum SEP for predicted and known 
Y-block and maximum RPD.

RPD values were classified as follows: 
RPD < 1.0 for a very poor model, whose use is 
not recommended; RPD between 1.0 and 1.4 for 
a poor model where only high and low values 
can be separated; RPD between 1.4 and 1.8 for a 
fair model that may be used for assessment and 
correlation; RPD values between 1.8 and 2.0 for 
a good model able to produce quantitative predic-
tions; RPD between 2.0 and 2.5 for a very good 
quantitative model, and RPD > 2.5 for an excel-
lent model, highly accurate and reliable (Viscarra 
Rossel et al. 2007).The main differences between 
OLS, PCR and PLS are summarized in Table 2.

3 Results

The models generated through ordinary regres-
sion analysis are available on the quoted original 
publications, and namely: Spinelli and Hart-
sough (2001), Spinelli and Magagnotti (2011b) 
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and Spinelli et al. (2009), for Datasets 1, 2 and 
3, respectively. On the other hand, the models 
generated through PCR and PLS regression analy-
ses are rather complex to write and will not be 
reported.

Table 3 shows the main indicators for the OLS, 
PCR and PLS regression models, for the three 
datasets tested. The number of independent vari-
ables used by PCR and PLS regressions are from 
2 to 5 times higher than used in OLS. Model 
error indicators (SEP and RMSE) are 20 to 40% 
lower for the PCR and PLS regression models, 
compared to the OLS ones. Moreover, r values 
are always higher for both PCR and PLS models, 
with an increment between 5 and 20% over OLS 
models. RPD is always higher for the PLS regres-
sion models. Based on the previously mentioned 
RPD classification, PLS regression allows the sys-
tematic upgrading of ordinary regression models: 
Model 1 goes from “very good” to “excellent”, 

Model 2 from “fair” to “very good” and Model 
3 from “poor” to “fair”. The indicators for the 
validation tests are also encouraging, with the 
predicted values following quite closely the actual 
values in the subset reserved for independent 
validation.

PLS is the best performing model for Dataset 1 
while for Datasets 2 and 3, with a reduced number 
of X variables, PCR and PLS converged to the 
same results.

The observed vs predicted independent Y vari-
ables for the OLS and PLS models for the three 
datasets were reported in Figs. 1, 2 and 3, respec-
tively.

Table 4 shows the relative contribution (load-
ings) of individual X-variables to each of the first 
three latent vectors of each PLS model.

Regarding Dataset 1, the variables with the 
highest contribution to the first LV (x-block 
99.97%; y-block 0.08%) are the indicators for 

Table 2. Principal features of OLS, PCR and PLS modelling techniques (modified from Nsfor 2006).

OLS PCR PLS

No standardization or scaling Standardization or scaling Standardization or scaling
required needed needed

Gives good predictions when Predicts better when input Predicts better when input
the inputs variables are truly variables are not independent variables are not independent
independent of each other of each other

Good when the input variables Works well when there is a need Works well when there is a need
are all useful in predicting for variable reduction for variable reduction
the response

Simpler to understand and More complex in its solutions More complex in its solutions
interpret

Does not handle well ill- Works well with ill-conditioned Works well with ill-conditioned
conditioned or collinear data or collinear data or collinear data

Does not handle well redundant Removes collinearity Removes collinearity
input variablest

Maximizes the squared Better for dimensionality Better for dimensionality
correlation between projected reduction or feature selection reduction or feature selection
inputs and output

 Maximizes variance of Maximizes the covariance
 the projected inputs between projected inputs and output

 Considers only input variables Considers both input and output
 in their transformations variables in their transformations
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Feeding (crane or hand-fed) and Material (tops), 
and Power. Lay out (aligned) and Operator (part-
time professional) give the highest contribution to 
the second LV (x-block 0.01%; y-block 70.45%); 
Lay-out (loads), and Species (Poplar) has the 
strongest effect on the third LV (x-block <0.01%; 
y-block 15.75%). Of these variables, only one is 
included in the model obtained with OLS. On 
the other hand, the PLS regression model is not 
particularly sensitive to piece size, which is a key 
independent variable for the ordinary regression 
model. In the PLS regression model, piece char-
acteristics are reflected by attributes other than 
size (Lay-out and Species).

As to Dataset 2, the variable with the highest 
contribution on the first LV is distance (x-block 
58.16%; y-block 3.17%). Power and Distance have 
the strongest effect on the second LV (x-block 
41.08%; y-block 4.11%). Winching Distance and 
Pieces give the highest contribution to the third 
LV (x-block 0.71%; y-block 18.57%). These are 
the same variables included in the model calcu-
lated with ordinary regression techniques.

Finally, the first LV (x-block 76.01%; y-block 
26.22%) of Dataset 3 receives the highest contri-
bution from Stocking in t ha−1 and Power in kW. 
Power is also the main contributor to the second 
LV (x-block 19.63%; y-block 1.96%). Stocking 
in t ha−1 and t km−1 give the highest contribution 
to the third LV (x-block 4.00%; y-block 3.44%). 

Power and Stocking are the two main variables 
included in the model calculated with ordinary 
regression techniques. PCR loadings were not 
reported, having similar values than PLS.

4 Discussion

Although variable selection may reduce the error 
of a prediction model, it may also inadvertently 
discard useful redundancy. Using fewer variables 
to make a prediction means that each variable 
has a larger influence on the final result. Hence, 
one should carefully consider the requirements 
of the final model before variable selection. For 
this reason, we decided to use full-spectrum PCR 
and PLS models.

As observed by Nsofor (2006) PLS gives better 
results than PCR for latent vectors that maximize 
the correlation between LV’s and the Y var (Table 
2). Moreover, we observed that with fewer vari-
ables (Datasets 2 and 3) PCR and PLS models 
tend to offer the same results.

PLS regression analysis does offer some bene-
fits over ordinary regression analysis (Lipp 1996). 
The substantial improvement of all goodness-of-
fit indicators is probably the most visible benefit. 
Moreover, other benefits of the PLS regression 
technique are not merely the increase of a coef-

Table 3. Main goodness-of-fit indicators for the regression models.

Regression analysis  Dataset 1   Dataset 2   Dataset 3
 OLS PCR PLS OLS PCR PLS OLS PCR PLS

Observations (n) 99 99 99 324 324 324 480 480 480
X Variables (n) 2 38 38 5 13 13 2 7 7
Latent Vectors / PC axes (n) – 11 4 – 9 9 – 5 5
% Cumulated Variance X-block – 99.99 31.40 – 100 100 – 100 100
% Cumulated Variance Y-block – 72.67 86.17 – 78.28 78.27 – 63.90 63.90
RMSEC – 0.52 0.33 – 0.47 0.47 – 0.60 0.60
RMSECV – 0.65 0.55 – 0.48 0.48 – 0.61 0.61
r model (80% of observations) 0.889 0.870 0.942 0.828 0.880 0.884 0.655 0.800 0.799
SEP model (80% of observations) 5.462 5.024 4.327 3.773 0.820 0.820 17.743 3.143 3.143
RMSE model (80% of observations) 5.462 5.000 4.300 1.224 0.818 0.818 5.240 3.140 3.139
RPD model (80% of observations) 2.177 1.982 2.961 1.776 2.141 2.141 1.270 1.662 1.662
r test (20% of observations) – 0.859 0.917 – 0.822 0.823 – 0.656 0.656
SEP test (20% of observations) – 9.452 5.252 – 1.755 1.755 – 6.535 6.535
RMSE test (20% of observations) – 11.408 7.811 – 2.330 2.331 – 9.582 9.582

RPD test (20% of observations) – 1.680 0.613 – 1.745 1.745 – 1.299 1.299
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Table 4. PLS Models: X variable loadings for each of the first 3 LVs (Latent Vectors).

Variable Dummy opt. LV1 LV2 LV3

Dataset 1
Av.size ton piece–1 –0.243 –0.044 0.092
Power kW –0.336 0.142 –0.145
Species Austrian pine 0.146 –0.143 0.118
Species Beech 0.000 0.000 0.000
Species Chestnut –0.028 –0.052 –0.052
Species Douglas –0.018 0.060 0.076
Species Eucalyptus 0.052 –0.227 –0.057
Species Hardwood 0.128 0.287 –0.164
Species Maritime pine 0.072 0.206 –0.005
Species Pine 0.034 –0.039 –0.194
Species Poplar –0.095 –0.255 0.333
Species Radiata –0.066 0.002 0.111
Species Robinia 0.027 –0.116 –0.144
Species Spruce –0.042 –0.024 –0.147
Species Umbrella pine –0.086 0.159 –0.201
Material Complete –0.053 0.051 –0.023
Material Logs 0.069 –0.139 –0.134
Material Slash 0.130 0.221 –0.077
Material Tops –0.249 0.040 0.329
Material Whole 0.158 –0.164 –0.224
Wood Dry –0.038 –0.120 0.038
Wood Fresh 0.040 0.054 0.056
Wood Semi-dry –0.023 0.004 -0.081
Lay-out aligned 0.067 -0.335 0.234
Lay-out bunched -0.094 0.134 0.167
Lay-out loads 0.079 0.095 -0.367
Lay-out stacked –0.022 0.089 –0.147
Type Disc 0.111 –0.056 0.235
Type Drum –0.111 0.056 –0.235
Feeding Crane –0.428 0.098 –0.044
Feeding Hand-fed 0.428 –0.098 0.044
Chipping Landing –0.064 0.267 –0.222
Chipping Terrain 0.064 –0.267 0.222
Operator Beginners 0.320 –0.220 0.069
Operator Full-time prof 0.009 –0.237 –0.002
Operator Part-time prof 0.240 0.309 0.111
Operator Prof –0.005 0.124 –0.107
Operator Top Prof –0.249 0.148 0.008

Dataset 2
Power kW 0.028 0.781 –0.206
Operators n 0.000 –0.006 –0.005
Distance m 1.000 –0.575 –0.001
WinchDist m –0.006 –0.201 –0.890
Pieces n 0.003 –0.136 0.406
Load size m3 0.001 0.013 0.009
Piece size m3 0.000 0.008 –0.011
Chokerman With 0.000 –0.006 –0.005
Chokerman Without 0.000 0.006 0.005
Treatment Maturity 0.000 –0.006 0.001
Treatment Thinning 0.000 0.006 –0.001
Suspension Full 0.001 0.005 –0.006
Suspension Half –0.001 –0.005 0.006

Dataset 3
Stocking t ha–1 0.823 –0.038 –0.294
Power kW 0.510 –0.999 0.044
Stocking t km–1 0.251 0.003 0.882
Header HS2 0.007 –0.014 –0.009
Header GBE –0.007 0.014 0.009
Row System Twin –0.004 0.013 0.258
Row System Single 0.004 –0.013 –0.258
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Fig. 1. Dataset 1: observed vs predicted Y for the ordinary and PLS model.
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Fig. 3. Dataset 3: observed vs predicted Y for the ordinary and PLS model.

Fig. 2. Dataset 2: observed vs predicted Y for the ordinary and PLS model.
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ficient, but the capacity of detecting significant 
variables otherwise missed with ordinary regres-
sion techniques (Costa et al. 2009). This is the 
advantage of latent vectors, which are capable of 
integrating the effect of more independent vari-
ables. A further advantage of PLS regression over 
multiple linear regression is in the definition of the 
new variables, which takes into account not only 
the values assumed by the X but also their correla-
tion with the dependent variables (Kresta 1992).

In this respect, it is most interesting to com-
pare the X-variables included in the ordinary and 
PLS regression models obtained from the same 
datasets. In most cases (Datasets 2 and 3) the 
balance remains the same: the strongest variables 
in the ordinary regression model are also the 
strongest in the PLS regression model. Hence, 
PLS regression may have the capacity of draw-
ing additional variables into the models, without 
radically changing its conceptual structure. That 
is most logical, because both model types still 
describe one single real-life phenomenon, and 
the phenomenon is bound to be the driver, not 
the model. The model describes the phenomenon, 
and regardless of how it does that, skidding still 
involves a machine dragging a load over a certain 
distance. Hence, machine pulling power, load size 
and distance are bound to have the strongest effect 
on skidding performance.

On the other hand, the same event can be seen 
from different angles, and different observers 
can choose different attributes to describe the 
same quality. That may explain why the PCR 
and PLS regression models underestimated the 
effect of piece size, which the ordinary regres-
sion model picked as one of its strongest inde-
pendent variables. In contrast, PLS regression 
analysis selected other piece attributes than size. 
Hence, the new technique still detected the strong 
effect of piece characteristics, but chose different 
specific attributes for inclusion into the model. 
That is likely dependent on the capacity of PLS 
regression to handle collinear variables. Ordinary 
regression would pick one or the other, but the 
use of latent vectors in PLS regression make it 
possible to select more than one attribute for the 
same characteristic, after weighing their contribu-
tion through pre-treatment.

When different variables are picked by different 
models, it is difficult to decide which model best 

represents the real phenomenon. Direct experience 
with the phenomenon and convenience should be 
the best guides, but they are highly subjective. In 
the specific case of Dataset 1, the choice would 
be between Size (ordinary regression model) and 
Species combined with Layout (PLS regression 
model). There are good reasons for defending 
both models. The effect of piece size on pro-
ductivity is generalized and well known (Visser 
and Spinelli 2011). On the other hand, operator 
experience often hints at raw material lay-out as a 
main driver of chipping productivity. The distinc-
tive effect of a given tree species can be related to 
different wood characteristics. In our case, poplar 
wood is indeed the softest wood type among those 
represented in the dataset. It can be debated that 
a model electing size over lay-out and species 
is somewhat more flexible, as it may adapt to a 
wider number of situations. On the other hand, 
flexibility may tempt users into extrapolation, 
whereas a model is properly used only within the 
range set by the original data pool.

The larger number of X-variables included in 
the PCR and PLS regression models also war-
rants some comments. While this larger number 
guarantees a more accurate description of the 
phenomenon, it also requires a larger effort 
when gathering input data. Hence, PCR and PLS 
regression models may be less convenient to use 
than similar models calculated through ordinary 
regression. Furthermore, users may be somewhat 
less careful when collecting many input variables, 
than when they need to collect fewer. Pressed 
by time constraints, they may settle for approxi-
mate values, rather than going all the way and 
get accurate representative figures. In that case, 
the alternative is between using fewer better fig-
ures or more approximate figures. Therefore, the 
larger modelling effort required by PLS regres-
sion analysis may be frustrated.

PCR and PLS regression analyses are not as 
easy to perform as OLS. The latter is easily avail-
able within any mainstream software package, 
including the basic Excel. More sophisticated 
users may scorn the base Excel package and turn 
to R, or to any commercial statistical softwares 
– all of which rightly include comprehensive 
linear regression programmes. All researchers 
are familiar with ordinary least square regression 
analysis, and can quickly adopt the results pub-
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lished by their colleagues. In contrast, PCR and 
PLS regression analyses require specific pack-
ages, algorithms and skills that are not as readily 
available. The models themselves are somewhat 
less handy than standard regression equations. 
Nevertheless, PLS modelling and more in general 
the advanced multivariate approach, are getting 
increasingly popular, because they are very robust 
and are particularly suitable for modelling com-
plex systems.

This very same reasons may justify the intro-
duction of multivariate regression to forest work 
science. If its merits turned out to be so valuable, 
PLS regression would spread rapidly, and the 
sector would evolve from an older established 
technique to a new one – as it has already hap-
pened before, when regression analysis was first 
introduced. At the moment, the most practical 
thing to do for accessing PLS regression is prob-
ably to team with researchers who already use it, 
building multidisciplinary work groups. This way, 
one may multiply the comparisons, and decide 
if, when and how PLS regression should replace 
ordinary least square regression.

5 Conclusions

Compared to OLS analysis, PCR and PLS regres-
sion analyses allow producing models that better 
fit the original data. What is more, they allow han-
dling collinear variables, facilitating the extraction 
of sound models from large amounts of field data 
obtained from commercial forest operations. This 
could lead to more robust models in terms of both 
variable oscillations and higher repeatability.

On the other hand, PCR and PLS regression 
analyses are not as easy to conduct, and produce 
models that are less user-friendly.

In fact, we believe that PCR and PLS regres-
sion analyses offer significant benefits in terms of 
theory-building, and that these benefits may far 
outweigh the strictly practical ones. By produc-
ing alternative models, PCR and PLS regression 
may provide additional – and not alternative – 
ways of reading the data. Ideally, the analysis 
could include ordinary, PCR and PLS regression 
and proceed from their results in order to get a 
better understanding of the phenomenon under 

examination. By comparing the ways and the 
variables used by both analyses to mirror the 
actual phenomenon, researcher could get a better 
understanding of it, which is the ultimate goal of 
any field study.

Furthermore, the computational complexity of 
PCR and PLS regression may stimulate interdis-
ciplinary team-building, to the greater benefit of 
scientific research within the field of forest opera-
tions. Cross-pollination could generate new ideas, 
improve study methods and eventually accelerate 
scientific progress in this field.
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