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Climatic Infl uence on Scots Pine 
Growth on Dry and Wet Soils in
the Central Scandinavian Mountains, 
Interpreted from Tree-Ring Widths

Hans W. Linderholm

Linderholm, H.W. 2001. Climatic infl uence on scots pine growth on dry and wet soils in 
the central Scandinavian mountains, interpreted from tree-ring widths. Silva Fennica 
35(4): 415–424.

Tree rings are one of the most important proxy data sources for reconstructing past 
climate variability. In order to understand climate variability, it is necessary to get a 
spatial and temporal coverage of climate information. Summer temperatures mainly 
infl uence tree growth at the altitudinal tree line, while at lower altitudes additional factors 
affect growth. In addition, the nature of soil where trees grow may affect growth response 
to climate. To decide climate as well as growth-substrate infl uences on Scots pine (Pinus 
sylvestris L.) growing below the tree line, two tree-ring width chronologies, sampled 
at dry mineral soil and wet peat soil in a mountain valley in the central Scandinavian 
Mountains, were analysed for climate responses and spectral signals. Temperatures 
during growth season (May–August) showed the strongest infl uence on tree growth at 
both sites. Infl uence of precipitation in the growing season was low, indicating suffi cient 
amounts of available water during growth. However, at the dry-soil site the infl uence of 
late winter/early spring precipitation was signifi cant. Strength of the climate–tree–growth 
relationship at the dry site was similar to that of trees growing at the present tree line, 
while weaker at the wet site. Both site chronologies exhibited common spectral peaks at 
c. 3.5 and 13 years indicating a common growth forcing at those time scales. The wet-site 
chronology displayed low-frequency variations with a 19-year periodicity, where growth 
peaks coincided with the lunar tidal maxima indicating a possible infl uence of lunar 
forcing. At the dry-site, multi-decadal fl uctuations displayed a periodicity of 66 years. 
Both 13- and 66-year periods can be linked to variations in sea surface temperatures of 
the North Atlantic Ocean, pointing to a maritime infl uence, on decadal scales, of pine 
growth in the area. These results suggest that Scots pine in this environment may be 
regarded as proxies of North Atlantic Ocean coupled climatic variability.
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1 Introduction

In order to assess human impact on increased 
global temperatures during the 20th century, 
knowledge of natural changes and variability 
in climate is essential (LaMarche 1974, 1978, 
Jacoby and D’Arrigo 1989, Bradley and Jones 
1995). Northern Scandinavian climate is sensitive 
to changes in the North Atlantic Current, which 
is believed to be of importance for global climate 
(e.g. Karlén 1998). However, most meteorologi-
cal records in Scandinavia cover only short peri-
ods, usually less than 100 years, and such short 
records cannot be expected to represent the full 
range of climate variability (D’Arrigo and Jacoby 
1993). Therefore, an extension of climatic data 
in time is needed in order to understand natural 
variations (e.g. Bradley and Jones 1995).

In Sweden, dendroclimatological investigations 
have mainly been conducted at the tree line in the 
northern parts of the country, where a multi-mil-
lennial dendrochronology has been constructed 
in Torneträsk (e.g. Bartholin and Karlén 1983, 
Briffa et al. 1990, 1992, Grudd et al. submitted 
2000). As the yearly growth of trees at high 
latitude or high elevation is chiefl y dependent on 
local temperature variability (Jacoby and Cook, 
1981, Briffa et al. 1990, D’Arrigo and Jacoby 
1993), these tree-ring series are suitable for 
making temperature reconstructions with inter-
annual to decadal and century scale resolution. 
Few studies have been made on trees growing in 
central and southern Sweden; Johnsson (1969) 
studied the climatological effects on growth of 
Scots pine (Pinus sylvestris L.) and Norway 
spruce (Picea abies (L.) Karst.) at several local-
ities in Sweden, and a new multi-millennial 
dendrochronology is under construction in west 
central Sweden (Gunnarson 2001, Gunnarson 
and Linderholm submitted 2001). Furthermore, 
Linderholm (1999) discussed the climatological 
and anthropological infl uence on the growth 
of Scots pine at a peat bog in south central 
Sweden.

The aim of this paper is to determine the cli-
matic infl uence on tree growth of Scots pine 
(Pinus sylvestris L.) growing on dry and wet soils 
in a mountain valley in west central Sweden. 
Here glacial mineral soil is defi ned as dry and 

organic soil at a peatland defi ned as wet. Den-
droclimatic analyses were made on pine growing 
approximately 200 m below the present tree limit. 
In addition to determining climate sensitivity of 
Scots pine below the tree line in the mountains, 
it is important to know if Scots pine growing 
on wet soils can be useful in dendroclimatology 
since large areas of Sweden are covered by peat 
where you frequently fi nd scattered pine stands. 
Previous research has shown that climatic infl u-
ence on the yearly growth of bog pines at lower 
latitudes is weak (Läänelaid 1982, Vaganov and 
Kachaev 1992, Linderholm 1999). However, no 
evaluations of use of pine, growing on peat sur-
faces in mountain environments, in dendroclima-
tological investigations have yet been published.

Remains of trees, subfossil wood, are occa-
sionally encountered in peat bogs (Lundqvist 
1969, McNally and Doyle 1984, Ward et al. 1987, 
Bridge et al. 1990, Pilcher et al. 1995, Grudd et al. 
2000). Subfossil pine was found in several peat 
bogs in the studied area. Pine remains are often 
restricted to distinct layers, recurrence surfaces 
(e.g. Barber 1982), which have been attributed 
to changes in the degree of peat humifi cation 
caused by climatic changes (Aaby 1976, Barber 
1982, Frenzel 1983). At the Klockamyren peat 
bog, near Lake Ånn, pine remains from the basal 
layer of the peat have been 14C dated to 6330 BC 
(Lundqvist 1969). If bog pines contain climatic 
information, studies of subfossil pine combined 
with studies of the peat stratigraphy and pollen 
analysis could be a useful source of paleoclimatic 
information spanning most of the Holocene.

2 Study Area

The investigated area is located in the western-
most part of central Sweden (Fig. 1). Sample 
localities are located in the Lake Ånn basin 
(63°15’, 12°30’, 526 m a.s.l.), just east of the 
main divide of the Scandinavian Mountains. 
Mountains surrounding the basin are rounded, 
reaching elevations of 800–1000 m a.s.l., except 
in the south where more alpine massifs rise to 
–1700 m a.s.l. The Lake Ånn basin is charac-
terised by widespread glacial lake deposits and 
eskers (Borgström 1979). Both continental and 
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maritime west coast climates, due to the proxim-
ity to the Norwegian Sea, infl uence the climate 
regime of the area. The area is located within 
the Northern Boreal zone with a pine tree-limit 
at about 700 m a.s.l (Kullman 1981). Monthly 
temperature and precipitation data were obtained 
from SMHI (Swedish Meteorological and Hydro-
logical Institute) for Duved (1911–1979, 400 m 
a.s.l., 63°23’, 12°56’, Fig. 2).

2.1 Sampling Sites

Dry soil site. Pines growing on glacial lake sedi-
ments were sampled west of Lake Ånn at an 
elevation of 530 m a.s.l. (Fig. 1). Tree height 
ranged from 6 to 15 meters depending on site 
conditions; fi ner sediments tend to inhibit tree 
growth. Old and dominant trees were sampled 
in order to extend the chronology as far back in 
time as possible. At the dry site, 23 trees (46 
cores) were sampled.

Wet soil site. Årsön (528 m a.s.l.), a small island 
in Lake Ånn (Fig. 1), where glacial sediments 
are partly covered by peat, was chosen as the wet 
site. Pines grow at the edges of the bog, leaving 
the wetter central part of the bog free from trees. 
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Fig. 1. Map showing the locations of the sampled sites in the Lake Ånn basin (63°15’, 12°30’), 
western Jämtland, Sweden. Samples of Scots pine (Pinus sylvestris L.) for dendroclimatological 
analyses were collected at a wet-soil site, a peat bog, on the island Årsön (A), and a dry-soil 
site west of Lake Ånn (B).
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Fig. 2. Meteorological records from Duved. A) Mean 
annual temperature (1911–1979) and total annual 
precipitation (1889–1979). B) Mean monthly tem-
perature and precipitation.
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Samples were taken from 26 trees (52 cores). 
Trees growing at the edge of the open area on 
peat exceeding 1 m in depth were selected in 
order to ensure a wet environment.

3 Methods

3.1 Chronology Building

Cores were mounted and prepared according to 
methods described by Stokes and Smiley (1968). 
Annual tree ring widths of each core were meas-
ured on an Aniol tree-ring-measuring device with 
a precision of 1/100 mm, and, if synchronous, 
averaged into one tree-ring curve for each tree. All 
curves were checked with COFECHA (Holmes et 
al. 1986), a software that analyses the quality of a 
set of tree-ring measurements, verifi es cross dating 
among tree-ring series and indicates possible 
dating or measurement problems. The ring-width 
series were standardised to remove age-associated 
trends and maximise high frequency variations 
(Fritts 1976). This was done by fi tting a negative 
exponential curve, or regression line, to each series 
and then dividing the widths by the fi tted curve. 
When no age trend was present, a straight line 
was used. The remaining, dimensionless, indices 
were then averaged into a single chronology for 
each site. Standardisation was performed with 
ARSTAN software (Holmes et al. 1986). Residual 
chronologies, computed by averaging residuals 
from autoregressive modelling of detrended meas-
urement series, were used in the analysis of cli-
mate growth response as they contain a strong 
common signal (Lindholm 1996).

3.2 Growth–Climate Relationship

Response functions are widely used in dendrocli-
matology to describe the climate tree-growth rela-
tionship (Fritts 1976, Guiot et al. 1982, Heikkinen 
1987). In this investigation, indices of residual 
chronologies were compared to mean monthly 
temperature and total monthly precipitation. A 
12-month period extending from previous Sep-
tember to August of the growth year was ana-
lysed. The analysed period was 1911–1979 for 

which climate data was available from Duved. 
Response of tree growth to temperature and pre-
cipitation was computed with software RESPO 
(Lough and Holmes 1994), where climatic param-
eters are transformed into principal components 
(PCs, Briffa and Cook 1990) and then entered 
into a regression where the tree ring chronology 
is the dependent variable and PCs are independ-
ent variables. The result is a response function 
for each chronology, expressing the independent 
relationship between tree growth and climate.

3.3 Spectral Analysis

To detect any periodicities present in the data sets, 
multi-taper spectral analysis, using fi ve tapers 
with the time-bandwidth product 3 (Thomson 
1982), was performed on the standardised tree-
ring chronologies. The multi-taper method pro-
vides a better tradeoff between spectral resolution 
and statistical variance than conventional single-
taper methods and, in addition, allows for local 
statistical F-tests for presence of sinusoidal sig-
nals against a varying, locally white, spectrum 
background. One F-test value was calculated for 
each single frequency from zero up to the Nyqvist 
frequency 0.5 yr–1. If there is a consistent periodic 
climate (or environmental) signal with frequency 
f represented in the data, this signal should appear 
as a spectral peak accompanied by a F-test value 
above the critical level (here 99.9% signifi cance 
level) at the frequency f in both tree-ring spectra.

4 Results

4.1 Ring-Width Chronologies

At the dry site, 22 tree curves and at the wet site, 
25 tree curves were averaged into two master 
chronologies, spanning 220 years (dry site) and 
171 years (wet site) (Table 1). Standardised chro-
nologies, as well as sample depths are shown 
in Fig. 3. Wet-site chronology displays regular 
fl uctuations of c. 20 years, a feature not seen 
in the dry-site chronology. Both chronologies 
exhibit growth depressions in the 1840s, early 
1900s and from the 1980s to the present. In addi-
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tion, there are periods of below average growth at 
the wet site in the 1880s, 1940s and 1960s. Peri-
ods of above average growth are in 1800–1830 
(dry site), 1850–60s (both sites), 1880s (dry site), 
1910s (wet site), 1950s and 1970s (both sites).

Table 1. Chronology statistics for tree-ring width 
chrono logies in western Jämtland.

Chronology Wet site Dry site

Time span 1826–1996 1777–1996
Average tree age 115 yrs 158 yrs
Average ring width (mm/year) 0.76 1.05

Residual chronology:
Mean sensitivity 0.190 0.213
Standard deviation 0.167 0.182

Standardised chronology:
Mean sensitivity 0.148 0.160
Standard deviation 0.214 0.236
First order autocorrelation 0.63 0.63
Variance due to auto-
   regression (%) 41.6 43.9
Signal-to-noise ratio 8.68 16.73
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Fig. 3. Standardised tree-ring width chronologies from 
the Lake Ånn Basin: A) wet site, and B) dry site. 
Thick line represents an 11-year running average. 
Sample depths (i.e. number of trees per year) of 
each chronology are indicated in the lower part of 
each diagram.
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Fig. 4. Response function coeffi cients (A wet site, and 
B dry site) for mean monthly temperature (white 
bars) and total monthly precipitation (shaded bars) 
from September of the previous year to August 
of the growth year. Meteorological data are from 
Duved (1911–1979). * = signifi cant at the 0.05 
level. R2-values indicate the variance in tree growth 
explained by climate.

4.2 Growth Responses to Climatic Factors

Response function coeffi cients of the climate–tree 
growth analyses are shown in Fig. 4. Variance in 
tree-ring widths explained by climate (R2) was 
higher at the dry site (43 %) than at the wet 
site (24%). Temperature was by far the most 
important growth-infl uencing factor. At both sites 
temperatures of the growing season (May through 
August) were signifi cant. In addition tempera-
tures in mid-winter (November and December) 
at the wet site and previous September at the dry 
site were signifi cant. Response to precipitation 
was lower than to temperature at both sites, being 
positive and signifi cant in late winter/early spring 
(February through April) at the wet site. There 
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was a strong and signifi cant correlation between 
previous years growth and present year in both 
standardised chronologies (0.6 at both sites), indi-
cating a high autocorrelation.

4.3 Periodicity

Multi taper spectral analysis of the standardised 
wet and dry site chronologies revealed a number 
of peaks, but few were signifi cant (Fig. 5). Both 
chronologies have common peaks at around 3 
and 13 years, while longer periods of 19, 66 and 
85 years are site specifi c. Although the 85-year 
period at the wet site is signifi cant, its reliability 
is questionable since only two cycles fi t into the 
length of the chronology.

5 Discussion

Temperatures during the growing season are most 
important for Scots pine growth in the Lake Ånn 
basin at both dry and wet sites. This is in line 
with results previously obtained for tree growth at 
high latitudes (Jacoby and Cook, 1981, Briffa et 
al. 1990, D’Arrigo and Jacoby 1993, Luckman et 
al. 1997). Response to temperature was positive 
for most of the analysed months, except April at 
both sites. If tree growth starts before the actual 
vegetation period (May in west central Sweden, 
Jonsson 1969), e.g. in a warm spell in April, trees 
may be subjected to frost events that can cause 
injuries. Low growth response to precipitation 
during the growing season suggests that there is 
suffi cient water available. Notable is the positive 
and signifi cant infl uence of precipitation at the 
dry site prior to the growing season. However, 
precipitation in winter and early spring will fall 
as snow, which will act as an insulator of the 
tree–root system and reduction of frost depth. 
Also snow melt will provide additional water for 
trees at the dry site at the beginning of the grow-
ing season, which might prevent water defi cit in 
dry summers (e.g. Kirchhefer 1999).

The climate response of the dry site trees was 
almost equal to that of trees growing close to 
the tree line 50 km E of Ånn (Gunnarson and 
Linderholm submitted 2001), indicating that trees 
200 m below the tree line can be used for climate 
interpretation back in time. The low climate–tree 
growth relationship at the wet-site trees indicates 
that factors other than precipitation and tempera-
ture are of importance, although temperature is 
by far the most growth-limiting factor at the site. 
Trees growing on natural peatlands are highly 
dependent on depth and fl uctuations of the water 
table (Boggie 1972). Both precipitation and tem-
perature regulates the depth of the water table 
(Freeze and Cherry 1979, Mannerkoski 1991), 
and in addition there might be a lag in the 
response of the water table to changing climate 
conditions (Kilian et al. 1995). This combination 
of direct effect of temperature and precipitation on 
tree growth in combination with the delayed effect 
of climate on water table variations and decom-
position of peat most likely dilutes the annually 
resolved climate information in tree rings.

Fig. 5. Power spectra of the standardised tree-ring chro-
nologies from A) wet site and B) dry site. Horizon-
tal lines indicate signifi cance at 95% level (lower 
line), 99% level (middle line) and 99.9% level 
(upper line). Numbers indicate signifi cant spectral 
peaks.
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Spectral analyses indicate that both chronolo-
gies share climate information at high frequen-
cies, while differing at lower frequencies. Periods 
of 3–3.5 years and ~13 years found in both chro-
nologies suggests a common forcing at those time 
scales. When analysing a multi-century chronol-
ogy from northern Fennoscandia, Briffa et al. 
(1992) found that few peaks in the spectra were 
consistently signifi cant over a number of sub-
periods. However, peaks at around 3.1 and 3.6 
years were stable in time. The ~3 year periodicity 
may be due to autocorrelation in tree growth. 
Sutton and Allen (1997) found a spectral peak at 
12–14 years in the power spectrum of sea surface 
temperatures (SSTs) along the Gulf stream/North 
Atlantic Current. They identifi ed the 12–14-year 
timescale as a coupled ocean-atmosphere mode. 
Although the SST record presented by Sutton and 
Allen (1997) is short (late 1940s to 1990), there 
are similar features between winter-time SSTs 
and both tree-ring records, emphasising the pos-
sible effect of North Atlantic SSTs on tree growth 
in western Scandinavia. In addition, Schlesinger 
and Ramankutty (1994) found an oscillation in 
the global climate system of 65–70 years, inter-
preted as an internal oscillation in the atmos-
phere-ocean system, where a peak is evident 
around 1950, coinciding with the high growth at 
the dry site. A signifi cant peak at 66.7 years was 
also found in Fennoscandia (Briffa et al. 1992). 
The proximity of Ånn to the Norwegian Sea, 
where maritime air can easily penetrate the basin 
from the west, could account for sensitivity in 
tree growth to variations in the North Atlantic 
Ocean.

The 19-year period in the wet site chronology 
was also found in a pine chronology from a 
wet site in south central Sweden, 550 km SE 
of Ånn (Linderholm 1995). Lunar tidal maxima, 
or lunar nodal tide (Mn), which is a function of 
the declination of the moon, exhibit a periodicity 
of ~19 years (Lamb 1972, O’Brien and Currie 
1993, Currie 1995). Mitra et al. (1991) identi-
fi ed a ~19-year period in rainfall in India, and 
Currie (1995) found the same periodicity in Chi-
nese dryness-wetness indices. Dutilleul and Till 
(1992) assigned a periodicity of ~19 years in 
Atlas cedar (Cedrus atlantica) in Moorocco to 
Mn, and Woodhouse et al. (1998) found indica-
tions of a connection between drought in the 

U.S. and lunar tidal maxima. Recent maxima 
of lunar declination were in about 1876, 1894, 
1913, 1931, 1950 and 1968 (Lamb 1972), which 
corresponds very well to periods of high growth 
at the wet site in Ånn. As this period was not 
seen in tree-ring records from dry-soil sites, it 
is probable that it is related to a lowering of 
the water table in the peat, which improves tree 
growth conditions as the roots can draw nutrients 
from a larger volume of aerated soil (e.g. Pent-
tilä 1991, Trottier 1991). The peak at 85 years 
in the wet site chronology, close to 85.7 found 
by Briffa et al. (1992) might be connected to 
the Euroasian temperature oscillation of 84 years 
found by Schlesinger and Ramankutty (1994), 
but since the time series are short this period 
should be interpreted with caution.

6 Conclusion

The climatic infl uence on Scots pine growth in 
dry and wet environments in a mountain valley 
in western Jämtland can be summarised as fol-
lows:
– Temperatures of the growth season (May–August) 

were most important for pine growth at both sites. 
In addition, precipitation in late winter/early spring 
(February–May) had a positive infl uence on pine 
growth at the dry site.

– Variance in tree-ring widths explained by tempera-
ture and precipitation at the dry site equalled that 
of trees growing at the present tree line. At the wet 
site, climate–tree growth relationship was weaker, 
most likely due to additional effects of water table 
variations on tree growth.

– Spectral peaks at c. 3.5 and 13 years at both sites 
indicate a common forcing at those timescales. 
While the 3.5 yr period probably is a function of 
autocorrelation in tree growth, the 13 yr period 
could be associated to spectral peaks in sea surface 
temperature in the North Atlantic Current. In addi-
tion, the 66 yr peak in the dry site chronology, also 
found in northern Scandinavian tree-rings, could 
be a function of oscillations in the atmosphere-
ocean system, indicating a maritime infl uence on 
tree growth in Ånn on decadal scales.

– In the wet-site chronology a statistically signifi cant 
period of 19 years, also found in a peatland pine 
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chronology 550 km SE of Lake Ånn, could possibly 
be linked to the lunar tidal maxima, which has an 
effect on variations in precipitation patterns. Times 
of lunar tidal maxima coincide with growth peaks 
at the wet site.

– The nature of the spectral signals suggests that 
Scots pines in this environment may be regarded as 
proxies of climate variations coupled to the North 
Atlantic Ocean.
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