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The purpose of this study was to examine the use of non-parametric methods in estimating 
tree level growth models. In non-parametric methods the growth of a tree is predicted as a 
weighted average of the values of neighbouring observations. The selection of the nearest 
neighbours is based on the differences between tree and stand level characteristics of the 
target tree and the neighbours. The data for the models were collected from the areas 
owned by Kuusamo Common Forest in Northeast Finland. The whole data consisted 
of 4051 tally trees and 1308 Scots pines (Pinus sylvestris L.) and 367 Norway spruces 
(Picea abies Karst.). Models for 5-year diameter growth and bark thickness at the end 
of the growing period were constructed with two different non-parametric methods: 
the k-nearest neighbour regression and k-Most Similar Neighbour method. Diameter 
at breast height, tree height, mean age of the stand and basal area of the trees larger 
than the subject tree were found to predict the diameter growth most accurately. The 
non-parametric methods were compared to traditional regression growth models and 
were found to be quite competitive and reliable growth estimators.
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1 Introduction 
In forest management, information on both cur-
rent forest resources and future yields is needed. 
The future development of forest resources can 
be predicted with growth and yield models. The 
main uses of growth and yield predictions are 
updating forest inventories, comparing silvicul-
tural treatments by simulating them and predict-
ing their outcomes, harvest scheduling, stand and 
forest level decision support and management 
planning (e.g. Burkhart 1992, Hynynen 1995). 
The growth and yield models have been devel-
oped for many different purposes. The models 
can be simple growth and yield tables derived 
from appropriate data or sophisticated computer 
models (e.g. Mielikäinen and Gustavsen 1992). 

Growth models may be classifi ed in different 
groups according to the data collected and the 
information needed. The models which only 
require stand level information are called stand 
models. The stand level growth models have 
earlier been very common in Finland (e.g. Vuo-
kila 1965, Gustavsen 1977, Nyyssönen and Mie-
likäinen 1978). In these models the relative 
volume increment of a stand can depend on vari-
ables like stand age, basal area and site type. 
Projection models are a system of simultaneously 
estimated static difference equations for stand 
volume and yield prediction in different time 
points. Predicting future volume yields with the 
projection models requires, for example, projec-
tions of the number of surviving trees per hectare, 
basal area per hectare and average height (e.g. 
Pienaar and Harrison 1989). The stand models are 
easy to use and inventory costs are low. However, 
stand level may not be reliable in heterogeneous 
stands, and the allocation of growth to different 
dimensions cannot be directly evaluated (Gus-
tavsen 1998). 

Models which require individual tree informa-
tion and use individual trees as the basic unit 
to produce yield estimates are called individual 
tree models. Usual individual tree growth models 
separately predict the increment of tree diameter 
or basal area and height (e.g. Nyyssönen and 
Mielikäinen 1978, Ojansuu et al. 1991, Hynynen 
1995). The individual tree models can be fur-
ther divided into distance-independent and dis-
tance-dependent or spatial growth models. The 

distance-dependent growth models require infor-
mation about individual tree locations (e.g. Vuo-
kila 1965, Pukkala 1989, Hynynen 1995, Miina 
et al. 1991). The models based on individual tree 
growth provide detailed information about stand 
dynamics and structure, including the distribution 
of volume in size classes (Burkhart 1992). 

In regression models, growth is predicted as 
a function of different tree and stand variables 
correlating with growth (e.g. Mielikäinen 1992). 
Non-parametric methods are an alternative to 
these traditional parametric methods. In the non-
parametric methods the growth is predicted as 
a weighted average of the growth of the neigh-
bouring observations. The selection of the near-
est neighbours can be based on the differences 
between tree and stand level characteristics of the 
target tree and the neighbours.

The nearest neighbours are chosen from a data-
base of previously measured tree and stand level 
observations. Thus, unrealistic growth estimates 
cannot occur, because estimates are chosen from 
actual, measured samples (e.g. Moeur and Stage 
1995). Gustavsen (1998) found notable biases in 
Northern Finland’s growth estimates predicted 
with models which comprise the whole of Fin-
land, e.g. 8–9 m3/ha in fi ve years. With non-
parametric models, the bias may be reduced, as 
the reference trees can be chosen from nearby 
areas. In the regression models, localization can 
be made for instance by calibrating the models 
or using coordinates as regressors (e.g. Gertner 
1984, Korhonen 1993), but not as easily as with 
non-parametric methods. In addition to localiza-
tion, advantages of the non-parametric methods 
include that they retain more of the variation of 
the data and preserve the correlations of depen-
dent variables (e.g. Moeur and Stage 1995). The 
non-parametric models do also have parameters 
like bandwidth in kernel and the number of 
nearest neighbours (k) in k-nn method, but they 
do not require predefi ned functional form. Unlike 
the regression models, the non-parametric met-
hods need reference data also at the application 
phase (Maltamo and Eerikäinen 2000). The non-
parametric models, however, update themselves 
when data is added or removed from the data-
base.

The k-nearest neighbour method has been used 
in many forestry applications, including gener-
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alization of sample tree information, estimation 
of the diameter distribution and estimation of the 
characteristics of marked stand (e.g. Korhonen 
and Kangas 1997, Haara et al. 1997, Maltamo and 
Kangas 1998, Tommola et al. 1999). The Most 
Similar Neighbour method has been used in mul-
tivariate forest inventory applications (Moeur and 
Stage 1995, Moeur and Hershey 1999). The non-
parametric methods also include spline smooth-
ing, kernel and grid, but these methods are more 
diffi cult to apply in multi-dimensional cases, i.e. 
when several independent variables are used, than 
k-nn and k-MSN methods (e.g. Härdle1989). 

The purpose of this study was to test and 
compare non-parametric k-nearest neighbour and 
k-Most Similar Neighbour methods in growth 
prediction. The aim of the prediction was to build 
single tree diameter growth models for Scots 
pine and Norway spruce for local conditions in 
Northern Finland. The non-parametric growth 
models were further compared to a traditional 
regression growth model constructed using mixed 
model technique.

2 Material and Methods

2.1 Study Data

The study data were collected during the summer 
of 1999 from the areas owned by Kuusamo 
Common Forest in Kuusamo. Sampling of the 
study data included seven main strata: pine and 
spruce dominated moist heaths, pine dominated 
dryish and dry heaths, pine and spruce swamps 
and pine forests with low productivity. In the 
non-parametric methods it is important that the 
data is evenly distributed to different growing 
sites and age classes. All the main strata were 
further divided into six 30-year age classes. Two 
stands were supposed to be measured from each 
of these strata i.e. 84 stands. The stands were 
objectively located to different parts of Kuusamo. 
The stands with notable damage or dominant 
height lower than 3 meters were not included in 
the data. 

Two circular sample plots were placed sys-
tematically in each stand. The distance between 
sample plots was 40 meters. The size of the plot 

varied from 100 m2 to 700 m2 according to the 
density of the stand. Diameter at breast height 
was recorded for all trees in these plots. From 
every sample plot an average of 9 sample trees 
were selected by establishing a circular subplot of 
a quarter of the plotsize at the centre of each plot. 
The characteristics of the sample trees measured 
within the inner circles included height, length of 
the live crown, bark thickness and 5-year diam-
eter increment. Several variables describing the 
site and the growing stock were also registered 
for each stand. These variables included location, 
altitude, effective sum of temperature, soil type, 
site class and dominant tree species. The mean 
stand age was determined by measuring age from 
one-third of the sample trees. 

A total of 71 stands were measured. 53 stands 
were dominated by Scots pine (Pinus sylvestris 
L.) and 18 stands by Norway spruce (Picea abies 
Karst.). The whole study material consisted of 
4051 tally trees and 1308 sample trees, of which 
941 were pines and 367 were spruces. Most of the 
pines were located in moist and dryish (Myrtillus 
and Vaccinium-Myrtillus) forest site types and the 
proportion of pines located in dry (Vaccinium) 
forest site type was small. The spruces were 
mainly located in moist sites. Most spruces in 

Table 1. Description of the mean tree and stand char-
acteristics in the study data according to the tree 
species (SD = standard deviation).

Character  Scots pine Norway spruce

 Mean SD Mean SD

Altitude, m 264 30 275 25

Effective sum of  803 16 805 17
temperature, dd

Mean stand age, years 65 41 109 50

Basal area of  15 7 22 8
the stand, m2/ha

Mean diameter, cm 19.6 5.2 22.9 3.5

Diameter at breast  14.7 8.5 14.2 7.5
height, cm

Height, m  10.8 5.4 9.9 4.9

5-year diameter  0.99 1.09 0.58 0.49
growth, cm
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the study data belonged to mature forests and 
the proportions of other stages of stand develop-
ment were small. The pines were distributed more 
evenly to different age classes than the spruces. 
Mean age of the spruce stands was 109 years 
and pine stands 65 years (Table 1). The greatest 
frequency was observed in class with dbh smaller 
than 10 cm (Fig. 1). The proportion of trees with 
large diameter was small for both tree species.

Data preparation included back-calculations of 
tree and stand characteristics because the data 
were collected from temporary sample plots. Tree 
diameters under bark for the sample trees at the 
beginning of the growth period were calculated 
by subtracting the 5-year diameter growth and 
thickness of the bark from the measured tree 
diameters. Bark thickness and tree height at the 
beginning of the growth period were estimated 
with models. Bark and height models were esti-
mated using mixed models, because the obser-
vations were correlated due to the hierarchical 
structure of the data (e.g. Lappi 1993). Simple 
regression models were separately constructed for 
every sample plot to calculate tree diameters at 
the beginning of the growth period for tally trees. 
Other tree and stand characters at the beginning 
of the growth period were calculated by means 
of these estimated tree diameters and heights. 
The data preparation included also calculating 
characteristics describing the position of the tree 

in the stand, such as the basal area of trees larger 
than the subject tree and relative tree size. 

2.2 Modelling the Diameter Growth

Two kinds of non-parametric methods were uti-
lized: the k-nearest neighbour regression and the 
k-Most Similar Neighbour (k-MSN) method (e.g. 
Härdle 1989, Altman 1992, Moeur and Stage 
1995). In the estimation of the non-parametric 
model a distance function must be determined in 
order to compare different trees and their char-
acteristics. The distance function can be based 
e.g. on differences between tree and stand level 
variables of target and reference trees. In the 
estimation of the growth for a given target tree 
the differences across all reference trees are cal-
culated and the growth estimate is formed using 
the chosen nearest neighbours (e.g. Korhonen and 
Kangas 1997). In addition to deciding the shape 
of the distance function, the number of nearest 
neighbours must be defi ned. When the number 
of nearest neighbours is small, the estimate is 
very close to the original data. The estimate is 
almost unbiased, but over-fi tting. If the number of 
nearest neighbours is large, the estimate will be 
very smooth and may be highly biased (Altman 
1992). The manner the weights of the reference 
trees depend on the distance must also be defi ned. 
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Fig. 1. Diameter distribution of the sample trees in the study data.
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Weighted averages are used to reduce the bias of 
the nearest neighbour estimator (Altman 1992). 

2.2.1 The k-Nearest Neighbour Method

In the k-nearest neighbour regression, the similar-
ity of the trees was measured by using dimension-
less distance function, which is based on absolute 
differences between stand and tree characteristics. 
This kind of distance function is not as sensitive 
to exceptional observations as the squared devia-
tion method (Maltamo and Kangas 1998). The 
distance function was defi ned as

d c x xij l il jl
l

p
= −

=
∑ | ( ) | ( )

1
1

where 
xil = the value of the considered variable l for 

reference tree i
xjl = the value of the considered variable l for 

target tree j
p = the number of variables 
cl = the coeffi cient for variable xl

In order to avoid the infl uence of different units 
of measurements, the variables were standardized 
by subtracting the mean of the variable and divid-
ing it by the standard deviation of the variable. 
The weights of the reference trees were based 
on the inverse of the distance. The weight wij of 
reference tree i for target tree j was
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where k is the number of the nearest reference 
trees used and pm is the die-off parameter and 
i ≠ j (Haara ym. 1997). The die-off parameter 
determines how quickly the weights of the near-
est reference trees decrease when the distance dij 
increases. The effect of the similarity distance 
function and die-off parameter to the estimates of 
diameter growth was examined by using cross-
validation method (Härdle 1989). In this method, 
each observation is predicted with the reference 

data excluding the observation itself. The values 
of parameters pm, c and k were searched heuris-
tically, using iteration. The nearest neighbours 
were never taken from the same stand or sample 
plot as the target tree. This restriction was used 
because otherwise results would be too optimis-
tic, because observations are strongly correlated 
in same stands and neighbouring observations 
from the same stands are usually absent in practi-
cal applications.

In the k-nearest neighbour method the fi nal 
estimate for the 5-year diameter growth of the 
target tree (ŷ j) was calculated as the weighted 
average of the growth of the k nearest reference 
trees (yi) 

ˆ ( )y w yj ij i
i

k
=

=
∑

1
3

in which k is the number of nearest reference trees 
used and wij is the weight of the reference tree i 
to target tree j. Bark thickness of the target tree 
at the end of the growing period was calculated 
as a weighted average of the same trees as the 
growth. 

2.2.2 The k-Most Similar Neighbour Method

The Most Similar Neighbour (MSN) method is 
based on canonical correlation analysis between 
independent and dependent variables (Moeur and 
Stage 1995). The benefi t of the MSN method 
compared to basic k-nearest neighbour regres-
sion is that the enormous number of iterations in 
the search of nearest neighbours can be avoided 
because the coeffi cients for the variables are 
obtained directly from the canonical correlation 
analysis and all the possible independent and 
dependent variables can be used in the calcula-
tion of the weighting matrix (e.g. Maltamo and 
Eerikäinen 2000). In the MSN method, the most 
similar neighbour to the observation j in the target 
data is that observation in the reference data, 
for which (Ŷj – Yi)W(Ŷj – Yi) is minimized over all 
i = 1,…,n reference trees, where Ŷj is a row vector 
of the unknown variables in the target data, Yi 
is a row vector of the observed variables in the 
reference data and W is a weighting matrix. In 
the MSN method, the relation of unknown and 
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observed variables is replaced by the relation of 
independent variables which are known both in 
the target data and reference data. The weight-
ing matrix in the distance function is calculated 
on canonical correlation analysis by summariz-
ing the relationships between dependent (Y) and 
independent (X) variables simultaneously (Moeur 
and Stage 1995). 

In canonical correlation linear transformations 
(Ur and Vr) are formed from the set of dependent 
and independent variables, in such a way that the 
correlation between them is maximized

Ur = αrY and Vr = γrX (4)

where αr are canonical coeffi cients of the depend-
ent variables (r = 1…s) and γr are canonical coef-
fi cients of the independent variables (r = 1…s). 
There are s possible pairs of canonical variates 
(Ur and Vr) as the result of the analysis, where 
s is either the number of dependent or independ-
ent variables, depending on which is smaller. 
Canonical variates are ordered in such a way that 
canonical correlation between them is the largest 
for variate (U1,V1), second largest for (U2,V2) and 
so on. Thus, the predictive relationship between 
original variables is concentrated in the fi rst few 
canonical variates and less important variates can 
be left out without loss of predictability (Moeur 
and Stage 1995). 

The distance function derived from canonical 
correlation analysis is 

d X Xij
p

i j
2
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×
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p
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×
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where
Xj = independent variables of the target tree
Xi = independent variables of reference tree
Γ = matrix of the canonical coeffi cients of the 

independent variables, γ r
p s×

Λ2 = diagonal matrix of squared canonical 
correlations, λr

s s

2

×
s = number of the canonical correlations used
p = number of the independent variables

The distance function calculates the squared dis-
tance between the target tree and reference tree. 
Each sample tree, in turn, is used as a target tree 
and the target tree is temporarily excluded from 

the reference trees. The variables were standard-
ized for being able to avoid the infl uence of 
different units of the variables. The Most Simi-
lar Neighbour method was applied by testing 
different number of nearest neighbours in the 
calculations of the fi nal estimate (k-MSN). The 
standardization of the variables, the weighting of 
the reference trees wij (2) and the fi nal growth 
estimate ŷ j  (3) were similar to the basic k-nearest 
neighbour method except that the die-off param-
eter (pm) was 1 for the k-MSN method. 

2.2.3 Criteria of Evaluation

In both methods, the optimal combination of vari-
ables and parameters was achieved when the rela-
tive root mean square error (RMSE%) and bias 
(be%) of the growth estimates were the lowest. 
The RMSE is a widely used criteria to evaluate 
the estimations given by the k-nearest neighbour 
methods. The relative RMSE was calculated by 
using

RMSE% RMSE= ⋅100 6/ ŷ ( )

where RMSE is the root mean square error and ŷ  
the mean of the growth estimates. The root mean 
square error was calculated by using

RMSE =
−

=
∑ ( ˆ )

( )
y y

n

j j
i

n
2

1 7

where n is the number of trees, y the observed 
growth of tree j and ŷ  the growth estimate of tree 
j. The relative bias was 

b % be e= ⋅100 8/ ˆ ( )y

where be is the mean of the residuals.

2.2.4 Regression Model with Mixed Model 
Technique

The non-parametric k-nearest neighbour and 
k-Most Similar neighbour methods were com-
pared to a regression growth model constructed 

(5)



459

Sironen, Kangas, Maltamo and Kangas Estimating Individual Tree Growth with the k-Nearest Neighbour and k-Most Similar Neighbour …

from the same study data as the non-parametric 
methods. The regression model was built with 
mixed model technique, because the observa-
tions were correlated due to hierarchical structure 
of the study data. The Ordinary Least Squares 
(OLS) method assumes that all observations used 
in modelling are independent. The observations 
are often spatially or temporarily correlated in 
forestry applications, if there are several trees 
measured in the same stands in the study data or 
trees are measured more than once (e.g. Lappi 
1993). The correlation between the observations 
can be taken into account in random parameter 
models. The data used in this study were meas-
ured from stands including two sample plots. 
Thus, three random variables were included in 
the model: random stand variable, random plot 
variable and error variable. The mixed model 
including the fi xed part and the random variables 
can be described using the following function

y b x b x b xn s p eijk ijk ijk n ijk i ij ijk= + + + + + +1 1 2 2 9... ( )

where yijk is the 5-year diameter growth of tree 
k in plot j in stand i, x1ijk,…,xnijk are independ-
ent variables for the kth tree in the jth plot in 
the ith stand, b1,…,bn are fi xed parameters and 
si is the random stand variable with E(si) = 0 
and var(si) = σ s

2, pij random plot variable with 
E(pij) = 0 and var(pij) = σ p

2 and eijk random error 
with E(eijk) = 0 and var(eijk) = σ e

2. 

3 Results
3.1 Diameter Growth Models

3.1.1 The k-Nearest Neighbour Method

In this study, the optimal variables for the dis-
tance function, coeffi cients of the variables, the 
number of nearest neighbours and the weighting 
parameter were determined heuristically when 
applying k-nearest neighbour method. Due to the 
estimation method, enormous number of different 
combinations of the parameters were tested. The 
variables used in modelling were chosen among 
easily measured or traced tree and stand charac-
teristics, including e.g. tree diameter, height, tree 
basal area and relative size of the tree. Stand age, 
basal area of the stand, basal area mean diameter, 
altitude and temperature sum were tested as stand 
level variables. 

Tree diameter, tree height, stand age at breast 
height and basal area of trees larger than the 
subject tree were found to predict the diameter 
growth most accurately. When searching for the 
optimal coeffi cients of the variables, all pos-
sible combinations of values from 1 to 10 were 
tested. The chosen coeffi cients of the variables 
are presented in Table 2. The coeffi cient of the 
basal area larger than the subject tree (Glarge) 
affected strongly the accuracy of the pine growth 
estimates. The relative root mean square error 

Table 2. Number of the nearest neighbours (k) in the k-nn and k-MSN method, coeffi cients of the independent 
variables and values of the die-off parameters (pm) in the k-nn method, canonical coeffi cients of the 
independent variables (Γ) and squared canonical correlations (Λ2) in the k-MSN method and parameter 
estimates of the mixed models. Independent variables include tree diameter at breast height (dbh), tree height, 
stand age at breast height and basal area larger than the subject tree (Glarge).

 k-nn method k-MSN method Mixed model

 Pine Spruce Pine Spruce Pine Spruce

k 15 15  15 14 Intercept 2.289738 2.532122
dbh 9 3 dbh –0.4205 –0.0083 ln(dbh) –0.134446 –0.858552
height 2 2 height 0.6514 –0.2762 ln(height) 0.613229 1.252947
age 8 6 age 0.6368 0.9080 ln(age) –0.985427 –0.875844
Glarge 1 0.5 Glarge 0.2578 0.4207 Glarge –0.012210 –0.00184
pm 3 1 Λ2 0.5260 0.4061 σstand

2  0.067368 0.062343
      σ plot

2  0.071383 0.062339
      σe

2  0.197005 0.283910
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(RMSE) of the growth estimates increased 10% 
when the weight of this variable increased from 
1 to 10 (Fig. 2). The value of the coeffi cient 
of Glarge had to be small also in the distance 
function of spruces. Changing the value of the 
coeffi cient of stand age had also marked effect 
on the relative RMSE of the growth estimates for 
both tree species. The relative RMSE decreased 
3% for pines and 5% for spruces when the weight 
of the variable increased from 1 to 10 for pines 
and from 1 to 6 for spruces. 

The number of nearest neighbours (k) had the 
largest effect on the accuracy of growth estimates. 

The relative RMSE of the growth estimates of 
pine varied from 65% to 50% when the number 
of nearest neighbours varied from 1 to 20. The 
difference was larger for spruce. The relative 
RMSE of the growth estimates was 90% with 
1 nearest neighbour and 65% with 15 nearest 
neighbours. Determination of the optimal number 
of nearest neighbours was not simple. The appro-
priate number of nearest neighbours were found 
to be over 10. When the number of nearest neigh-
bours increased over 10, the errors decreased 
slightly (Fig. 3). On the other hand the standard 
error increased rapidly when the number of near-

Fig. 3. Infl uence of the reference trees (k) with two dif-
ferent die-off parameter (pm) values on the relative 
root mean square error (RMSE%) of the growth 
estimates of Scots pine and Norway spruce in the 
k-nn method and infl uence of the reference trees 
(k) in the k-MSN method.

Fig. 2. Infl uence of the coeffi cients of the variables on 
the diameter growth of Scots pine and Norway 
spruce in the k-nn method. Other parameters are 
held constant while changing the value of the coef-
fi cient of the variable in question from 1 to 10. 
Variables include tree diameter (dbh), tree height 
(h), stand age (T) and basal area larger than the 
subject tree (Glarge).
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est trees decreased. The relative bias of the growth 
estimates of both tree species did not vary much 
with different number of nearest neighbours. 

The die-off parameter (pm) which determines 
how quickly the weights of the nearest trees 
decrease when distance dij increases, did not have 
much effect on the reliability of the growth esti-
mates of Scots pine (Fig. 3). With 15 nearest 
neighbours, the variation of relative RMSE and 
bias was only 0.5% when the values of the die-
off parameter varied from 1 to 5. The die-off 
parameter affected the accuracy of growth esti-
mates of Norway spruce when more than 3 near-
est neighbours were used (Fig. 3). Small values 
of pm gave smaller standard errors and biases. 
With 15 nearest neighbours the relative standard 
error increased almost 6% when the value of the 
die-off parameter increased from 1 to 5. 

The absolute and relative standard errors and 
biases were minimized when the value of the 
die-off parameter in the distance function were 
pm = 3 for pine and pm = 1 for spruce and the 
number of nearest neighbours was 15 for both 
tree species (Table 2). The root mean square error 
of the growth estimates was 4.98 mm for pine and 
3.66 mm for spruce and the corresponding rela-
tive RMSE was 49.5% and 65.8%, respectively 
(Table 3). Bark thickness at the end of the growth 

period was calculated as the mean of the same 
reference trees as the growth. The absolute RMSE 
value of the bark estimates was 4.38 mm for 
pine and 2.76 mm for spruce and corresponding 
relative RMSE was 40.9% for pine and 25.3% 
for spruce (Table 3). 

The results were slightly biased for both spe-
cies in the k-nn method. The growth model of 
pine slightly overestimated the average diameter 
growth. The average growth of spruce was a slight 
underestimate (Table 3). The relative biases of 
the growth estimates versus diameter classes are 
presented in Fig. 4. The estimates are most accu-
rate for the diameter classes with high frequency. 
The relative standard error increases especially 
for Norway spruce when the diameter increases. 
The greater variation in mean residuals in the 
largest diameter classes probably are due to low 
number of observations. The k-nn models did 
not, however, result in systematic over- or under-
estimates for large trees.

3.1.2 The k-MSN Method

In the k-nearest neighbour method, the maximum 
number of variables in the distance function can 
not be very high because of the enormous number 

Table 3. Reliability of the diameter growth and thickness of the bark predictions of the 
k-nearest neighbour and k-MSN methods and mixed models.

 Growth model Bark model

 Scots pine Norway spruce Scots pine Norway spruce

k-nn method
Number of the neighbours (k) 15 15 15 15
RMSE, mm 4.98 3.66 4.38 2.76
RMSE, % 49.5 65.8 40.9 25.3
Bias, mm –0.14 0.21 0.03 0.12
Bias, % –1.5 3.7 0.4 1.1

k-MSN method 
Number of the neighbours (k) 15 14 15 14
RMSE, mm 4.71 3.80 6.19 3.92
RMSE, % 47.6 69.7 55.6 35.6
Bias, mm 0.03 0.32 –0.39 –0.02
Bias, % 0.3 5.8 –3.5 –0.2

Mixed model
RMSE, mm 8.23 3.41 4.17 2.66
RMSE, % 75.3 58.3 38.7 23.5
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of iterations required for heuristical searching 
for optimal parameters. In the k-MSN method 
all possible independent and dependent tree and 
stand level variables can be used in the calcula-
tions of canonical correlations. The variables used 
in modelling included e.g. tree diameter, height, 
tree basal area and relative tree size. Stand age, 
basal area of the stand, basal area mean diameter, 
altitude and temperature sum were tested as stand 
level variables. Site types were tested as dummy 
variables. All the possible combinations of the 
chosen variables were tested, but the RMSE and 
bias of the growth estimates were clearly better 
when only tree diameter, tree height, stand age 
at breast height and basal area of trees larger 
than the subject tree were used as independent 
variables. Correspondingly, diameter growth was 
chosen to be the only dependent variable. Canoni-
cal coeffi cients of the chosen independent vari-

ables (Γ) and squared canonical correlation (Λ2) 
are presented in Table 2.

The value of the k most similar neighbours (k) 
varying from 1 to 20 were also considered in 
the calculations of the k-MSN growth estimates. 
The infl uence of the k-value was similar with the 
k-nearest neighbour method. The RMSE of the 
growth estimates decreased when the number of 
nearest neighbours increased (Fig. 3). Satisfactory 
results were obtained when the number of the 
neighbours was 15 for pines and 14 for spruces 
(Table 2). 

The accuracy of the k-MSN estimates with 
15 nearest neighbours was slightly better than 
k-nn estimates with 15 nearest neighbours for 
Scots pine, but worse for Norway spruce with 
15 neighbours in the k-nn method and 14 in the 
k-MSN method (Table 3). The reliability of the 
bark thickness estimates was worse in the k-MSN 
method. Relative biases were in general higher 
in the k-MSN method in relation to diameter 
classes. The k-Most Similar Neighbour method 
produced clear overestimates for large pines (Fig. 
4). Different transformations were tested in order 
to reduce the bias of the estimates, including 
diameter squared and inverse of the stand age 
as an independent variable. In both methods, the 
accuracy of the growth estimates decreased when 
the transformed variable was used as independent 
variable. 

We attempted to reduce the prediction bias 
also by using different numbers of nearest neigh-
bours for small and large trees in the k-MSN 
method. Smaller numbers of nearest neighbours 
were tested for small and large trees than for 
middle-sized trees. The standard error and bias 
of the estimates were remarkably larger with 
less than 5 nearest neighbours at the extremes of 
the data for both tree species. Residuals of the 
estimates were larger for small and large trees if 
the number of neighbours was too small. In the 
case of pines, the estimates were most reliable 
when the number of nearest neighbours was 5 
for trees with diameter greater than 20 cm and 
15 otherwise. In the case of spruces, the most 
accurate results were obtained when large (d > 20 
cm) and small trees (d < 5 cm) had 7 neighbours 
and middle-sized trees 15 neighbours. The results 
where similar as with equal number of nearest 
neighbours, in both the tree and stand levels. 

Fig. 4. Relative biases (be%) of the growth estimates 
of Scots pine and Norway spruce in relation to 
diameter classes. 
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At the stand level, fewer nearest neighbours 
increased the variation of residuals in stands with 
large basal areas.

3.1.3 Comparison of the Non-Parametric 
Methods and Mixed Model

The non-parametric diameter growth models 
were compared to the regression models con-
structed from the same study data using mixed 
model technique. The same tree and stand charac-
ters as in the non-parametric methods were found 
to be the most reliable growth predictors and were 
used as the independent variables in the regres-
sion model. Logarithmic diameter growth was 
used as an independent variable and logarithmic 
transformations were also used for tree diam-
eter, tree height and stand age. The coeffi cients 
of the independent variables and the values of 
the random parameters are presented in Table 2. 
The mixed model gave better results for spruces 
than non-parametric methods, but the accuracy 
of Scots pine growth estimates was much lower. 
The standard errors of the regression estimates 
were 52% for spruces and 73% for pines (Table 
3). The regression model produced more accurate 
growth estimates for Norway spruce than the 
non-parametric methods, but the relative RMSE 
of the growth estimates of pine was 20% lower. 
The regression model overestimated the growth 
of the pines with diameter larger than 20 cm and 
produced large overestimates for the largest pines 
(Fig. 4). 

3.2 Stand Level Growth Estimates

The k-nearest neighbour regression was found to 
be more reliable than the k Most Similar Neigh-
bour method at the stand level. The measured 
mean stand volume at the end of the growth 
period was 125 m3/ha and mean volume growth 
13.8 m3/ha. The k-nn method gave volume and 
growth estimates almost equal to true values, 
while both were 3 m3/ha smaller for the k-MSN 
method. The relative RMSE of the stand growth 
was 39.8% for the k-nn method and 67.1% for 
the k-MSN method (Table 4). The relative biases 
of the k-nn and MSN methods were 1.5% and 

29.3%, respectively. The relative errors and biases 
were calculated by dividing the absolute values 
by the predicted growth. The relative RMSE of 
the k-MSN volume growth was almost 20% lower 
when the absolute error was divided by the true 
mean volume growth of the stands, which is also 
often used as a test criterion. 

The k-Most Similar neighbour underestimated 
the stand volume growth more than the k-nearest 
neighbour method (Fig. 5). The k-nearest neigh-
bour method also seemed to predict the volume 
growth better at both extremes where the edge 
effect usually infl uences results. Both methods 
underestimated the volume growth in the stands 
with the largest basal areas. However, the results 
for the stands with the smallest basal areas 
were not systematically over- or underestimated. 
The accuracy of the k-MSN method improved 
10%, when the quite evident outlier stand were 
removed (see Fig. 5). The relative RMSE of the 
stand growth estimates were then 57% for the 
k-MSN method and 36% for the k-nn method. 

Comparison of the stand growth estimates 
showed that the regression model was less accu-
rate at the stand level than the non-parametric 
growth models. Especially the estimates of the 
k-nn method were more reliable. The relative 
standard error of the stand growth estimates of 
the mixed model was 73.1%, while it was 39.8% 
for the k-nn method and 67.1% for the k-MSN 
method. The regression model overestimated the 
5-year stand growth by 1.9 m3/ha. The stand 
level growth estimates were also compared to the 
volume growths produced with the Monsu-forest 
planning program (Pukkala 2000). The program 
uses single-tree regression growth models devel-

Table 4. Accuracy of the 5-year stand growth (IV5) esti-
mates of the non-parametric methods and regres-
sion models.

 k-nn  k-MSN  Mixed  Monsu
 method method model

Mean IV5, m3/ha 13.7 10.7 15.7 13.7
RMSE, m3/ha 5.4 7.2 11.5 9.8
RMSE, % 39.8 67.1 73.1 71.5
Bias, m3/ha 0.2 3.2 –1.9 0.2
Bias, % 1.5 29.3 –11.8 1.3
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oped by Nyyssönen and Mielikäinen (1978). The 
absolute standard error of the growth estimates 
of Monsu was 9.8 m3/ha and corresponding rela-
tive RMSE was 71.5%. When compared to non-
parametric methods, the models used in Monsu 
underestimated the volume growth of stands with 
small basal area and produced larger overesti-
mates especially in the stands of average densi-
ties.

4 Discussion

The aim of this study was to construct individ-
ual diameter growth models with non-parametric 
k-nearest neighbour and k-Most Similar Neigh-
bour methods. The growth models were built for 
5-year growth period. In addition to the growth 
models, bark thickness at the end of the growth 
period was predicted. The nearest trees were 
selected using tree diameter, tree height, stand 
age at breast height and basal area of the trees 
larger than the subject tree. Tree diameter had 
relatively more weight in the k-nn method than 
in the k-MSN method in which the coeffi cients 
of the variables are obtained by means of the 
canonical correlation analysis. This may have 
caused bias to the k-MSN estimates. Correspond-
ingly, basal area larger than the subject (Glarge) 
had relatively much larger weight in the k-MSN 
method especially in the distance function of 
Norway spruces. Glarge had to have small weight 

in the distance function of the k-nn method, 
because the RMSE of the growth estimates 
increased notably if the weight of the variable 
increased. Other variables describing the position 
of a tree in the stand were tested in the k-MSN 
method, but without Glarge the relative RMSE 
was at minimum 6% higher. Stand age had much 
weight in the distance function relative to other 
variables in both methods for Norway spruces. 
In this case, the nearest neighbours were selected 
among neighbouring stands with as similar age 
as possible.

If the study data had been larger, also other 
important variables would defi nitely have been 
found to describe locality and improved the 
results. Especially stand level variables do not 
have enough variation in small data sets. Increas-
ing the number of independent variables also 
reduces the number of potential neighbours. The 
number of the nearest neighbours had a greater 
effect on standard errors of the estimates than the 
values of the coeffi cients of the variables. The 
infl uence of k-value was similar in both methods. 
Increasing the k-value from 1 to 10 improves 
greatly the accuracy of the growth estimates and 
increasing the number of the neighbours beyond 
k = 10 improves slightly the accuracy. The appro-
priate number of nearest neighbours was found 
to be 14–15. The relative biases of the growth 
estimates were largest with 1 nearest neighbour in 
the k-MSN method and with 3 nearest neighbours 
in the k-nn method. The bias of the pine growth 
estimates reduced slightly when the k-value was 

Fig. 5. Residuals of the stand volume growths in the k-nearest neighbour and k-MSN methods in relation to 
the basal area of the stand.
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increased from 1 to 16 and beyond that the bias 
slightly increased. The bias of the spruce growth 
estimate varied more with different k-value and 
therefore the exact number of nearest neighbours 
was not simple to decide. 

Both methods gave slightly biased results 
for diameter growth. The bias of the estimates 
increased when the tree diameter increased. There 
were few large trees in the data, only 12% of the 
sample trees had diameter larger than 25 cm. For 
that reason, in most cases, the nearest neighbours 
of large trees were middle sized trees. This could 
be partly avoided by increasing the weight of the 
diameter in the distance function for large trees. 
One possibility to try to reduce the trend in bias is 
to use transformations for the independent vari-
ables. This could reduce the bias, if the correla-
tion between transformed variable and diameter 
growth is more linear than the correlation of 
diameter growth and original variable. However, 
in the study data the effect of transformations was 
small and did not improve the results. 

The structure of the study data affected the 
reliability of the applied methods. The restric-
tions of the study material had a strong infl u-
ence on the results. Especially the scarcity of 
trees with diameter over 20 centimetres prob-
ably caused biased predictions. The data applied 
in non-parametric methods should be evenly dis-
tributed, but it should also include exceptional 
observations, e.g. exceptionally large trees. Var-
iability of the characters, such as stand basal 
area, mean diameter and dominant height, would 
increase if the study data consisted of more 
stands. The amount of possible neighbouring 
observations would be higher and more realistic 
estimates could be obtained. 

The results of this study indicate that espe-
cially the k-nearest neighbour regression can be 
a competitive growth prediction method. The 
k-Most Similar Neighbour and k-nearest neigh-
bour methods seemed to be almost equally reli-
able, when the accuracy of individual tree growth 
estimates was analysed. However, the stand level 
growth estimates were much more reliable for the 
k-nn method. The k-MSN method underesti-
mated the volume growth especially in the stands 
with large volume growth and in old stands 
more than the k-nn method. The k-MSN method 
also produced more biased growth estimates for 

large trees. The k-MSN method expects linear-
ity between dependent and independent varia-
bles, because the coeffi cients of the variables are 
obtained by using canonical correlation analysis. 
The k-nearest neighbour method is more robust, 
but the heuristical search of the values of the coef-
fi cients is very time consuming. In the k-MSN 
method the values of the coeffi cients are found 
easily and fast and there can be many independent 
and dependent variables. However, the heuristic 
searching method is not the only alternative when 
using the k-nearest neighbour regression, but the 
parameters in the distance function could also 
be searched using non-linear regression (Nigge-
meyer and Schmidt 1999) or numerical optimiza-
tion (see e.g. Miina and Pukkala 2000). 

In this study the simulation of stand develop-
ment was done only for one 5 year growth period. 
However, in many applications predictions of 
longer growth periods are needed. In these situa-
tions, the non-parametric methods can be applied 
in principle like traditional individual tree growth 
models, i.e. growth is simulated separately in 5 
years periods. Another possibility is to utilise long 
growth series, if such exists. Then the simula-
tion of stand development could be done for 
the whole growth period. Instead of predicting 
treewise diameter or height growth all stand char-
acteristics of interest could be obtained simultane-
ously (see Maltamo and Eerikäinen 2000). 

Although the growth models of this study were 
constructed only for regional use in Finland, the 
non-parametric methods have wide application 
possibilities. The use of the non-parametric meth-
ods is effi cient especially for tree characteristics 
which vary locally or in time. Such characteristics 
are for example tree growth, stem form and log 
reduce. The problems which occur when apply-
ing common parameter models can be reduced 
if local data are available. Correspondingly, in 
conditions quite different than in Finland, e.g 
in Africa, the non-parametric growth and yield 
models could be constructed for plantations, dif-
ferent growing densities or seed origins. 

The nearest neighbour methods can be further 
applied in semiparametric models, which are 
combinations of ordinary regression models 
and non-parametric models. In semiparametric 
models, variables with clear relations are esti-
mated with linear models and the remaining part 
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of the model is fi tted with non-parametric meth-
ods. Non-parametric and semiparametric models 
can also be constructed by applying non-para-
metric generalized additive models. The useful-
ness of such models is one potential direction for 
future work.
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