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This paper illustrates the application of a mixture model to describe the bivariate
diameter-height distribution of trees growing in a pure, uneven-aged beech forest. A
mixture of two bivariate normal distributions is considered but the methodology is
applicable to mixtures of other distributions. The model was fitted to diameter-height
observations for 1242 beech trees in the protected forest Dreyberg (Solling, Germany).
A considerable advantage of the model, apart from the fact that it happens to fit this large
data set unusually well, is that the individual parameters all have familiar interpretations.
The bivariate Johnson SBB distribution was also fitted to the data for the purpose of
comparing the fits.

A second issue discussed in this paper is concerned with the general question of
assessing the fit of models for bivariate data. We show how a device called “pseudo-
residual” enables one to investigate the fit of a bivariate model in new ways and in
considerable detail. Attractive features of pseudo-residuals include the fact that they are
not difficult to interpret; they can be computed using generally available statistical
software and, most important of all, they enable one to examine the fit of a model by
means of simple graphs.
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1 Introduction

One of the most important elements of forest
structure is the relationship between tree diame-
ters and heights. Information about size-class
distributions of the trees within a forest stand is
important for estimating product yields. The size-
class distribution influences the growth potential
and hence the current and future economic value
of a forest stand (Knoebel and Burkhart 1991).
More recently, a rather different need for diame-
ter-height relations arose in response to an in-
creasing interest in the structure of natural for-
ests. Unmanaged forests are used as a standard
for comparison of different types of managed
stands, using indices such as the Shannon-Index
for analysis of vertical structure (Shannon 1948,
Weber 1998). Thus, detailed modelling of the
variation of heights within diameter classes is
required.

The product yield estimates are usually based
on an assessment of the distribution of diameters
and a common practice is to fit a model, such as
the Weibull function, to the empirical diameter
class frequencies (Clutter and Allison 1974,
Gadow 1987, Saborowski 1994). For improved
product estimates, tree heights are routinely as-
sessed and a variety of models are used for de-
fining the relationship between diameters and
heights (Schmidt 1967, Curtis 1967). The tradi-
tional method does not quantify the distribution
of heights for a given diameter and one approach
for modelling the conditional height distribution
for the different diameters is to use the height
residuals (Gaffrey 1996, p. 258). In our experi-
ence, it is very seldom that the height residuals
are homoscedastic and normally distributed. In
most forest stands the variance about the diame-
ter-height regression is heterogeneous.

Hence there has been considerable interest in
identifying suitable bivariate distributions to de-
scribe diameter-height frequency data. It has been
reported that the SB distribution (Johnson 1949a)
fits the marginal frequencies of both diameter
and height consistently better than the Weibull,
beta, gamma, lognormal and normal distribu-
tions (Johnson 1949b, Hafley and Schreuder
1976) and that the bivariate extension of the SB

distribution, the SBB, is more realistic and pro-
vides more useful information than the currently

accepted approach for describing forest diame-
ter-height data (Schreuder and Hafley 1977).

Beech forests often develop a single layer struc-
ture when management stops, as a result of heavy
shading and drought eliminating the smaller sup-
pressed trees of this species. A variety of vertical
structures may develop in unmanaged beech for-
ests, depending on the successional stage. There
are numerous examples showing that virgin beech
forests exhibit structures which include more than
one layer of tree heights (Korpel 1992, Košir
1966). In a managed beech forest, the vertical
structure depends on the type of thinning that is
applied. In a high thinning, which is generally
practised in Germany, only bigger trees are re-
moved while the smaller ones may survive for a
very long time, resulting in a typical pattern with
two subpopulations. Usually, the gradient of the
diameter-height regression is much steeper in
the smaller subpopulation. A possible explana-
tion for this phenomenon may be the greater
competition for light in the lower layer. Thus,
trees in the lower layer have to support height
growth more than diameter growth. On the other
hand, because of static reasons, trees that have
reached the upper layer have to invest more in
diameter growth. The result of these different
strategies are different diameter-height relations
and, for most managed beech forests, it would be
biologically plausible to find that the population
of trees is composed of a mixture of two subpop-
ulations having different diameter-height distri-
butions. The particular model that is discussed
here is specifically designed to describe such
populations.

The purpose of this paper is to illustrate how
one can go about fitting a mixture of bivariate
normal distributions to diameter-height observa-
tions. The bivariate Johnson SBB was also fitted
to the data for the purpose of comparison. Sec-
ondly we show how “pseudo-residuals” can be
used to assess the fit of this, or any other, model
that one has fitted to univariate or bivariate ob-
servations.
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2 Material and Methods

2.1 Study Material

The models investigated in this paper were fitted
to diameter-height measurements on 1242 beech
trees in the protected forest Dreyberg (Solling,
Lower Saxony, Germany). The data were col-
lected in 1995 by the Forest Research Station of
Lower Saxony from 50 permanent 1000 m2 cir-
cular plots on a 100 m × 100 m regular grid. The
age of the stand, between 113 and 120 years, can
be determined only approximately because the
stand originated from natural regenerations. Some
stand characteristics are given in Table 1.

The dominant species is beech and therefore the
stand is close to the potential association of a lu-

zulo fagetum which is typical for extensive areas
in the Southern Lower Saxony hill country.

A simple height-diameter curve as shown in
Fig. 1, describes how the mean height varies
with diameter (at breast height) but it does not
quantify the complete distribution of heights for
each diameter.

Fig. 2 shows a nonparametric (kernel) esti-
mate of the bivariate diameter-height distribu-
tion (see for example Silverman 1986). This fig-
ure indicates that there may be two subpopula-
tions of trees and that the height-diameter rela-
tionship differs in these subpopulations. The larg-
er subpopulation (approximately 80% of the en-
tire population) comprises larger trees in which
the slope of the height-diameter regression is
less steep than that for the smaller subpopulation
(approximately 20% of the population).

One way of modelling such a distribution is to
use a mixture of two bivariate normal distribu-
tions described in Section 2.2). The resulting
regression curve (the conditional expectation of
height given diameter) for such a model is a
smooth function of the two straight lines: steeper
for the smaller trees subpopulation and less steep
for the dominant trees subpopulation. The gener-
al shape of this curve is similar to that shown in
Fig. 1.

Table 1. Mean stand characteristics with standard error
(s.e.) for the whole stand and for beech trees of the
Dreyberg data.

Whole stand s.e. Beech

Trees/ha 273.4 10.1 269.6
Stand basal area (m2 / ha) 28.4 0.5 28.0
Standing volume (m3 / ha) 383.3 9.2 377.9

Fig. 1. Breast height diameter–height data for 1242 beech trees in the protected forest
Dreyberg (Solling). The height-curve has been drawn using h = eα+β/d with α = 3.6638
and β = –12.601.
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Section 2.3 gives an outline of the Johnson SBB

model which we also fitted to the data for the
purpose of comparison.

2.2 A Mixture of Two Bivariate Normal
Distributions

Let f(d, h) denote the bivariate probability densi-
ty function of diameter and height. The proposed
model is

f d h n d h n d h( , ) ( , ) ( ) ( , )= + −α α1 21 (1)

where α, a parameter in the interval (0, 1), deter-
mines the proportion of trees belonging to each
of the two component bivariate normal distribu-
tions n1(d, h) and n2(d, h). The parameters of
nj(d, h) are the expectations µdj, µhj; the varianc-
es σdj

2 and σhj
2, and the correlation coefficient, ρj,

j = 1, 2. Thus the full probability density func-
tion of diameter and height is given by (1) with
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zdj = (d – µdj) / σdj, zhj = (h – µhj) / σhj and
J = (σdjσhj)–1,        j = 1,2

The term J, the Jacobian of the transformation
from the standard to the general bivariate nor-
mal, is identified explicitly here in order to con-
trast this distribution with the Johnson SBB in
Section 2.3.

The marginal distributions for the diameters
and heights are also mixtures of the correspond-
ing component marginal distributions. They are
of the form

f x n x n x( ) ( ) ( ) ( )= + −α α1 21 (3)

The components for the diameters and heights
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n d
z

n h
z

j

j
dj

dj

j
hj

hj

( )
exp( / )

,

( )
exp( / )

, ,

=
−

=
−

=

2

2

2

2

2

2
1 2

πσ

π σ

(4)

The conditional distributions of height given di-
ameter, and of diameter given height are not
mixtures of normal distributions but they can be
computed using expressions (1) to (4) from their
definitions:

Fig. 2. Perspective plot of a nonparametric (kernel) estimate of the bivariate density
function for the diameters and heights.
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The maximum likelihood estimators of the pa-
rameters of this model are not available in ex-
plicit form but the estimates are not difficult to
compute by directly maximizing the likelihood
function or (more conveniently) by minimizing
the negative log-likelihood function:
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where (di, hi), i = 1, 2,..., n, are the observed val-
ues of diameter and height, respectively. As some
of the parameters are constrained (0 < α < 1;
σdj, σhj > 0; –1 ≤ ρj ≤ 1) it is advisable to use a
constrained minimization procedure. If the soft-
ware for this is not available then unconstrained
minimization will also work if one uses starting
values that are sufficiently close to the final pa-
rameter estimates. With a little practice it is not
difficult to find suitable starting values by inspect-
ing a scatterplot of the diameter-height observa-
tions.

2.3 Johnson’s SBB Distribution

The Johnson SBB distribution (Johnson 1949b,
Elderton and Johnson 1969) is a bivariate ver-
sion of the SB distribution (Johnson 1949a, see
also Hafley and Schreuder 1976, 1977, Schreu-
der and Hafley 1977). It is based on a transfor-
mation of a single bivariate normal distribution
and has density function given by
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where ξd < d < ξd + λd, ξh < h < ξh + λh,
λd, δd, λh, δd > 0 and –1 ≤ ρ ≤ 1.

The marginal distributions are Johnson SB:
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We note all the parameters in (8) are also present
in (7). Thus once a bivariate SBB distribution has
been fitted the two SB marginal distributions are
immediately available. The conditional distribu-
tions f(h|d) and f(d|h) are not SB but they can be
computed using (7) and (8) in (5).

The maximum likelihood estimators of the pa-
rameters are not available in closed form but
they can be computed by numerical minimiza-
tion of (6) using the density (7). Numerical meth-
ods are needed even in the univariate case, the SB

(see Mønnes 1982, Siipilehto 1999). There are
numerous constraints on the parameters and, un-
less software for constrained minimization is
available, some trial and error experimentation
with the starting values, step size and scale fac-
tors may be needed to achieve convergence. An
alternative approach, outlined in Appendix 2, is
to reparameterize the distribution in terms of
unconstrained parameters.

3 Results and Evaluation of
the Models

3.1 Results

The mixture of bivariate normals model and the
Johnson SBB model were each fitted to the obser-
vations described in 2.1 using the method of
maximum likelihood. The S-PLUS functions
“nlmin” and “nlminb” (Mathsoft 1995) were
used to minimize expression (6) to compute the
parameter estimates given in Tables 2 and 3.
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Maximization of the likelihood for the SBB dis-
tribution led to some numerical difficulties be-
cause, for these data, the maximum likelihood
estimate of ξh is effectively “minus infinity”
which leads to a limiting form of (SB) marginal
distribution for the heights. To achieve conver-
gence it was found convenient to reparameterize
the distribution as described in Appendix 2. We
also fitted the SBB using the additional parameter
constraints ξd, ξh ≥ 0 but this led to substantial
deterioration in the fit – the negative log-likeli-
hood increases from 7798.5 to 7848.8. The cor-
responding value for the mixture of bivariate
normals model was 7678.5 which indicates a
better fit than the SBB model. However, this does
not establish that the mixture model provides a
good description of the data.

The contour plot of the fitted density and the
observed values given in Fig. 3 shows that the

model seems to capture the main features of the
data but clearly it is preferable to have a some-
what more objective method to assess details of
the fit.

The chi-squared and the Kolmogorov-Smir-
nov goodness-of-fit-tests, which are routinely
applied in the context of univariate models, can
be used to check the fit of the marginal distribu-

Table 3. Maximum likelihood estimates for the SBB distribution

Parameter ξd λd δd γd ξh λh δh γh ρ

Estimate 3.767 86.213 –1.408 0.901 –974.514 1027.804 5.723 –20.580 0.843

Table 2. Maximum likelihood estimates for the mix-
ture of two bivariate normal distributions

Parameter µdi µhi σdi
2 σhi

2 ρi α

Estimate
(i = 1) 18.00 17.91 5.16 4.85 0.88 0.19
Estimate
(i = 2) 39.06 27.27 9.69 2.90 0.63

Fig. 3. Contour plot of the fitted density function for the diameters and heights. The observed
values are shown as circles.
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tions (see for example Reynolds et al. 1988).
The chi-squared test is also applicable to bivari-
ate distributions. One way to carry out the test is
to partition the diameter-height plane by means
of a rectangular grid, to count the number of
observations in each rectangle (thus obtaining
the “observed frequencies”), to compute the “ex-
pected frequencies” under the model, and then to
carry out the well-known chi-squared test. The
grid needs to be constructed in such a way that
none of the expected frequencies are too small
(five being generally regarded as large enough);
otherwise the distribution of the test statistic is
poorly approximated by the chi-squared and the
test can be inaccurate. The main objection to this
procedure, especially when it is applied to bivar-
iate data, is that the value of the test-statistic
depends strongly on how one partitions the plane,
that is how one constructs the grid. Indeed it is
not unusual to find that whereas one choice of
grid leads to the rejection of the model an alter-
native grid does not.

An alternative, and somewhat more versatile
tool for assessing the fit, is to use so-called pseu-
do-residuals (Zucchini and MacDonald 1999).
These will now be defined for univariate contin-
uous distributions and we will then illustrate
how they can be used to assess the fit of bivariate
distributions, such as the above diameter-height
model.

3.2 Pseudo-Residuals

Suppose that the observations x1, x2,..., xn are
assumed to be independently distributed accord-
ing to the probability density function f(x) and
denote the corresponding probability distribu-
tion function by F(x). The issue here is to assess
the fit of the model f(x). The pseudo-residual, ri,
corresponding to the observation xi is defined as

ri = Φ–1(F(xi)),    i = 1,2, ..., n

where Φ denotes the distribution function of the
standard normal distribution:

Φ( ) /z e dxx
z

= −

−∞
∫

1

2

2 2

π

Its inverse Φ–1(p), where 0 < p < 1, is the solu-
tion to the equation (in z): p = Φ(z). Most stand-
ard statistical software packages have a routine
to compute these values – for example the S-
PLUS function “pnorm” computes Φ and
“qnorm” computes Φ–1. Alternatively tables of
the standard normal distribution can be used.

It is shown in the Appendix that, under the
hypothesis that f(x) is indeed the correct model
for the observations, the pseudo-residuals ri, i =
1,2 ..., n, follow the standard normal distribu-
tion. Thus, no matter how complicated f(x) might
be, we can assess it’s fit by computing the pseu-
do-residuals and checking how well they are
fitted by a familiar N(0,1) distribution. One of
the most sensitive methods for doing this is to
examine a “normal probability plot of the pseudo-
residuals”. This is constructed as follows:

The pseudo-residuals are ordered from the
smallest to largest. Let r(i) be the i-th largest
value of r1, r2, ..., rn. The r(i) are plotted against
their so-called “plotting positions”. The figures
below are based on the plotting positions de-
fined by

q
i

n
i ni = +





 =−Φ 1

1
1 2, , ,..., .

For alternative types of plots see, e.g., Chambers
et al. (1983) or Hoaglin et al. (1983). The normal
probability plot of the pseudo-residuals is a plot
of the qi (on the horizontal axis) against the r(i)

(on the vertical axis).
If the model fits the data then the points on this

plot should lie close to the straight line of unit
slope through the origin. Deviations from this
line indicate lack of fit and also show which
aspect of the model fails to fit the data.

For example the bivariate mixture distribution
fitted to the diameter-height data implicitly mod-
els the marginal distribution of the diameter as a
mixture of the two univariate normal distribu-
tions given in (3) and (4) with the parameter
estimates given in Table 2. This density function
together with a histogram of the diameters is
shown in Fig. 4. Also shown is the normal prob-
ability plot of the corresponding pseudo-residu-
als. It can be seen that the fit is generally good
but that about 14 trees (approximately 1% of the
population) are somewhat larger than expected
under the fitted model. These correspond to the
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two slightly raised boxes in the histogram over
the intervals 65–70 and 70–75 [cm]. We note
that in general the points on the extreme left and
extreme right of a plot tend to be more variable
than those in the middle even when the model is
correct – they have a larger standard error.

Fig. 5 shows that the fitted marginal distribu-
tion of the heights marginal distribution fits unu-
sually well. The 5 trees that are identified in the
normal probability plot as being slightly higher
than expected correspond to the small box in the
histogram over the interval 36–38 [m].

We emphasise that the marginal distributions
displayed in Fig. 4 and 5 were not fitted sepa-
rately to the diameters and to the heights – they
were derived from the fitted bivariate distribu-
tion thus making the accuracy of the fits to the
two marginal distributions remarkable. By way
of comparison Fig. 6 shows the normal probabil-
ity plots of the pseudo-residuals for the marginal
distributions of the diameters and heights associ-
ated with the SBB distribution (7) with the param-
eter estimates given in Table 3. The lack of fit is
evident.

Fig. 4. Histogram of diameters and the fitted marginal density (left); normal plot of the pseudo-
residuals (right).

Fig. 5. Histogram of heights and the fitted marginal density (left); normal plot of the pseudo-
residuals (right).
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That the model fits the marginal distributions
well is a necessary but not a sufficient condition
that it describes the data as a whole well.

A difficulty that arises when assessing the fit
of the conditional density, say f(h|d) is that its
parameters are a function of d. This is also the
case in the familiar simple regression model based
on a single bivariate normal distribution as op-
posed to the mixture of two such distributions as
used here. However, in the simple regression
case only the conditional expectation is a func-
tion of d; the conditional variance does not de-
pend on d. (The term homoscedasticity is used to
refer to this property.) Consequently the ordi-
nary residuals – obtained by subtracting the ob-
served heights from the regression line – are
identically distributed. They can therefore be
compared for the purposes of detecting outliers
and for assessing the fit of the model.

This property does not hold for more complex
bivariate distributions such as the Johnson SBB or
for the mixture model considered here. For such
distributions the conditional mean, the condi-
tional variance, and even the shape of the densi-
ty function depends on d. In other words they are
heteroscedastic. Consequently the ordinary re-
siduals all have different distributions; they are
not comparable and thus cannot be used to as-
sess the fit. For example, it would not make
sense to construct a histogram of these residuals
because there is no single density with which it

can be matched. Pseudo-residuals were devel-
oped to overcome this problem, they are compa-
rable because they all have the same distribu-
tion, namely the standard normal.

Fig. 7 shows a histogram of the pseudo-residu-
als for the conditional distribution of height giv-
en diameter derived from the fitted bivariate mod-
el. Under the model these should have a standard
normal distribution (whose density function is
also shown in the figure). This, together with the
normal probability plot also given in Fig. 7, con-
firms that this conditional distribution is fitted
very well.

Pseudo-residuals also enable one to assess the
fit of a bivariate model in additional detail. For
example we can examine the fit of its projections
onto lines other than the horizontal axis (margin-
al distribution of the diameter) or the vertical
axis (marginal distribution of height). This ena-
bles us to examine the fit from additional points
of view, thereby make it possible to detect out-
liers or lack of fit that might not be less evident if
one only considers the usual marginal distribu-
tions. Such projections are illustrated in Figs 8
and 9.

Fig. 8 shows a plot of the standardized diame-
ter and height data, that is after subtracting their
respective means and then dividing by their re-
spective standard deviations. It also shows a
number of straight lines at various angles through
the origin. By projecting the points onto one of

Fig. 6. Normal probability plot of the pseudo-residuals for the marginal SB distribution of
diameters (left) and of heights (right) obtained by fitting a bivariate SBB model.
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these lines (for example that at 45%) we obtain
the observed values of the marginal distribution
of a linear function of the original observations:
li = α0 + α1di + α2hi, i = 1,2, ...,n, where α0, α1

and α2 are determined by the particular projec-
tion that we wish to examine, determined by the
angles shown in Fig. 9. We can now compare the
distribution of the li with that implied by the
model fitted to the original data.

The normal plots of pseudo-residuals associat-
ed with the li enable us to assess the fit of the
model from a variety of different angles. Such
plots are shown in Fig. 9. (The plots for 0° and
for 90° have already been given in Fig. 4 and 5,
respectively.)

The plots in Fig. 9 show that, on the whole, the
model fits these data very well. (Compare these
plots with those in Fig. 6.) The projection at the

Fig. 7. Histogram of the pseudo-residuals and the standard normal density (left); normal
probability plot of the pseudo-residuals (right) for the conditional distribution of heights
given diameters.

Fig. 8. Contour plot of the fitted bivariate density function for the standardized diameters and
heights and selected lines through the origin.
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angle –30° shows a slight lack of fit in the lower
tail of the distribution. The plots reveal the 14
exceptionally large trees that were evident in the
ordinary marginal distribution of diameter in Fig.
4. These show up clearly on the upper right-hand
corners of the plots for the projections corre-
sponding to the angles between 60° and –30°.
Regarding the 14 exceptionally large trees the
data were derived from a systematic sample with
plots spread over a large area, covering several
hectares, which includes sections exhibiting dif-
ferent tree dimensions. Two plots are situated in
small section where the trees are much larger
than the rest. Although these exceptions show up
prominently on the plots, it needs to be kept in
mind that they represent about 1% of the points
on each plot, the remaining 99% (1228 points)
fall either on, or very close to the main diagonal.

4 Discussion

The type of model discussed in this paper is
appropriate in situations where there is reason to
suppose that the population under consideration
comprises two subpopulations. This was the case
for the example considered here and it was found
that a mixture of two bivariate normal distribu-

tions fits the data unusually well. The fitted model
is easily interpretable and reflects something real
about the population, namely that it comprises
two distinct subpopulations whose diameter-
height distributions differ. The larger one (ap-
proximately 80% of the trees) has a different
diameter-height relationship to the smaller (ap-
proximately 20% of the trees). In the smaller
subpopulation the diameter-height relationship
is steeper. This finding would lead one to expect
that the distribution of other tree attributes of
this forest (for example maximum crown width,
height to crown base or dead branch height)
could also be appropriately modelled by a mix-
ture of distributions.

Of course it is also possible to improve the fit
of such models by using a mixture of three or
more distributions instead of just two. However,
unless there are persuasive biological grounds
for believing that the population comprises three
or more distinct subpopulations the parameters
of the fitted model lose their simple interpreta-
bility. Furthermore the resulting increase in the
number of parameters erodes the precision with
which it is possible to estimate them.

For special investigations like structural anal-
ysis in natural and virgin forests it is generally
no problem to obtain funds for measuring a suf-

Fig. 9. Normal probability plots of pseudo-residuals for the marginal distributions of selected
linear combinations of the diameters and heights (cf. Fig. 8).
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ficient number of heights to fit a bivariate diam-
eter-height distribution. However, in regular man-
agement inventories, foresters cannot afford to
measure more than say 20–30 heights per beech
stand. Thus, if the application of bivariate tech-
niques is to become common practice in forest
inventories, it will be necessary to develop meth-
ods for estimating the parameters of the distribu-
tion from a relatively small number of measured
trees (Schmidt and Gadow 1999). Such sample
sizes are too small to fit the mixture of two
bivariate normal distributions outlined here –
one needs about 50 observations to obtain usea-
ble estimates.

One approach might be to investigate whether
some of the parameters of the model might be
estimated by relating them to available data, such
as dominant height or basal area. A second ap-
proach, currently under investigation, is to de-
velop a method of estimation from larger sam-
ples of approximate height measurements that
would be less expensive to make than precise
measurements.

The second issue discussed in this paper was
the use of pseudo-residuals for assessing the fit
of a model.

A convenient feature of pseudo-residuals is
that one only needs to think of them as observa-
tions from a standard normal distribution – if the
model fits. This applies irrespective of whether
one is examining the fit of a marginal distribu-
tion, a conditional distribution, the distribution
of a linear combination, or some more complex
function, of the variables. Thus, for example,
histograms of pseudo-residuals are always com-
pared with the familiar bell-shaped N(0,1) densi-
ty function; normal probability plots of the pseu-
do-residuals are always plotted on the same stand-
ard scale.

Finally, the fit of the model can be assessed by
simply examining plots. Of course such plots do
not replace formal goodness-of-fit tests; they
should be regarded as additional tools that are
easy to apply and that can reveal not only wheth-
er or not a model fits, but also details regarding
the lack-of-fit.

The above examples illustrate just some of the
ways in which pseudo-residuals can be used to
assess the fit of a particular bivariate model. Of
course they can be applied to any of the other

bivariate models that are of interest in a forestry
context. Bivariate distributions have been used
for some time to describe the relationship be-
tween diameters and heights (Hafley and
Schreuder 1976, Warren et al. 1979, Tewari and
Gadow 1999) and more recently also to include
other tree attributes, such as height to maximum
crown width or height to crown base (Uusitalo
and Kivinen 1998). More exact estimation of
height of maximum crown width, crown base
and dead branch height can improve the estima-
tion of branchiness and wood quality (Collin and
Houllier 1992, Maguire et al. 1994, Seifert 1999).
Another application of a bivariate distribution is
to model height and density of natural regenera-
tion in stands (Schweiger et al. 1997). Growth
models are an important tool for long- and medi-
um-term simulation studies and Knoebel and
Burkhart (1991), for example, presented an ap-
proach for modelling the bivariate distribution
of diameter at two points in time. A related ap-
plication involves the simultaneously estimation
of mechanical wood properties (Pearson 1980,
Warren et al. 1979) and the estimation of con-
comitant strength wood properties related to
known nondestructive wood properties (Pelli-
cane 1993).
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Appendix 1. Proofs of Claims Regarding
Pseudo-Residuals.

We first show that if a continuous random varia-
ble X has distribution function F(x) then the cor-
responding pseudo-residual r = Φ–1(F(X)) is dis-
tributed as N(0,1).

We note that since X is a continuous random
variable its distribution function F(x) is mono-
tone strictly increasing and therefore has an in-
verse F–1(x) which is also monotone strictly in-
creasing. The distribution function Φ of a stand-
ard normal random variable and its inverse Φ–1

also have these properties.
The random variable U = F(X) is uniformly

distributed on the interval (0,1). This follows
from

P{U ≤ u} = P{F(X) ≤ u} = P{X ≤ F–1(u)}
= F(F–1(u)) = u,    for 0 < u < 1,

which is the distribution function of a uniformly
distributed random variable.

The distribution function of the pseudo-resid-
ual, r, is given by

P{r ≤ z} = P{Φ–1(F(X)) ≤ z}
= P{F(X) ≤ Φ(z)}
= P{U ≤ Φ(z)} = Φ(z),

which is the distribution function of a N(0,1)
random variable.

Suppose now that X1,X2, ..., Xn are independ-
ently distributed and that distribution function of
Xi is Fi(x), i = 1,2, ..., n. (Note that the Xi are not
assumed to be identically distributed.) Then, by
the result above, each pseudo-residual
ri = Φ–1(Fi(Xi)), i = 1,2, ..., n, is distributed as
N(0,1). Finally, as the Xi are independently dis-
tributed, the ri, are also independently distribut-
ed.
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Appendix 2. A Reparameterization of the
Johnson SBB Distribution for Unconstrained
Maximization of the Likelihood Function.

The nine parameters of the SBB are subject to
several constraints (see Section 2.3) which need
to be respected in the numerical minimization of
the negative log-likelihood function. If software
for constrained numerical minimization is not
available it is convenient to (temporarily) ex-
press the likelihood function in terms of differ-
ent parameters that are unconstrained. Such a
reparameterization and its inverse is given be-
low.

New parameters Original parameters

θ1 = log(dmin – ξd) ξd = dmin – exp(θ1)
θ2 = log(ξd + λd – dmax) λd = dmax – ξd + exp(θ2)
θ3 = log(δd) δd = exp(θ3)
θ4 = γd γd = θ4
θ5 = log(hmin – ξh) ξh = hmin – exp(θ5)
θ6 = log(ξh + λh – hmax) λh = hmax – ξh + exp(θ6)
θ7 = log(δh) δh = exp(θ7)
θ8 = γh γh = θ8
θ9 = tanh–1 (ρ) ρ = tanh(θ9)

Here dmin, dmax, hmin, hmax denote the smallest and
largest of the observed diameters and heights,
respectively.

If one wishes to impose the additional con-
straints ξd > 0 and ξh > 0 this can be achieved by
replacing θ1 and θ5 in the above table with the
following:

New parameters Original parameters

θ1 = log(ξd / (dmin – ξd)) ξd = dmin ⋅
exp(θ1) / (1 + exp(θ1))

θ5 = log(ξh / (hmin – ξh)) ξh = hmin ⋅
exp(θ5) / (1 + exp(θ5))

Of course these transformations can also be ap-
plied for estimating the parameters in the univar-
iate case, that is to fit a SB distribution. For the
data considered in this paper, and for the particu-
lar software that we used, namely the S-PLUS
functions “nlmin” and “nlminb” (Mathsoft
1995), unconstrained maximization of the repa-
rameterized likelihood required fewer iterations
than did constrained maximization with respect
to the original parameters.


