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Forecasting Probability Distributions of 
Forest Yield Allowing for a Bayesian 
Approach to Management Planning
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Probability distributions of stand basal area were predicted and evaluated in young 
mixed stands of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) 
and birch (Betula pendula Roth and Betula pubescens Ehrh.) in Sweden. Based on 
an extensive survey of young stands, individual tree basal area growth models were 
estimated using a mixed model approach to account for dependencies in data and derive 
the variance/covariance components needed. While most of the stands were reinventoried 
only once, a subset of the stands was revisited a second time. This subset was used to 
evaluate the accuracy of the predicted stand basal area distributions. 

Predicting distributions of forest yield, rather than point estimates, allows for a Bayesian 
approach to planning and decisions can be made with due regard to the quality of the 
information.
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1 Introduction

Traditionally, forest planning has been carried out 
deterministically. Predicted parameters involved 
have been considered known with certainty and 
decisions derived accordingly. However, for some 
time the trend has been to actively account for risk 
since optimal decisions in a stochastic setting are 
often quite different from the corresponding deci-
sions in a deterministic setting (e.g., Lohmander 

1987, Haight 1990).
Studies on forest planning under risk have, 

to some extent, focused on economic param-
eters such as stochastic timber prices and harvest-
ing costs. Studies on planning under risk in the 
growth process are not as common, although 
many articles treat the problem (e.g., Kao 1982, 
Hof et al. 1988, Gove and Fairweather 1992, 
Valsta 1992, Pukkala and Miina 1997, Kangas 
and Kangas 1999).
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Closely related to the latter area is the fi eld 
of growth and yield research in which substan-
tial efforts have, lately, been put on the random 
variability. A basic assumption for many growth 
simulators used is that future growth conditions 
will remain similar to those of the past, and 
yield prediction becomes a forward projection 
of past patterns of growth (c.f., Kimmins 1990). 
If this ‘historical bioassay’ approach is correct, 
the errors in predictions of future states can be 
regarded as being the result of four major com-
ponents (c.f., Gertner 1987, Ståhl and Holm 1994, 
Kangas 1996, 1997, 1999):
(i) Pure errors. In a perfect growth model, given 

a perfect initial state description, the inherent 
randomness of nature causes random errors by 
factors not possible to describe in the model, e.g. 
random weather conditions.

(ii) Incomplete model due to incomplete description 
of present state. A properly estimated although not 
complete growth model, i.e. lack of relevant vari-
ables, will increase the random error component. 
From a theoretical point of view, the precision of 
the growth function is determined by its capacity 
to distinguish growth from different initial forest 
conditions. A high spatial and structural resolu-
tion (i.e. models at the single tree level), should 
generally, if there is more information available 
for prediction, lead to more accurate estimates 
than growth models with only a few variables to 
characterise the initial state.

(iii) Errors in the description of initial state. Given 
a properly derived growth function, sampling 
and measurement errors in the state variables (as 
well as prediction errors when a model is used 
recursively) will decrease the accuracy of the 
predictions. When input data contain errors, a 
high-resolution model can sometimes yield worse 
predictions than a low-resolution model (c.f., Gert-
ner 1986).

(iv) Errors in the estimation of parameters in the 
growth model due to uncertain data for model 
development.

The size of errors from (ii), (iii) and (iv) can be 
infl uenced by the choice of growth models and 
forest inventory strategies.

A number of studies have been conducted to 
determine the effect of uncertainty in input data 
and estimated parameters on the accuracy of the 

predictions (e.g., Smith and Burkhart 1984, Gert-
ner and Dzialowy 1984, Gertner 1986, Kangas 
1998). Gertner (1991) showed that random errors 
in input data cause bias in non-linear models 
and Kangas (1996) compared different methods 
for reducing this kind of bias in predictions of 
forest yield. Error propagation in forest growth 
simulations has been quantifi ed empirically, using 
Monte Carlo simulations, and analytically, by 
variance functions derived from Taylor approxi-
mation (e.g., Mowrer and Frayer 1986, Gertner 
1987, Mowrer 1990, Vanclay 1991, Green and 
Strawderman 1996, Kangas 1997).

An important part of the model building proc-
ess is to characterise the error structure of the 
growth model. Gregoire (1987) and Gregoire et 
al. (1995) focus on how spatial and temporal cor-
relations affect the precision of parameter esti-
mates in stand level growth models. Stage and 
Wykoff (1993) extend this to models of indi-
vidual trees and show that the stochastic com-
ponents affect predicted stand dynamics. Mixed 
linear models methodology (Searle 1971, Har-
ville 1977) has commonly been used in this con-
nection, for developing functions from data with 
spatiotemporal correlations (e.g., Lappi 1986, 
Lappi and Bailey 1988, Penner et al. 1995).

Stochasticity in timber yield can, technically, 
be introduced to a planning problem in different 
ways. Hof et al. (1988) and Pickens and Dress 
(1988) introduced random components in an LP-
formulation. A common approach for restricted 
problems is to use stochastic dynamic program-
ming (e.g., Riiters et al. 1982, Kao 1982, Haight 
1990), a technique which provides an opportunity 
for decisions to be made adaptively based on the 
outcome of the random process. A problem is, 
however, that the outcome must be observed. To 
control both the growth process and the observa-
tions of it, Ståhl et al. (1994) used dynamic 
programming in a Bayesian setting.

Bayesian decision-making is a common 
approach to handle risk in planning (e.g., Lind-
gren 1962). Rather than considering point esti-
mates of the parameters involved, entire (joint) 
probability distributions of the parameters are 
used when the outcome of a decision is evaluated. 
Although there has been a great deal of debate on 
the element of subjectivity in Bayesian methods, 
Bayesian inferences tend to be accepted when 
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the subjectivity in assessing priors is restricted. 
Also, recent advances in computational statistics 
have made the methods more appealing, e.g. the 
Gibbs sampler, applied in forestry by Green and 
Strawderman (1992) and Green and Valentine 
(1998). Gertner et al. (1999) estimated the distri-
bution of the parameters of a growth model by 
Bayesian estimation with rejection sampling. 

A Bayesian approach to consider risk in future 
yield requires the prediction of joint probability 
distributions rather than point estimates. This can 
be made in different ways. One possibility is to 
assume a parametric setting with ‘conjugate’ prior 
distributions and growth processes. By convolu-
tion, the yield distribution after a certain period of 
growth is obtained. E.g., a normal prior distribu-
tion can be coupled with a linear normal growth 
process, resulting in a normally distributed pre-
dicted distribution of yield. However, this set-up 
imposes considerable restrictions on what kind 
of growth models can be used. 

Another possibility is to leave the parametric 
setting and make use of simulation for determin-
ing the distributions. An advantage with this is 
that no assumption about the form of the distri-
butions is needed. Any growth process can be 
used since any shape of the yield distribution is 
allowed. Also, it is possible to use a high spatial 
and structural resolution in the growth process, 
e.g. models at the single tree level. The drawback 
is the amount of computation needed.

The aim of this article is to describe and evalu-
ate a straightforward technique for the predic-
tion of within-stand probability distributions of 
forest yield based on growth models for single 
trees. A Monte-Carlo simulation approach is used 
in which the variance/covariance components of 
the random elements of growth, estimated from 
mixed model regression and other analyses, are 
added. The accuracy of the predictions is evalu-
ated in terms of their ability to correctly fore-
cast entire distributions of yield. Moreover, it is 
shown how extensive Monte-Carlo simulations 
are needed to obtain reliable estimates. Finally, it 
is outlined how the predicted yield distributions 
can be utilised in a Bayesian approach to forest 
management planning.

2 Material and Methods
2.1 Basic Approach

The study is limited to predictions of basal area 
in young stands, here defi ned as stands with 
mean height between 3–8 meters. Individual tree 
growth models for Scots pine (Pinus sylvestris, 
L.), Norway spruce (Picea abies (L.) Karst.) and 
birch (Betula pendula Roth and Betula pubes-
cens Ehrh.) were developed using mixed linear 
regression on data from an extensive survey of 
young stands. Based on these functions for fi ve 
year basal area growth, and the corresponding 
estimated variance/covariance components, pre-
dictions of future stand level basal area distribu-
tions were made using Monte-Carlo simulation.

Predictions were fi rst made at the plot level, 
by summing the predictions for all trees on a 
plot. Stand-wise basal area probability distribu-
tions were then obtained by merging the plot-
wise predictions within a stand. The following 
general recursive model structure was used for 
the predictions at the tree level: 

ijk
t

ijk
t

ijk
t

ij ijk
tY Y Yf X= + ( ) +− −1 1 1, ( )ε

Here, Yijk
t  is the predicted variable in time period 

t, for tree k on plot j in stand i; Xij is a vector 
of stationary variables (e.g., site quality), and εijk

t  
is the random error term. The growth function is 
indicated by f(⋅). Due to the hierarchical structure 
of data (trees on plots within stands), the random 
error terms were separated into the following 
components:

ijk
t

i
t

ij
t

ijk
te = + +ε δ γ ( )2

Three separate independent terms were consid-
ered: εi

t  is the random effect due to stand i, δ ij
t  

is the random effect due to plot j in stand i, and 
γ ijk

t  is the residual random error at the tree level. 
The distributional assumptions of the error terms 
were: eijk

t  ~ N(0, κ  2), εi
t ~ N(0, σ  2), δ ij

t  ~ N(0, τ2), 
γ ijk

t  ~ N(0, θ  2), and tied κ  2 = σ  2 + τ  2 + θ  2.
In a single repetition of simulating the growth 

in a stand, the same random stand component was 
used for all trees, and the same plot component 
for all trees on a plot. Moreover, since the growth 
functions were developed for each species indi-
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vidually, cross-correlations between the different 
species’ random components at the stand and 
plot levels were estimated and considered in the 
simulations.

Ideally, the complete error structure of the pre-
diction system should be known and accounted 
for in the simulations. It involves (c.f., Gertner 
1987, Mowrer 1990, Gregoire 1995 et al., 
McRoberts 1996, Kangas 1997) the residual com-
ponents embedded in eijk

t , their serial correlations 
(and cross-correlations over time), the correla-
tions between random components of different 
species, the random errors in the estimated model 
parameters and their cross-correlations, and errors 
in input data.

The effect on growth of random errors in the 
estimated model parameters was considered to 
be small in relation to the effect of the residual 
random errors. Thus, to simplify the simula tions, 
these errors were not accounted for (the models 
were considered to be exact). Moreover, since 
most of our data were available from a single 
fi ve-year period only, serial correlations could 
not be estimated. The effect of varying degrees 
of serial correlation was, however, evaluated on 
a sensitivity basis. The magnitude of correlations 
to test was taken from Kangas (1997).

Distributions were predicted at the stand level. 
However, to keep the evaluations straightforward, 
we considered the plots within a stand to provide 
a perfect description of the initial state. After a ten 
years growth projection, the predicted distribu-
tion was compared with the actual state, obtained 
from a fi eld inventory of the same plots.

In the following, the data set is fi rst described. 
Secondly, the development of the growth func-
tions, including the estimation of variance com-
ponents of the random error terms, is presented. 
Thirdly, it is shown how the cross-correlations 
of the random error components for the differ-
ent species were derived. Lastly, the evaluations 
made are described.

2.2 The HUGIN Young Stand Survey 

Data were obtained from the HUGIN survey 
of young stands (Elfving 1982). In the period 
1976–79, permanent plots were established in 
799 young stands in Sweden. In each stand, fi ve 

circular sample plots of 100 m2 size were ran-
domly laid out.

Each plot was marked and the position of every 
tree mapped. Total height and diameter at breast 
height (1.3 m) were measured, and damage reg-
istered. Data describing site characteristics were 
also recorded.

After fi ve years, in the period 1981–84, the 
plots were revisited. It was registered whether 
the trees remained or had been removed by 
pre-commercial thinning. On remaining trees, 
height and diameter were measured and damage 
assessed as light, moderate, severe, or fatal. In the 
period 1987–1990, 49 stands were re-inventoried 

Fig. 1. Geographical distribution of the calibration (•) 
and validation (!) data.
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a second time. These stands were mainly located 
in northern Sweden.

In the present study, the data set was randomly 
split in two parts: calibration data (378 stands) 
and validation data (405 stands), located all over 
Sweden (Fig. 1). Plot data from the two data sets 
are presented in Table 1. Data for evaluating the 
predicted distributions consisted of the subset of 
49 stands, re-measured twice.

2.3 Basal Area Growth Model

A mixed linear model approach (e.g., Penner et 
al. 1995, Hökkä et al. 1997, Hökkä and Groot 
1999) was used to relate the fi ve years basal area 
growth of individual trees (bai, cm2/5 yr.) to a 
set of independent variables. Undamaged trees, 
only, were considered in the model development. 
Summary statistics for the trees in the calibration 
data set are shown in Table 2.

The selection of variables for the functions 
was based on experience from a previous study 
(Nyström and Kexi 1997) in which individual 
tree growth models for Norway spruce were con-
structed with ordinary least-squares regression. 
The variables of the models are characteristics 
related to tree size, stand attributes, site quality, 
and treatments. The measures of overall density 
and relative competition status were plot basal 
area (Ba) and relative diameter (Rd). Rd is 

expressed as the ratio between the tree diameter 
at breast height (d) and basal area weighted 
mean diameter of the plot (Dgw), defi ned as 
Σd3 / Σd2. Plot age (A13) was expressed as basal 
area weighted mean age at breast height (1.3 m) 
on a plot. The climatic effect on growth was mod-
elled with the temperature sum (TS5), defi ned as 
the sum of all daily mean temperatures exceed-
ing the threshold temperature 5 °C during the 
growing season (Odin et al. 1983). Site fertility 
was derived indirectly from the ground vegeta-
tion type. It was registered as ‘Rich’, ‘Medium’, 
or ‘Poor’ and included in the models using two 
indicator variables. The effects on growth due to 
pre-commercial thinning before the fi rst measure-
ment or between the measurements were also 

Table 1. Mean, standard deviation (SD), and range for some characteristics in the calibration and validation data 
sets, respectively. Stand level data at the point of time of the fi rst inventory.

 Latitude Altitude A13 
a) N 

b) HL 
c) Ba 

d) Dgw 
e)

 (°N) (m.a.s.l.) (yr) (no. ha–1) (dm) (m2 ha–1) (cm)

Calibration data set (378 stands, 1750 plots)
Mean 61.5 246 10.9 2003 54 5.4 7.8
SD 3.0 156 4.9 851 22 4.5 3.8
Range 55.6–68.1 10–800 2.0–39.4 300–4242 17–168 0.1–25.4 1.4–27.0

Validation data set (405 stands, 1879 plots)
Mean 61.3 252 10.9 2094 57 5.9 8.2
SD 2.8 165 4.2 868 24 5.1 3.8
Range 56.1–68.2 0–710 2.0–33.3 200–5308 16–225 0.1–35.6 1.3–33.4

a) A13 = stand age, expressed as basal area weighted mean age at breast height
b) N = number of stems ha–1 with a height ≥ 1.3 m
c) HL = mean height by Lorey; basal area weighted mean height, dm
d) Ba = basal area, m2/ha
e) Dgw = basal area weighted mean diameter, cm

Table 2. Summary statistics for the trees used for param-
eter estimation (the calibration data set).

 Scots pine Norway spruce Birch

 Mean SD Mean SD Mean SD

bai (cm2/5 yr.) 31.0 24.2 27.6 29.0 16.6 21.1
Diameter (cm) 6.3 3.9 5.1 3.5 4.1 2.9
Rd 

a) 0.8 0.4 0.7 0.4 0.7 0.4
Number of stands 264 276 245
Number of plots 790 822 609
Number of trees 5620 7991 4036

a) Rd = relative diameter, defi ned as d/Dgw; where d = breast height 
diameter (cm) and Dgw = basal area weighted mean diameter.
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incorporated as indicator variables (Clbefore, 
Clbetween).

The independent variables were assumed to 
interact multiplicatively with the basal area incre-
ment. To make the model linear, a logarithmic 
transformation was made. Preliminary fi ts of the 
models and examination of scatter-plots of resid-
uals versus predicted values indicated that the 
logarithmic transformation was appropriate with 
regard to desirable statistical properties of the 
random error term, i.e. normally distributed residu-
als with homogenous error variance. To overcome 
problems with zero and negative increment due to 
measurement errors, a small constant was added 
to the dependent variable for all observations.

The random variation in basal area growth 
was divided into: (i) random effects connected 
to stands, (ii) random effects connected to plots 
within stands, and (iii) residual effects at the tree 

level. All random effects were assumed to be 
normally and independently distributed with zero 
mean and constant variance. Consequently, the 
general model for 5-year basal area growth was: 

Growth = fi xed(tree and site characteristics) + 
random(stand, plot within stand, residual)

The fi xed effects and the variance components of 
the random effects were estimated with PROC 
MIXED within the SAS® package version 6.10. 
The variance components were estimated using 
the restricted maximum likelihood (REML) pro-
cedure. The result is presented in Table 3.

2.4 Model Validation

The fi xed parts of the models were evaluated 

Table 3. Regression coeffi cients and their t-values for the basal area increment functions. Dependent variable: 
ln(bai + 1), cm2.

Variable Scots pine Norway spruce Birch

 Coeffi cient t-value Coeffi cient t-value Coeffi cient t-value

Constant 0.933574 - –2.728978 - –1.390751 -
d –0.173599 –8.1 –0.163038 –8.9 –0.298734 –8.2
ln2(1 + d) 0.542906 11.2 0.573185 14.2 0.872871 12.2
ln(1 + A13) –0.322222 –6.4 –0.356603 –7.7 –0.299192 –4.9
Ba –0.103558 –18.3 –0.079372 –18.7 –0.072119 –7.4
Dgw 0.061871 12.7 0.061814 11.3 0.051759 5.8
Rd –1.887638 –10.4 –1.203774 –7.6 –2.077699 –8.4
ln(1 + Rd) 4.190010 11.0 2.723129 8.2 4.427092 9.3
Ba × Rd 0.061928 12.4 0.059337 13.8 0.039920 3.8
ln(TS5) 0.158676 2.1 0.676821 8.4 0.369737 3.6
Rich a) 0.077991 2.2 0.144772 5.0 0.143448 3.2
Poor b) –0.065451 2.0 –0.142958 –3.3 –0.157092 –3.1
Clbefore 0.098786 2.3 0.087956 2.1 0.164439 2.5
Clbetween 0.096635 2.6 0.154158 4.1 0.241963 4.2
n 5620 7991 4036

Bias correction (λ) c) 1.066916  1.101679  1.197957

Estimated variance components

Stand, σ̂ 2  0.0472  0.0504  0.0730
Plot(stand), τ̂ 2  0.0462  0.0613  0.0643
Tree, θ̂ 2 0.1789  0.1777  0.2947
Total, κ̂ 2  0.2723  0.2894  0.4320

a) Rich = 1 if the ground vegetation type on the plot is herb types or broad grass type, otherwise Rich = 0.
b) Poor = 1 if the ground vegetation type on the plot is dwarf-shrub types (other types than Vaccinium myrtillus) and lichen-cover types, 

otherwise Poor = 0.
c) When the estimated dependent variable is retransformed to bai in a deterministic setting, it should be corrected for logarithmic bias. The 

correction factor is: λ = Σ(y) / Σ exp(ln( ŷ)) which gives ŷ = [exp(ln ( ŷ)) – 1] × λ
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against the validation data set. No obvious bias or 
systematic patterns over the different independent 
variables were revealed in the residual analysis. 
The average bias in log scale was –0.02, 0.00, and 

–0.01 for Scots pine, Norway spruce and birch, 
respectively. After re-transforming the dependent 
variable to the natural scale (cm2 per 5 yr.), a slight 
overestimation of the growth of trees in the test 
data was found. The average bias was –0.5, –1.7, 
and –3.8 percent for Scots pine, Norway spruce 
and birch, respectively.

When testing the functions at the plot level 
(aggregated tree increments for all undamaged 
and light damaged trees) under different condi-
tions regarding the tree species composition, only 
very small and non-signifi cant bias-terms were 
found. The average bias and standard deviation 
estimated, when the growth functions were used 
in a deterministic setting, were 0.0 and 1.2 m2/ha 
5 yr., respectively. The distribution of the plot 
level residuals (observed – predicted basal area 
increment), over initial plot basal area and pre-
dicted basal area increment are shown in Fig. 2.

2.5 Cross-Correlations between Tree Species

Within each projection period the estimated sto-
chastic components corresponding to stand, plot 
and tree residual variation were added to the 
logarithmic growth prediction as normally dis-
tributed random variables with zero mean and 
variances (σ̂ 2, τ̂ 2, θ̂ 2) obtained from the model 
estimation, see Table 3.

The basal area growth models were developed 
for each tree species separately. It is, however, 
reasonable to believe that the random components 
of different species are correlated at the stand and 
plot levels. At the stand level, random weather 
conditions and/or macro site and stand conditions, 
not properly included in the model, can be the 

Fig. 2. Plot residuals, observed-predicted basal area 
increment (m2/ha 5 yr.), as a function of initial 
basal area (a) and predicted basal area increment 
(b).

Table 4. Correlations between the different species’ random stand and plot compo-
nents.

  Species

 Scots pine/ Scots pine/ Norway spruce/
 Norway spruce Birch Birch 

Plot level, (ρ̂p) 0.50 0.10 0.36
Stand level, (ρ̂s) 0.32 0.62 0.51
Number of stands 205 165 236
Number of plots 867 702 1007
Number of trees 5557/5472 4590/3581 7841/5642
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causes. At the plot level, micro stand and site 
conditions could lead to dependencies. To account 
for the cross-correlations in the simulations, their 
strengths had to be estimated.

The correlations (ρ) were estimated according 
to the defi nitions as shown in Eq. (3). Here, Scots 
pine, ‘p’, and Norway spruce, ‘s’, are taken as 
examples.

(i) Stand level and
(3)

(ii) Plot level
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p s
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The variance components were obtained from the 
output of the mixed linear regression (Table 3) 
and the covariances from a separate study of the 
residuals, according to what follows.

The covariances between the residuals of dif-
ferent species e.g., cov(ε   p, ε  s) and cov(δ   p, δ   s) 
were estimated using data from mixed stands. 
As previously described, the residual variation 
at tree level (eijk

ts ) was divided into the following 
independent components:
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where
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mij
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were developed using formulas (4–6), see Appen-
dix 1. It follows that the covariances can be 
estimated as:
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The formulas obtained were validated using 
a simulation procedure in which correlated 
random numbers were generated and the formu-
las applied. The between species correlations, 
estimated from the real data using formulas 7 and 
8, are presented in Table 4.

At the plot level, the correlation is higher 
between Scots pine and Norway spruce than 
between any of these two species and birch. At 
the stand level, the opposite is the case. Pos-
sibly, this could be the result of a competition 
between conifers and birch. A low plot correla-
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tion indicates high competition and vice versa. 
At the stand level, the correlation can be high 
although the species compete, since they may 
grow on different plots.

2.6 Evaluations

Two main evaluations were made using the 
growth functions and the variance/covariance 
components estimated, together with the data 
set from the HUGIN young stand survey. Both are 
relevant for the case when prior distributions 
of timber yield are predicted within a Bayesian 
planning framework. First, the accuracy of the 
distributions was evaluated by comparing the 
predicted distributions with actual outcomes. Sec-
ondly, a study was made to evaluate the number 
of Monte-Carlo simulations needed for the esti-
mated distributions to be reliable. The details are 
given below.

2.6.1 Evaluation of Predicted Distributions 
vs. Real Outcomes

The aim was to study how well the predicted 
distributions conformed to the actual outcomes 
of basal areas in the stands that were followed for 
10 years (mainly between 1977–1987).

In each stand, the observed basal area at the 
end of the period was compared with the pre-
dicted distribution (obtained from 105 simula-
tions). It was registered at what percentile the 
inventoried stand basal area was located within 
the distribution. If the predictions were adequate, 
the recorded percentiles should be uniformly dis-
tributed. This assumption was evaluated by a Chi-
square test, using 10 classes of percentiles (each 
class covering 10% of the predicted distribution). 
If the predictive properties were adequate, the null 
hypothesis of an equal proportion of observations 
in each class should not be rejected.

Three different cases concerning the level of 
the serial correlation in the random components 
were tested. Although there may be reason to 
believe that the serial correlation varies between 
the different random components, no differentia-
tion was made. The correlations tested were 0, 
0.4, and 0.7.

2.6.2 Number of Monte-Carlo Simulations 
Needed

In applications, it is important to limit the number 
of simulations needed for predicting the distribu-
tions due to the time required for solving a large 
planning problem. Therefore, it is of interest to 
study the precision of the predicted distributions 
after varying numbers of simulations.

The continuous variable stand basal area was 
divided into classes of 0.1 m2/ha width. The 
number of simulations when the basal area fell in 
each class was recorded (after 10 year forecasts). 
Letting the number of simulations tend towards 
infi nity (106 in the study), the true distribution, 
f  *, according to the growth model parameters and 
the variance/covariance components estimated, 
was obtained. If a smaller number of simulations 
is used, the resulting distribution, f̂ , will deviate 
from f  *. The size of the deviation depends on 
where, on the true distribution, the focus is set 
and on what width of the classes is used.

A number of percentiles (5, 10, 25, 50, 75, 
90, 95%, determined by the 0.1 m2/ha class they 
belong to) of f  *, for 20 different stands, were 
selected for the study. At each percentile, the 
relative standard deviation of the proportion of 
observations in that particular class (0.1 m2/ha 
width), given a certain number of simulations (n), 
was calculated as:

( )
( )

( ) ( )
cvp i

i

i i

p

p p

n
=

−( )
−

1 1

1
9( )

where
cvp(i) = relative standard error for basal area class i
p(i) = the true proportion in basal area class i

3 Results

3.1 Observed Basal Area vs. the Predicted 
Distributions

The observed and predicted basal area after 10 
years growth in the 49 stands used for the evalu-
ation was, on an average after 105 simulations in 
each stand, 9.0 and 9.2 m2/ha, respectively. The 
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distribution of percentiles in which the observed 
basal area was registered should be uniform if 
the predictive properties of the functions were 
correct. Results concerning this, for the three 
different cases of serial correlation, are shown 
in Fig. 3.

According to the Chi-square test statistics, the 
null hypothesis of an equal proportion of observa-
tions in each class can not be rejected in any 
of the cases (the Chi-square test results in the 
p-values 0.79 (χ2 = 5.5), 0.71 (χ2 = 6.3) and 0.62 
(χ2 = 7.1) for the different levels of serial correla-

tion 0, 0.4 and 0.7, respectively). Consequently, 
there is no evidence that the assumption about a 
uniform distribution should be rejected in any of 
the cases. According to Fig. 3, the case without 
serial correlation appears to provide the best fi t.

Stand-wise results in terms of plots showing 
the observed basal area and the 5th, 50th, and 
95th percentiles of the predicted distributions are 
given in Fig. 4 (for the case of no serial correla-
tion).

Fig. 5. Relative standard error after different numbers of 
simulations, for the proportion observations falling 
in the basal area class corresponding to the median, 
cvp(50), of the true distribution.

Fig. 3. Observed stand basal area within different classes 
of predicted percentiles of basal area distributions. 
(a) without serial correlation, (b) serial correlation 
(ρ = 0.4) and (c) serial correlation (ρ = 0.7).

Fig. 4. Observed (!) basal area within the predicted 
basal area distribution, given by the 5th, 50th, and 
95th percentiles.

Fig. 6. Normalised relative standard error (cvp(i) / cvp(50)) 
at different classes of percentiles of the basal area 
distribution. This relation does not depend of the 
number of simulations.
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3.2 Number of Monte-Carlo Simulations 
Needed

As expected, the results revealed major differ-
ences regarding the magnitude of the estimated 
relative standard errors, an average of 20 stands 
were used, when varying the number of simula-
tions (Fig. 5) and also with regard to which part 
of the estimated distribution focus was set on 
(Fig. 6). The projected probability distributions 
were positively skewed which resulted in larger 
relative standard errors in the percentiles above 
the median as compared with those below. To 
achieve basal area distributions (decomposed in 
0.1 m2 classes) projected 10 years, with a relative 
standard error (cvp) less than 0.05 covering 90 
percent of the distribution (5th–95th percentile) 
approximately 105 simulations were needed. As 
can be seen in Figs. 5 and 6, about 10 000 simula-
tions lead to a corresponding precision of about 
0.1.

4 Discussion

The study focuses on how to estimate within-
stand basal area distributions with single tree 
growth models, emphasising the spatial correla-
tion in data. By using a mixed model approach, 
spatial dependencies in data were accounted for 
in the parameter estimation, and the sizes of 
the variance components of the random effects 
were estimated. The random effects were added 
to the fi xed effects in Monte-Carlo simulations, 
and predicted distributions of stand basal area 
were obtained. In the evaluations, the distribu-
tions appeared to give a correct representation of 
the actual uncertainty in predicted data. However, 
the evaluation period was quite short (10 years) 
and the effects of possible serial correlation would 
increase over time. The sensitivity of the projec-
tions to serial correlation is illustrated in Fig. 7. 
In the fi gure, the coeffi cient of variation (CV; 
standard deviation/mean) of the predicted distri-
butions after 20 years, based on 104 simulations, 
is presented for the cases with and without serial 
correlation. The serial correlation was assumed 
to be 0.7 for all components. On average the CV 
of estimated basal area distributions increased 

from 0.116 to 0.154 when serial correlation was 
introduced.

In all models, the random stand and plot effects 
were signifi cant, indicating that growth varies 
randomly from stand to stand and from plot to 
plot within a stand. The estimated variance com-
ponents (Table 3) for the stand and plot random 
effects accounted for about 35 percent of the total 
residual variance. The variance of the random 
parameters was greatest for birch and lowest for 
pine.

One drawback with the study was that meas-
urement errors were not explicitly accounted 
for. Although the data collection was made for 
research purposes and, consequently, the survey 
was carefully carried out, there is no reason to 
believe that the data used were free from measure-
ment errors. The result of such errors would be a 
too large variance component at the tree level, and 
to some extent reduced correlations between the 
random components of different species, mainly 
at the plot level, (see e.g., Stage and Wykoff 
1993)

4.1 Bayesian Application

By predicting distributions of forest yield rather 
than point estimates, a Bayesian approach to 
management planning can be adopted. Since data 
about the state of forests are almost always uncer-

Fig. 7. Coeffi cient of variation (CV) for the estimated 
distributions, (!) without serial correlation and 
(•) with serial correlation ρ = 0.7 for all random 
components.
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tain, and since inventories are costly, it is wise 
to continuously update not only the data about 
the forest state, but also the precision of the state 
estimates. An example is shown in Fig. 8, in 
which a 20-year projection of the within-stand 
basal area distribution is made from a perfectly 
known initial state. It is quite clear that the useful-
ness of a mere point estimate can be questioned 
after only a few periods of growth. In practice, 
it would perhaps not be wise to present distribu-
tions to a manager, but rather some derived data 
quality measure.

By using probability distributions in forest 
management, decisions can be evaluated consid-
ering the whole range of possible states accord-
ing to the standard methods of Bayesian decision 
theory. E.g., if l(Aiθ ) is the loss of a certain 
action, Ai, given that the true state is θ, and p(θ ) 
is the probability density function of the forest 
state, the expected loss of the action is:

L A l A p di i( ) ( ) ( ) ( )= ∫ θ θ θ 10

When different actions are possible, the one that 
leads to a minimum expected loss, or perhaps 
a ‘safe’ outcome, can be selected. In case the 
distributions are wide, the optimal decision is 

often a compromise. Had the state been known 
with better accuracy, other decisions would have 
been more suitable. As an example consider Fig. 
9, which illustrates the within-stand basal area 
probability distribution after a 20-year projection 
(cf., Fig. 8). Assume that optimal decisions about 
the stand management are dependent on the stand 
basal area as illustrated in Fig. 9.

To determine the optimal decision based on the 
available information, p(θ ), one would typically 
apply (10) for each potential action (A0, A1 and 
A2) to evaluate which one leads to the lowest 
expected loss. 

By providing distributions rather than point 
estimates it can also be assessed whether or not 
a new inventory, to update the information about 
the state of the forest, would be worth the cost. 
If an inventory is carried out, a new probability 
distribution of basal area in the stand is obtained, 
by applying Bayes’ theorem (e.g., Gamerman 
1997). The prior (projected) distribution, p(θ ), 
is then combined with the sampling distribution, 
f(xθ ), to obtain the new, posterior, distribution 
p(θx). Bayes’ theorem can be written as:

p x
f x p

f x p d
( )

( ) ( )

( ) ( )
( )θ

θ θ
θ θ θ

=
∫

11

Fig. 8. An example of a 20 years projection (four periods, per 1–4) of within-stand 
basal area probability distributions. Initial basal area 6.4 m2/ha.
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The potential value added by an inventory stems 
from the benefi ts from better decisions due to 
the new information. Consider Fig. 10 as an 

example. Here, the posterior distributions follow-
ing three different hypothetical outcomes of the 
inventory are depicted. The increased accuracy 

Fig. 9. An illustration of a fi ctitious optimal thinning decision, depending on the 
basal area in a stand

Fig. 10. An illustration of posterior distributions following three hypothetical 
outcomes of an inventory. For these particular distributions, the optimal deci-
sions no longer need to be compromises.
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of the posterior information is refl ected in the 
narrow posterior distributions. The optimal deci-
sions based on the posterior information no longer 
need to be compromises as was the case when 
the decision was based on the prior information. 
More details about this can be found in Ståhl et 
al. (1994). 

Often, stand data are collected in large cam-
paigns during which most old data are disposed 
of. Such campaigns are, at least in Sweden, made 
every 10–15 years. An alternative, for which the 
kind of predictions made in this paper should 
be very useful, would be to make stand-wise 
calculations to determine at what point in time a 
new inventory should be carried out.
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Appendix 1
Below, the details of the derivation of formulas (7) and (8) are shown (for abbreviations, see the main text). To 
arrive at the covariance estimators, the expectations 
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were fi rst developed using formulas (4–6). As in the main text, the tree species Scots pine (‘p’) and Norway 
spruce (‘s’) are used as examples. By deriving expectations of products of this kind, the covariances of interest 
will appear and the resulting equations can be solved for these covariances. The products were weighted by 
the number of plots and trees, in order to increase the infl uence of stands, where the components of interest 
are likely to show less random variation. 

From the model specifi cation, it is reasonable to assume that expectations of the kind 
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are all zero. 
The fi rst expectation is developed as:
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The second expectation is developed as:
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The equation system (A1) and (A2) is then solved for the covariance terms, which gives: 
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Substituting cov(ε  p, ε  s) in Eq. (A2) with Eq. (A3) gives:
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This expression (A4) is inserted in (A3) to derive the covariance at the stand level. Then, using the plug-in 
estimates to replace the expected values in (A3) and (A4) leads to the covariance estimates (7) and (8), presented 
in the main text.


