
Van Deusen Multiple Solution Harvest Scheduling

207

Multiple Solution Harvest Scheduling

Paul C. Van Deusen

Van Deusen, P.C. 1999. Multiple solution harvest scheduling. Silva Fennica 33(3): 207–
216.

Application of the Metropolis algorithm for forest harvest scheduling is extended by
automating the relative weighting of objective function components. Previous applica-
tions of the Metropolis algorithm require the user to specify these weights, which
demands substantial trial and error in practice. This modification allows for general
incorporation of objective function components that are either periodic or spatial in
nature. A generic set of objective function components is developed to facilitate harvest
scheduling for a wide range of problems. The resulting algorithm generates multiple
feasible solutions rather than a single optimal solution.

Keywords Metropolis algorithm, simulated annealing, Gibb’s sampler
Author´s address Principal Research Scientist, NCASI, Northeast Regional Center, Tufts
University, 1 Anderson Hall, Medford, Massachusetts 02155. USA
Fax 617-627-3831 E-mail:pvandeus@tufts.edu
Received 11 March 1999 Accepted 27 July 1999

Silva Fennica 33(3) research articles

1 Introduction

Forest land managers need flexible planning tools
that allow them to identify management sched-
ules for their holdings that meet a wide range of
objectives. Typically, they want to obtain an even
flow of goods over time while simultaneously
meeting economic and spatial requirements re-
lated to clearcut blocksize and wildlife habitat.
In fact, most industrial forest land owners in the
United States have agreed to follow a set of
voluntary sustainable forestry initiatives (SFI)
developed by the American Forest and Paper
Association (AF&PA). These initiatives include
restrictions on clearcutting until adjacent areas
have greened-up, and making efforts to enhance

and provide an array of wildlife habitats. Indi-
vidual States may also have regulations that add
spatial requirements in addition to the AF&PA
regulations, e.g. California, Maine, Oregon, and
Washington.

A number of algorithms have been proposed
for handling harvest scheduling with adjacency
constraints. For example, solutions can be pro-
vided by integer or mixed-Integer programming
(MIP) for problems that are not too large
(Meneghin et al. 1988, Torres-Rojo and Brodie
1990, Jones et al. 1991, Yoshimoto and Brodie
1994, Snyder and ReVelle 1996). Larger prob-
lems can be dealt with by using multi-year cut-
ting periods (Carter et al. 1997), but AF&PA
green-up constraints are best handled with single-

Silva Fennica 33(3) research articles

208

year periods. Linear programming (LP) solu-
tions are often used as a first step when adjacen-
cy constraints are required, and the LP solution
is subsequently massaged to integer values by
various heuristic algorithms (Jamnick and Wal-
ters 1993, Weintraub et al. 1994, Carroll et al.
1995). MIP approaches have also been demon-
strated for habitat scheduling applications (Hof
and Joyce 1993, Hof and Raphael 1993, Hof et
al. 1994) for small problem sizes.

A number of published studies have used sim-
ulated annealing (SA) for harvest scheduling.
The Metropolis algorithm (MA) forms the basis
for SA, which is a procedure for slowly coercing
MA to converge to a single solution by adjusting
a temperature parameter. SA and MA have been
applied to harvest scheduling without the tradi-
tional focus on finding an optimal financial solu-
tion (Lockwood and Moore 1993, Van Deusen
1996). However, SA has also been used where
the goal is to locate a financial optimum (Murray
and Church 1995, Tarp and Helles 1997). The
algorithm proposed here does not focus on
optimization, but incorporation of financial
objectives will be specifically discussed and dem-
onstrated.

Tabu search (TS) has been used to solve har-
vest scheduling problems with spatial constraints.
TS allows for great flexibility relative to incor-
porating problem specific knowledge (Glover and
Laguna 1993), and applications have demon-
strated that TS works well (Bettinger et al. 1997,
1998) for harvest scheduling. Other work sug-
gests that TS has methodological flaws (Mayer
et al. 1998) that limit its applicability to higher
dimensional problems such as harvest schedul-
ing. Regardless, a comparison of SA and TS
(Murray and Church 1995) suggested that TS
often produced better solutions than SA. How-
ever, this application used a very traditional and
restricted form of SA where the temperature pa-
rameter is monotonically decreased. More flexi-
ble control of temperature can greatly improve
the performance of SA (Osman 1993), which is
analogous to what is being proposed here. An
algorithm is developed that can flexibly meet the
user’s objectives, yet doesn’t require problem
specific knowledge to be successful.

The basic management unit used here is a
polygon, which can include stands of trees as

well as ponds, fields, streams, or riparian areas.
A polygon rather than forest-stand based ap-
proach is important, since proximity to water
and other resources could be a necessary consider-
ation. A management schedule involves assign-
ing a specific management regime to each of N
polygons. Regimes are discrete, include the ac-
tions and years when they occur, and can be
quite numerous. For example, clearcutting a stand
in year 1 is a different regime from clearcutting
in year 2. The intent is to assign management
regimes to polygons such that the users goals or
constraints are met in a nearly optimal fashion.
There are T years in the planning horizon, where
T is determined by when the last output or activ-
ity will occur under any of the user supplied
regimes.

The next section presents an overview of the
proposed algorithm, which is related to Markov
chain Monte Carlo methods (MCMC) (Geman
and Geman 1984, Besag 1986, and Besag et al.
1995) and SA (Lockwood and Moore 1993).
The algorithm uses methods similar to some pre-
viously advocated (Lockwood and Moore 1993,
Van Deusen 1996) but includes important prac-
tical enhancements. The generic objective func-
tion and solution algorithm are described, exam-
ple objective function components are developed,
and an example application demonstrates the util-
ity of the approach.

2 Objective Function

The algorithm is intended to seek management
schedules that are feasible and produce nearly
minimal values of the objective function. Feasi-
ble schedules are those that satisfy the users
goals. The solution evolves iteratively, and the
value of the objective function at iteration r is

E X w C Xr
j
r

j
j

J
r() ()= −

=
∑ 1

1

(1)

where Xr denotes the management schedule at
iteration r, wr

j is the weight based on the itera-
tion r schedule, and Cj(Xr) is the jth objective
function component whose value is evaluated at
the rth schedule. The vector, Xr, contains the list
of regimes assigned to polygons 1 through N,
x1

r, ..., xN
r.

Van Deusen Multiple Solution Harvest Scheduling

209

The weights are re-evaluated after each itera-
tion based on user defined goal functions, gj, for
each component. Weights are adjusted as fol-
lows:

if gj(Xr) > Uj then wj
r = awj

r–1,
if gj(Xr) < Lj then wj

r = wj
r–1/a,

where U and L are upper and lower limits de-
fined for each component and a is an adjustment
factor between 0 and 1. Therefore, the compo-
nent weight is decreased if it’s goal is exceeded
or increased if the goal isn’t attained. There is
also a level of attainment for which the weight is
deemed to have converged and is left unchanged,
i.e. between U and L. The goal functions are
evaluated at the current schedule, Xr.

3 Algorithm

The method for obtaining solutions to objective
function (1) is the Metropolis et al. (1953) algo-
rithm. The specific algorithm recommended is

(1) Choose an objective function in the form of (1),
and an adjustment factor 0 < a < 1.

 (2) Initialize X1 by choosing xi for each polygon at
random, let w0

j = 1 for j = 1,..,J, and set r = 0,
 (3) Increment r and for polygon i from 1 to N:

a) Perturb Xr into Z by choosing regime k∈{1,...,K}
at random for polygon i. Hold all polygons other
than i at their current regimes.
b) Let p* = min {1, exp[E(Xr) – E(Z)]}
c) Replace xi by k with probability p*.

 (4) Evaluate the goal functions g1,...,gJ and adjust the
weights, wj

r accordingly.
 (5) Repeat (3) and (4) until the weights have con-

verged or you deem the problem infeasible.

After the weights have converged, step 3 of the
Metropolis algorithm can be repeated to gener-
ate many feasible schedules that could be evalu-
ated for conditions not controlled by the objec-
tive function. If the weights won’t converge the
problem is infeasible as currently stated, and the
limiting goals must be made less restrictive. The
user will normally understand their problem well
enough to know which goal is limiting, other-
wise some trial and error is required to change

the goal limits. An important aspect of this algo-
rithm is that evaluating E(X) – E(Z) requires
only a few computations involving polygon i
and its neighbors. Furthermore, the computa-
tions can be performed independently for each
objective function component. When the objec-
tive function becomes smaller as a result of
changing polygon i to regime k (Step 3a), then
this change is automatically accepted. When E(Z)
is larger than E(X), the move to regime k may
still be accepted with probability p*, which helps
prevent the algorithm from getting stuck at local
minima.

4 Objective Function Compo-
nents

Objective function components can generally be
categorized as pertaining to periodic or spatial
issues. Flow components are commonly used
and are clearly periodic, whereas a component to
control maximum blocksize is spatial. There
might also be a need for space-time components.
For example, a component that controls habitat
output over time could depend on assignment of
schedules within neighboring blocks of pixels.

Rather than dwell on theoretical discussion
about components, some generic examples of
periodic and spatial components are developed.
The handful of example components developed
below are sufficient to solve a rather sophisticat-
ed scheduling problem and are subsequently used
in the example application. However, it should
be clear that components to serve many other
purposes could be developed by following the
same recipe.

The Metropolis algorithm requires only the
change in the objective function component,
∆Cj(i), that would occur if a single polygon’s
regime is changed from it’s current value, xi, to a
proposed value, z. For some components, it is
easier and clearer to present Cj(Xr) and for others
to present ∆Cj(i).

Silva Fennica 33(3) research articles

210

5 Periodic Components

A typical flow component can be written as fol-
lows:

C X y y Fj
r

t t
t

T

() (ˆ) /= −
=
∑ 2

1

(2)

where yt represents the total output of some good
at time t from all polygons, ŷt is the target
output for time t, there are T time periods in the
schedule, and F is a scaling factor. F serves to
scale Cj so that similar weights are effective
regardless of the units that y is measured in.
Setting F equal to the mean sum of the squares
of target values serves as a good scaling factor in
most cases. The details of computing ∆Cj(i) for
this component can be determined by the pro-
grammer. The issue of how to provide a target
value is discussed below.

Each component needs associated goals, and 2
goal functions are suggested for flow compo-
nents:

g t
y y

y
t Tt t

t

1 1 1 1() min
(ˆ)
ˆ

, ,...,= − −
+

=abs

δ
(3)

and

g t
y y

y
t Tt t

t

2 1 1 21

1
() min

(ˆ)
ˆ

, ,...,= − −
+

=−

−

abs

δ
(4)

where δ is a small positive number to prevent
dividing by 0. Goal 1, g1(t), controls deviations
from the target values, and goal 2, g2(t), controls
year-to-year deviations. As an example, one
might set the limits for both goals to be: U = .9
and L = .8. Therefore, if both goals are above U
at the end of a Metropolis iteration, the compo-
nent weight (wj) in equation (1) is decreased. If
either goal is below L then the weight is in-
creased. This ensures that both goals are attained
at least to the lower limit standard and avoids
any unresolvable conflicts between the 2 goals.
The goals are also constrained to be between 0
and 1, with 0 implying no attainment and 1 mean-
ing full attainment.

Numerous methods could be used to deter-
mine the target value for yt. For example, Van
Deusen (1996) suggested smoothing equations
and Lockwood and Moore (1993) used prede-
fined values. Also, the absolute value of devia-
tions rather than squared deviations could be
used as the basis for the periodic component.

6 Spatial and Non-periodic
Components

Spatial issues are the driving force behind the
need for new harvest scheduling algorithms. Pos-
sibly the most important spatial issue is the con-
trol of clearcut blocksize. A component for this
purpose can be written as:

C X Ij
r

i
i

N

() ()= < <
=
∑ minSize Block maxSize

1

(5)

where I(.) = 0 when the size of the block contain-
ing polygon i is between minSize and maxSize,
and I(.) = 1 otherwise. The algorithm for com-
puting blocksize and the constants minSize and
maxSize must be defined by the user. For this
component, ∆Cj(i) = 0 when the proposal regime
leads to a spatial configuration that is equal to
the current configuration, otherwise ∆Cj(i) = 1 if
the proposal is better than the current regime, or
∆Cj(i) = –1 if the current regime is better.

An appropriate goal function is:

g
I

Nj
i

i

N

= − < <

=
∑1

1

()minSize Block maxSize
(6)

which gives the proportion of polygons that are
contained within conforming blocks. Now upper
and lower bounds to force absolute conformance
to the blocksize limits would be U = 1 and L = 1.
The weight is increased for the blocksize com-
ponent whenever any blocks are non-conform-
ing, which is basically the approach used in Van
Deusen (1996). Lockwood and Moore used a
method that progressively discourages blocksiz-
es as they get larger and also discourages block-
sizes below a certain limit. Lockwood and
Moore’s component could be used here as well,
but the algorithm would automatically seek the
appropriate weight based on user specified goals.

A second non-periodic component that is quite
useful could be termed a suitability component.
Van Deusen (1996) presented a biological compo-
nent that is closely related, and Lockwood and
Moore’s component for penalizing harvest of
stands with low volume per area ratio is similar in
spirit. Begin by considering a suitability index to
rank polygon i’s relative suitability for each man-
agement option, say si1,...,siK. The effect of chang-
ing polygon i’s regime for this component is

Van Deusen Multiple Solution Harvest Scheduling

211

∆C i I s s I s sj ix iz iz ix() () ()= − > + > (7)

where ∆Cj(i) = 1 when the proposal schedule is
more desirable than the current schedule, ∆Cj(i)
= –1 when it is less desirable, and ∆Cj(i) = 0
when they are equal.

The suggested goal function is

g
N

I s sj ix id
i

N

= ≥()
=
∑1

1

(8)

which gives the proportion of polygons current-
ly managed under an option that is at least of
rank d, where d is specified by the user.
Asymptotically, this biases polygon assignments
toward the more suitable options. Reasonable
upper and lower limits might be U = .8 and
L = .7. As usual, the weight is increased if gj < L
and decreased if gj > U.

The goal function for this component can also
be modified to facilitate maximizing ∑six. For
example, six might be the net present value (NPV)
that results from assigning regime x to polygon i.
In this case, the goal function should be:

g

s

s
j

ix
i

N

i
i

N= =

=

∑

∑
1

1
1

(9)

where si1 represents the highest ranking regime
for polygon i. Therefore, gj gives the ratio of the
total achieved by the current schedule relative to
the completely unconstrained schedule.

7 Optimal Solution

After the weights have converged, the proposed
algorithm will continue to run and produce vari-
ations on previous solutions that will each be
feasible. However, the user might want to find a
schedule that is near optimal in some sense. Sim-
ulated annealing depends on constructing a “cool-
ing schedule” with a parameter, Q, such that step
3b of the Metropolis algorithm involves evaluat-
ing exp[E(X) – E(Z)]1/Q. As Q → ∞, the posterior
distribution (Geman and Geman 1984) repre-
sented by exp(.) becomes uniform over the space
of all possible management schedules, which
means that the objective function would have no
influence and the schedules being generated

would be completely random. As Q → 0 the
distribution is concentrated over the estimate of
X that minimizes the objective function. The
cooling schedule idea is analogous to cooling
metals slowly so that they form a good crystal-
line structure. Besag (1986) points out that SA
can reach the optimal solution, but can not detect
when it has done so.

The optimal solution from a harvest schedul-
ing perspective is the solution that maximizes
some quantity subject to a number of constraints.
As such, the objective function presented here
and elsewhere (Lockwood and Moore 1993, Van
Deusen 1996) will not yield the desired optimal
solution when SA is applied in the traditional
way. However, SA can be applied by increasing
the weight on one objective function component
while holding the other weights constant. This
will bias MA toward solutions that emphasize
the selected component while still enforcing the
“constraints” imposed by the components whose
weights remain fixed. This is demonstrated in
the example application by creating a suitability
component (equation 7) where the ranking is
based on NPV and using goal function (9). While
holding other component weights fixed, the
weight on the NPV component can be slowly
increased by increasing the target goal to find
solutions with ever larger NPV that also meet
the other component goals. This is simply a form
of SA that is directed toward finding the desired
optimal solution. This approach to SA is imple-
mented in the example application by increasing
the goal slowly and interactively as the algo-
rithm runs. The weight on the associated compo-
nent then increases until the goal is attained or
other components can no longer attain their goals,
which indicates infeasibility.

The proposed algorithm also makes it easy to
solve harvest scheduling problems where maxi-
mization over a single quantity is not the objec-
tive. There are government agencies and compa-
nies that don’t seek to maximize NPV as their
scheduling objective. For example, some com-
panies want to focus on cutting their stands as
close as possible to the time of maximum mean
annual increment (Pers. commun.: Steve Prisley,
Westvaco Corporation). This can be accom-
plished with objective function component (7)
and goal function (8).

Silva Fennica 33(3) research articles

212

8 Convergence of the Algorithm

The issue of when and if the proposed manage-
ment scheduling algorithm has converged is con-
sidered here. The discussion refers to the MA
stage and the adaptive determination of objec-
tive function weights. First, use of MA implies
that concern lies with convergence in distribu-
tion rather than convergence to an optimal solu-
tion. MCMC theory (Geman and Geman 1984,
Besag et al. 1986) assures us that MA will con-
verge so that it generates samples from the target
distribution after enough iterations have passed.
The target distribution of interest here is the
distribution that generates feasible schedules –
one of which is the so called optimal solution.
However, it may not be clear when the algorithm
has converged, just as it is unclear when SA has
found the optimal solution. Slowly changing
weights after each iteration is very similar to the
cooling schedule concept from SA. Given enough
time, MA is known to converge (Geman and
Geman 1984) at each new setting of the cooling
schedule parameter. Therefore, the algorithm will
converge for different objective function com-
ponent weights for a feasible problem, and the
example application supports this contention.

As the algorithm proceeds, it makes sense to
monitor output summaries to aid in determining
when convergence has occurred. Meaningful
summaries would include graphs of flow vs. year,
average blocksize vs. year, and minimum and
maximum blocksize vs. year. Also, monitoring
the weights as they are adjusted each iteration is
helpful. After convergence, the summary graphs
and the weights should remain relatively con-
stant from one iteration to the next. Determining
whether the algorithm has truly converged in
distribution is not as relevant for this application
as for the usual statistical applications of MCMC.
Practically, if the summary statistics and weights
have converged, the algorithm has converged.

Formal proofs related to convergence in distri-
bution of MA rely on the concept of irreducibili-
ty (York 1992). Simply stated, the scheduling
problem is irreducible if for any states x and xr

such that P(X = x) > 0 and P(X = xr) > 0, there is
a positive probability that xr can be reached from
x in a finite number of transitions. However, it
may be difficult to prove that any given schedul-

ing problem is irreducible. Problems involving
adjacency constraints are particularly trouble-
some in this respect. In particular, a large poly-
gon could prevent its neighbors from being cut if
their combined area exceeds a blocksize limit.
To prevent this type of restriction on irreducibil-
ity, each polygon should have a do-nothing op-
tion.

9 Example Application

The example uses a basic harvest scheduling
data set consisting of 419 loblolly pine stands
from the southeastern US. However, this algo-
rithm can handle much larger problems. The size
of the stands ranges from 2 to 200 acres (1 ha =
2.47 ac) with a mean of around 30 acres. Stands
have from 0 to 9 neighbors and are generally
young plantations (< 25 years old). Management
regimes (options) 1 through 15 are to clearcut
the stand in years 1 through 15 and option 16 is
to do nothing with the stand during the 15 year
planning period. The objective function contains
2 flow components, a blocksize component, and
a suitability component as outlined above. The
first flow component controls the flow of tons of
wood, and the second controls the amount of
area clearcut each year. The suitability compo-
nent biases results toward assigning regimes that
yield the highest possible NPV. The adjustment
parameter for component weights is a = 0.9. For
a-values closer to 1, the algorithm converges
more slowly, whereas a-values closer to 0 pro-
duce more rapid weight changes. Setting a < 0.8
caused convergence problems in some cases, but
a = 0.9 seems to work for a wide range of prob-
lems.

The green-up window for blocks is set to 2
years, so a stand cut in the year 2000 would be
greened-up starting in 2003. The blocksize goal
was to keep all blocks less than size 180 and
greater than 20. Area was measured in acres.
Flow was measured in tons per year.

Flow was allowed to deviate within 15 to 25
percent from year-to-year as well as around the
target. A model was used to set a target flow that
increased by a specified rate, which for this ex-
ample was 2 percent per annum. Year 0 flow
was specifically set to 140 000 tons and the goal

Van Deusen Multiple Solution Harvest Scheduling

213

was to be within 5 to 15 percent of this starting
target. The flow model for clearcut area set a flat
trend as the target, and allowed clearcut area to
deviate by 15 to 25 percent from the target and
from one year to the next. The target models are
smoothing functions that depend on the data, but
predetermined targets could be used as well.

The suitability index was based on net present
value (NPV). The regime that gave the most
NPV was ranked the highest and the lowest NPV
regime was ranked the lowest. The goal was to
attain a percentage of the maximum uncon-
strained NPV while still maintaining the flow

and blocksize goals. The maximum unconstrained
NPV was defined as the amount that would be
achieved if all stands were assigned to the maxi-
mum NPV regime.

The results for iterations 1, 50, 100 and 200
(Figs 1–4) show how the algorithm proceeded.
Flow of wood (Fig. 1) converged fairly rapidly
and showed little change after 100 iterations.
The actual flow (solid line) deviated within the
required limits relative to the target value (dashed
line). Clearcut area (Fig. 2) remained relatively
constant over the planning period. Maximum
blocksize (Fig. 3) for any particular year was

1
1.5

2
x 10

5 Tons Per Year (Flow)

Iteration =1

1
1.5

2
x 10

5

Iteration =50

1
1.5

2
x 10

5

Iteration =100

2 4 6 8 10 12 14

1
1.5

2
x 10

5

Years

Iteration =200

1000

2000

Area Clearcut

Iteration =1

1000

2000

Iteration =50

1000

2000

Iteration =100

2 4 6 8 10 12 14
1000

2000

Years

Iteration =200

0

500

1000
Maximum BlockSize

Iteration =1

100

150

200

Iteration =50

140

160

180
Iteration =100

0 5 10 15
100

150

200

Years

Iteration =200

0

50

100
Minimum BlockSize

Iteration =1

0

50

100
Iteration =50

20

40

60
Iteration =100

0 5 10 15
0

50

100

Years

Iteration =200

Fig. 1. Actual flow (solid line) and target flow (dashed
line) for iterations 1, 50, 100, and 200 of the
Metropolis algorithm.

Fig. 2. Actual area clearcut each year (solid line) and
target area (dashed line) at designated iterations of
the Metropolis algorithm.

Fig. 3. Maximum blocksize by year at designated itera-
tions of the Metropolis algorithm (dash line =
180).

Fig. 4. Minimum blocksize by year at designated itera-
tions of the Metropolis algorithm (dash line = 20).

Silva Fennica 33(3) research articles

214

often above 500 acres for the first few iterations.
After 50 iterations, the weight on maximum
blocksize was sufficient to keep blocksizes un-
der the 180 maximum size limit (dash line). Min-
imum blocksize (Fig. 4) is also below 20 (dash
line) for the first few iterations. However, by
iteration 100 the minimum and maximum block-
sizes were within the specified limits. The com-
puter program ran at the rate of about 100 Metro-
polis iterations per minute on a 270 MHZ com-
puter with all components in the objective func-
tion.

The suitability component plays a key role in
this example. With no other constraints, the suit-
ability component would lead to assigning the
maximum NPV regime to each stand. Without
the suitability component included, there would
be no requirement for the algorithm to attain any
economic goal. The only requirements would be
for flow to be relatively smooth and blocksizes
to be between 20 and 180. With all components
in the objective function, 78 percent of the un-
constrained NPV can be attained easily. At about
79 percent of NPV, the upper blocksize limit can
no longer be held. The problem was also run
with all components except the blocksize com-
ponent to investigate its cost. Without blocksize
restrictions, 92 percent of the unconstrained NPV
can be attained, where unconstrained NPV is
$560 000 for this problem. The clearcut area
begins to trend upward toward the end of the
planning horizon at 94 percent of unconstrained
NPV, which indicates an unsustainable harvest
level, i.e. an infeasible schedule.

10 Discussion and Conclusions

An algorithm has been presented that can pro-
duce feasible land management schedules while
simultaneously handling adjacency constraints.
The algorithm proceeds iteratively until the user
specified goals are obtained for each component
in the objective function. The method can gener-
ate many feasible schedules that have the char-
acteristics specified by the user by repeated ap-
plication of the Metropolis algorithm. However,
it is also possible to converge on a locally opti-
mal solution by slowly increasing the weight on
a particular objective function component. The

algorithm can be run several times, starting from
different random initial solutions, to give some
assurance that the globally best solution has been
attained.

This approach differs from linear program-
ming (LP), which has historically been the pre-
valent method for deriving non-spatial harvest
schedules. Published applications of LP to spa-
tial harvest scheduling (e.g. Weintraub et al. 1994,
Carroll et al. 1995) first produce a non-spatial
solution that is massaged by a heuristic algo-
rithm in a second phase to meet spatial con-
straints. However, the second phase result will
not have the optimal properties of the first phase
LP solution.

The algorithm proposed here incorporates what
are usually considered to be constraints directly
into the objective function. For example, even
flow is controlled by an objective function com-
ponent with other components controlling finan-
cial objectives and blocksize. This leads to a
uniform method for handling objective function
weights for any type of component. It also makes
it possible to add components as the algorithm
proceeds without disrupting progress. A compo-
nent is added with a relatively small weight so
that it will have little influence. The weight is
slowly increased until the component’s associat-
ed goals are obtained. This may also reveal that
other components can no longer attain their goals
and that the new component causes the problem
to become infeasible. Likewise, a component
can be removed by slowly decreasing its weight
without disrupting the algorithms progress.

The proposed algorithm functions best when a
new objective function component is added only
after the existing component weights have con-
verged. This avoids the situation where weights
on 2 or more components change in tandem and
are in fact competing for the same resources.
Further research is needed to develop a method
whereby multiple components can be simultane-
ously entered into the objective function without
such weight adjustment conflicts being an issue.

Blocksize computation is required repeatedly
by this algorithm, which must be done efficient-
ly to minimize overall processing time. The more
general spatial capabilities of this method have
not been completely demonstrated or tested.
However, a procedure has been outlined where-

Van Deusen Multiple Solution Harvest Scheduling

215

by additional spatial components can be designed
to meet other spatial objectives. This spatial ma-
nipulation capability could be beneficial for cre-
ating desirable habitat configurations on the land-
scape. Additional flow terms might be added as
well. For example, a component that gets it’s
data from values that are computed as the simu-
lation proceeds could compute a habitat suitabil-
ity index (HSI) to keep cumulative HSI relative-
ly constant over time. The algorithm presented
here provides a flexible approach that can incor-
porate economic and environmental goals.

References

Besag, J. 1986. On the statistical analysis of dirty
pictures. J. R. Statist. Soc. B 48(3): 259–302.

Bettinger, P., Sessions, J. & Boston, K. 1997. Using
tabu search to schedule timber harvests subject to
spatial wildlife goals for big game. Ecological
Modeling 94: 111–123.

— , Sessions, J.& Johnson, K.N. 1998. Ensuring the
compatibility of aquatic and commodity produc-
tion goals in eastern Oregon with a tabu search
procedure. Forest Science 44(1): 96–112.

Carroll, B., Landrum, V. & Lisa Pious, L. 1995. Tim-
ber harvest scheduling with adjacency constraints:
Using ARC/INFO to make FORPLAN realistic.
IN: 1995 ESRI User Conference Proceedings.

Carter, D., Vogiatzis, M., Moss, C. & Arvanitas, L.
1997. Ecosystem management or infeasible guide-
lines? Implications of adjacency restrictions for
wildlife habitat and timber production. Canadian
Journal of Forest Research 27: 1302–1310.

Geman, S. & Geman, D. 1984. Stochastic relaxation,
Gibbs distribution, and the Bayesian restoration
of images. IEEE Trans. Patt. Anal. Mach. Intell.
PAMI-6: 721–741.

Glover, F. & Laguna, M. 1993. Tabu search. In: Mod-
ern heuristic techniques for combinatorial prob-
lems. Ed. Collin Reeves. Halsted Press. New York.

Hof, G.H. & Raphael, M.G. 1993. Some mathemati-
cal programming approaches for optimizing tim-
ber age-class distributions to meet multispecies
wildlife population objectives. Canadian Journal
of Forest Research 23: 828–834.

— & Joyce, L.A. 1993. A mixed integer linear pro-
gramming approach for spatially optimizing wild-

life and timber in managed forest ecosystems.
Forest Science 39(4): 816–834.

— , Bevers, M., Joyce, L. & Kent, B. 1994. An
integer programming approach for spatially and
temporally optimizing wildlife populations. For-
est Science 40(1): 177–191.

Jamnick, M.S. & Walters, K.R. 1993. Spatial and
temporal allocation of stratum-based harvest sched-
ules. Canadian Journal of Forest Research 23:
402–413

Jones, J.G., Meneghin, B.J. & Kirby, M.W. 1991.
Formulating adjacency constraints in linear opti-
mization models for scheduling projects in tacti-
cal planning. Forest Science 37: 1283–1297.

Lockwood, C. & Moore, T. 1993. Harvest scheduling
with spatial constraints: a simulated annealing ap-
proach. Canadian Journal of Forest Research 23:
468–478.

Mayer, D.G., Belward, J.A. & Burrage, K. 1998. Tabu
search not an optimal choice for models of agri-
cultural systems. Agricultural Systems 58(2):
243–151.

Meneghin, B.J., Kirby, M.W. & Jones, J.G. 1988. An
algorithm for writing adjacency constraints effi-
ciently in linear programming models. In: Kent,
B.M. & Davis, L. (tech. coords.) Proc., the 1988
symp on systems analysis in forest resources.
USDA For. Ser. Gen. Tech Rep. RM-161. p. 46–
53.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Tell-
er, A. & Teller, E. 1953. Equation of state calcula-
tions by fast computing machines. J. Chem. Phys-
ics 21: 1087–1091.

Murray, A.T. & Church, R.L. 1995. Heuristic solution
approaches to operational forest planning prob-
lems. OR Spektrum 17: 193–203.

Osman, I. H. 1993. Metastrategy simulated annealing
and tabu search algorithms for the vehicle routing
problem. Annals of Ops. Res. 41.

Snyder, S. & ReVelle, C. 1996. Temporal and spatial
harvesting of irregular systems of parcels. Cana-
dian Journal of Forest Research 26: 1079–1088.

Tarp, P. & Helles, F. 1997. Spatial optimization by
simulated annealing and linear programming.
Scandinavian Journal of Forest Research 12: 390–
402.

Torres-Rojo, J.M. & Brodie, J.D. 1990. Adjacency
constraints in harvest scheduling: an aggregation
heuristic. Canadian Journal of Forest Research
20: 978–986.

Silva Fennica 33(3) research articles

216

Van Deusen, P. 1996. Habitat and harvest scheduling
using bayesian statistical concepts. Canadian Jour-
nal of Forest Research 26: 1375–1383.

Weintraub, A., Barahona, F. & Epstein, R. 1994. A
column generation algorithm for solving general
forest planning problems with adjacency con-
straints. Forest Science 40(1): 142–161.

York, J. 1992. Use of the Gibb’s sampler in expert
systems. Artificial Intelligence 56: 115–130.

Yoshimoto, A. & Brodie, J. D. 1994. Comparative
analysis of algorithms to generate adjacency con-
straints. Canadian Journal of Forest Research 24:
1277–1288.

Total of 25 references

