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PREFACE

The present investigation is based partly
on the author’'s reports to the Finnish
Forest Research Institute, entitled »Theory
of the physiological clock» (1970) and
»Homogeneous process and physiological
clock» (1972), both unpublished.

My interest in the present subject was
aroused when I became acquainted with the
investigations conducted by the late Professor
Risto Sarvas, concerning the annual cycle

of development of forest trees. Many of the
principal ideas, developed in the above
reports and in the present investigation
stem from frequent discussions with Professor
Sarvas, regarding this subject. I am very
grateful to him.

The Finnish language manuscript was
translated into English by Mrs. Marja
Dethlefsen, to whom I tender my thanks.

Helsinki, June 4, 1976

JUKKA SARVAS
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1. INTRODUCTION AND SUMMARY OF THE MAIN RESULTS

1.1. In order to facilitate description
of biological developmental and growth
processes, the concept of a physiological
clock is often resorted to. The progress of
the process is then thought of as depending
on a physiological clock that is specific
to this process and the running of which
might differ considerably from that of an
ordinary clock. Especially, different heat
sum methods have frequently been employed
as physiological clocks.

In the present paper, the concept of a
physiological clock and its function in
biological processes is studied in strictly
mathematical terms. The starting point is
the heat sum method employed by Risto
SArRvas (1972 and 1974). In the form
introduced by him a heat sum is an integral
expression whose formula is determined
experimentally from the object of research.
The function of this heat sum as a physio-
logical clock can be explained mathematically
and so satisfactorily that there is no need
for intuitive a priori assumptions which are
often unavoidably associated with different
heat sums and the concept of a physiological
clock. Furthermore, his approach to the
physiological clock provides a conceptually
clear model and by following it we can
define the physiological clock in fairly
general terms.

1. 2. R. Sarvas applied the heat sum
method in studying the annual cycle of
development of forest trees. This is a
biological process which does not initially
involve any measurable quantity or numerical
scale but consists of a chain of successive
events called cardinal phases. They include
e.g. the different phases of meiosis, anthesis,
syngamy and the autumn and winter
dormancies.

In the first part of this paper (Chapters
1—3) we shall consider a general process
of this kind and define a physiological
clock for it. Moreover, we wish to study
how the formula pertaining to this clock
can be derived and its components calculated
from observational data.

We assume that the progress of the

process depends on time and environmental
factors. The environmental factors involved
may include e.g. heat, light, moisture etc.
In order to be able to observe the progress
of the process we shall pick out from it
easily distinguishable successive events which
we call cardinal phases. Each cardinal
phase is assigned, in a manner that will
be described in detail later, a numerical
value which we call the physiological age
of the cardinal phase concerned. After this
we shall define the physiological clock of
the process (see Definition 2.2 on page 7).
This will be, roughly speaking, a mathemat-
ical formula from which it is possible to
compute the cardinal phase in which the
process is at a given time t (in other words:
the physiological age of this cardinal phase
is computed), provided that the environ-
mental factors and their dependence on
time during the process are known.

Furthermore, we shall so define the
physiological clock that it meets the fol-
lowing natural normalization condition: if,
during the entire process, the environmental
conditions remain in the same (beforehand
fixed) basic state, the time measured by the
physiological clock coincides with or-
dinary time. From this normalization
condition it follows that the physiological
clock has been rendered unique as will be
shown below (see Chapter 2.5).

Now that the concept of the physiological
clock of the process has been given a precise
form, the next step is to derive its explicit
mathematical formula and present methods
by which the components of this formula
can be calculated from the experimental
data obtained from the process in question.
Generally speaking, this task can be very
difficult. However, if the process meets
some condition that sufficiently simplifies
the situation, the formula of its physiological
clock can be derived. A condition of this
kind was used by R. SaArvas (1972) and here
we call it the homogeneily condition. The
validity of this condition can be checked
(at least in principle) by simple experiments
regarding the process in question.
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As the main result pertaining to our
generalized physiological clock, the following
emerges: if the process satisfies the homo-
geneity condition, then the formula of its
physiological clock can be derived, and it
takes the same general form as the heat
sum formula presented by R. SArvas (1972).

Particularly, in the case of the heat sum
this result indicates that if temperature
along with time is the only environmental
factor influencing the progress of the
process and the process is homogeneous (i.e.
meets the homogeneity condition), the
formula of its physiological clock is exactly
the integral formula used by R. SArvas
(1972), and the heat sum satisfying the
normalization condition mentioned above
cannot be computed in any other way.

1. 3. In the latter part of this paper we
shall deal with growth processes. In general,
by a growth process we mean a process
which initially involves a measurable quan-
tity V that grows with time and whose
value V(t) at time t fully indicates the
phase of the process. The function V =
V(t) we call the growth function of the
process. The progress of a growth process
is mastered, if the dependence of the
function V on time and environmental
factors is known, so that the value of V can
be computed whenever the environmental
factors and their dependence on time
during the process are known. For instance,
the height growth of a tree is a growth
process if we set V(t) = the height of the
tree at time t.

In investigating the progress of a growth
process it is often assumed that the rate

in addition to

dt
environmental factors, on a hypothetical
quantity called the »inner state of the plant»
or »physiological state of development» or
»physiological age» (cf. e.g. Harr et al.
1970 and 1974, and PonJoNEN 1975).
Usually, the »physiological age» is then
given as a mathematical expression depend-
ing on time and environmental factors.

of growth depends,

However, the concept of »physiological age»
or the form of its mathematical expression
is then introduced as a somewhat arbitrary
a priori assumption which is not meant to
be derived, for instance, from another simpler
and testable assumption.

We wish to study more closely the role of
the »physiological age» in the growth process.
In particular, we wish to know whether the
»physiological age» that has been assigned to
the physiological clock introduced above
can be used in this connection. In dealing
with the growth process our aim is to pursue
a program similar to that employed by
R. SArvas (1972 and 1974) in investigations
concerned with the construction of a
mathematical model (the heat sum) for a
biological phenomenon. This program
consists of experimental testing of the
mathematical basic assumptions, the deriva-
tion of the solution of the model exclusively
from these basic assumptions, and the
calculation of all unknown components
of the solution directly from the experimental
data obtained from the growth process
itself. In this spirit we shall present two
growth models, i.e. the mathematical model
of a homogeneous growth process and that
of a semihomogeneous one. Furthermore,
we shall show that some earlier growth
models (PonsoNeN 1975 and Hari et al.
1970, 1974) can be reduced to these two
basic types.

Especially, in the case of the homogeneous
growth process, it is not necessary for the
concept of »physiological age» to be included
among the basic assumptions to be made
regarding the model. However, in the
formula of the growth function in either
model appears an integral expression which,
with good reason, may be called the »phys-
iological clock» and the wvalues of the
expression the »physiological age». Further-
more, this expression coincides exactly with
the physiological clock introduced earlier,
provided that the growth process is first in
a proper way interpreted to be a general
process with cardinal phases.



2. DEFINITION OF THE PHYSIOLOGICAL CLOCK

2.1. We consider a general process P
whose progress we can observe by means
of its cardinal phases. We suppose that P
always starts at time t = 0. Let x;,..,X,
be the environmental factors which affect
the progress of P. Environmental factors
of this kind may include temperature,
moisture, light, etc. 'We call every n-tuple
(Xy,..,X,) of the environmental factors
a state of the environment. Mathematically,
a state of the environment is thus a vector
in the n-dimensional (euclidean) space R=.

Those states of the environment in which
P does not progress at all we call static and
the others non-static. We single out one
of the non-static environmental states
(a;,..,a,) and call it the basic state of the
environment (with regard to P).

When the state of the environment
changes, every environmental factor x;, i =
1, 2, .., n, is a function of time t or
X; = Xxy(t), t = 0. Let"the n-tuple of these
functions be the function

E = E(t) = (x,(t), x,(1) , .., Xa(t)),

which at any time t >0 fully describes
the state of the environment (in relation to
P). Mathematically, E is thus a function
from the set of non-negative real numbers
to the space R» or E:[0,0) - Rr. We
call a function like this an environmental
function. We assume that environmental
functions are at least piecewise continuous.
The constant function corresponding to the
basic environmental state (a;,..,a,) is
denoted' by E,,. 1.e.. E(t) = (a,, ..., ay)
for all t > 0,

Concerning the cardinal phases of P we
assume the following. Having once started,
the process is, at every moment, in some
cardinal phase. If the environment is in
the basic state (a,,..,a,) all the time,
the process passes through all of its cardinal
phases in such a way that it at different
moments is in different cardinal phases
(before the end of the process). The part
between two successive cardinal phases,
M,; and M,, of the process P is called a
cardinal interval [M,, M,].

‘We now assign every cardinal phase M
its physiological age s(M) as follows:

2. 2. DEFINITION. The physiological
age s(M) of an arbitrary cardinal phase M
of the process P is the time which P requires
to progress from its initial phase to the
phase M, provided the environment is in the
basic state (a;,..,a,) all the time.

2. 3. By the physiological clock C of the
process P we mean, roughly speaking, a
mathematical formula from which we can
compute the cardinal phase M in which
P is at time t (or, more precisely, we compute
the age s(M) ), provided we know that the
environmental changes have occurred accord-
ing to the function E. We set the definition:

2.4. DEFINITION. The physiological
clock.1Gi= C(t,B), jof the process P is..a
function depending on time t and on the
environmental function E and is defined by
the following equation: for any E and any
fe=>0

G(t, E) = s(My),

where M; is the cardinal phase in which P
is at time t, when the environment changes
according to the function E during the
process.

2. 5. From the definition of the physio-
logical clock it immediately follows that if
the environment is in its basic state all
the time, the time indicated by the phys-
iological clock coincides with ordinary time,
that is,

(2.6) C(t,Ey) =t for all t > 0.

This natural normalization condition
implies an important uniqueness property
of the physiological clock. Let P; and P,
be two different processes (the cardinal
phases of which might be entirely different
events). We say that P, and P, are syn-
chronized if each cardinal phase M, of Py
is matched by some cardinal phase M, of
P, in such a way that M,; and M, always
occur simultaneously regardless of changes
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in the state of the environment, provided
that the processes occur in the same envi-

ronment and start simultaneously. We
now prove:
2.7, THEOREM, . 'If P; and P, are

synchronized processes, it follows that their
physiological clocks C; and C, are identical,
i.e. Cl = Cz.

PROOF. Let E be an arbitrary
environmental function and t> 0. We
must' show:" C,, E) ='Cyt, E).| -Let M;

be the cardinal phase of P, in which P,
is at time t when the environment has
complied with function E. Then s(M,) =
C,(t, E) holds for the physiological age
s(M,) of M,;. Since the processes P, and P,
are synchronized, M, is matched by some
cardinal phase M, of P, in such a way that
M, and M, always occur simultaneously.
Hence, they also occur simultaneously when
the environment remains in the basic
state, i.e. s(M;) = s(M,;). Furthermore, their
occurrence is simultaneous when the environ-
ment complies with function E and, therefore,
at time t, process P, must be in the cardinal
phase M, Then Cut, E) = s(M,;). Thus
Cyi(t, E) = s(M,) = s(M;) = Cy(t, E). We have
proved that C; = G,. Q.E.D.

2. 8. The above theorem shows that if
the aim is to define the concept of a physio-
logical clock in such a way that the phys-
iological clock is ’synchronized’ with the
process (regardless of changes in the state
of the environment) and, in addition, that
the »clock» is to meet the natural normaliza-
tion condition (2.6), there is no choice: the
definition stated in (2.4) is the only possible
one.

2.9. We can say that we master the
progress of P if we know the formula of its
physiological clock C. Before we begin to

consider different possibilities to derive
this formula, one more assumption regarding
the process P is necessary. In order to be
able to handle the physiological clock of P
within the framework of an appropriate
mathematical formalism, we assume that P
satisfies the following regularity condition:
if an arbitrary environmental function E is
approximated by a piecewise constant envi-
ronmental function E,, then at any time
t > 0 the cardinal phase of P is, if the
environment complies with E, approximately
the same as when it complies with Ej
or, ~in ' brief, G(t, E) = C(t} Eg). - - Fur-
thermore, this approximation is the better
the more closely E, approximates E. We
formulate this condition precisely as
follows: Let E be an arbitrary environmental
function, t > 0 and let m > 1 be an integer.
‘We subdivide the interval [0, t] with points
ky =0 <k iy i<ty . Skpiett dnfo. m

1

equal subintervals, whence k; = i_n_1’i =

0,1,..,m. We now define the function

E., by setting

E(ki—1) if ki <r <k,
i (S b R T

B Her == f,

We call E;, the m-approximation of E in the

(2.10) Ep (1) =

interval [0, t] for m =1,2,.. . Now we
assume:
2.11. REGULARITY ASSUMPTION.

If E is an environmental function and
t >0, ‘then lim Gt E) =C(t, E).
m - oo

As far as we can see, the above regularity
assumption does not (essentially) restrict
the biological behavior of the process, and
that is why we do not, for instance, require
experimental testing of the condition.



3. PHYSIOLOGICAL CLOCK OF A HOMOGENEOUS PROCESS

3.1. In a general case, the derivation of
the formula of the physiological clock of a
process can be an exceedingly difficult
task. However, if the process satisfies some
additional condition that sufficientlly simpli-
fies the situation, the task might turn out
to be easy. However, it is always necessary
to test experimentally whether or not the
process really satisfies this condition. If the
condition is valid, the physiological clock of
the process complies with the formula
derived by making use of this condition.
A simplifying condition like this was intro-
duced by R. SArvas (1972) and in this paper
we call it the homogeneily condition.

Consider a process P. Let [M,;, M,] be
a cardinal interval of P and (%X;,..,X,) a
non-static state of the environment. We
suppose that at time t; the process P is in
a cardinal phase M, and at time t, > t,
in a cardinal phase M,. Furthermore, let
the state of the environment in the time
interval between 1, and t, remain constant
(X150 Xn). We write

RN . ) Rl

.2) h o
(3.2) h(sy, s

where according to the definition (2.2)
of the physiological age, s(M,) — s(M,) is
the time required for the process P to progress
from M; to M, when the environment
remains in the basic state (a,,..,ap).
‘We now define:

3.3. DEFINITION. Process P satisfies
the homogeneily condition, i.e. is homogeneous,
if for every non-static state (X;,...,Xpn)
of the environment and for every cardinal
interval [M,, M,] of P the ratio h(x;,.., X;,)
depends only on the state (x;,..,Xy)
and not on [M,;, M,] or on the states of the
environment before M, has been reached.

3. 4. Thus, if the process is homogeneous,
the ratio h(x;,..,x,) is well-defined for
all non-static states of the environment.
Wiesetivh{Ziss 551x,) 5=+0 Mf5X, (00 ~x0)B
a static state. Then h is a real valued function
defined for all states of the environment

and we call it the homogeneily function of
the process P. According to formula (3.2)
h(xX;,..,X,) is the ratio of the ’rates of
development’ of the process in the constant
States (A; ) .oy 8n) 804 (X1 0 9. Xn)e < VyithOUL
restricting the biological behavior of the
process, we obviously can assume that h is
a continuous function.

3. 5. Next will be presented the principal
result pertaining to the physiological clock:
if a process is homogeneous, the formula of
its physiological clock can be derived and
it always takes the following simple form:

3. 6. THEOREM. Let P be a homo-
geneous process and h its homogeneity
function. The physiological clock C =
C(t, E) of P takes the form

t

By €t E) L f h(E(t) )dt.
0

PROOF. Let E be an environmental
function and t> 0. For every integer
m > 1 let E,, be the m-approximation of E
in the interval [0,t] defined by (2.10).
Since h is continuous and E at least piece-
wise continuous, the composite f{unction
h(E(t) ) is Riemann-integrable and we get

t m
(3.8) J h(E(t) ) dt = limz h(E(ki_,) )
0 S (ki -ki—1),
Hition
ki=i—,1=0,1, 2,,.,m for all
i m=1,2,...

where

On the other hand,

m

(3.9 Ct, En) = > (€l En) — Ckis,

i=1
Em) ) = i h(E(ki-1)) (ki— ki-) ,
i=1

for by the definition of the homogeneity
function

G(ki’Em) Fj i C(ki—ly Em)

h(Eki_1)) = Ky Pk ]
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for eachi =1, 2,..,m. Thus the assertion
(3.7) follows from (3.8) and (3.9) by the
regularity assumption (2.11). Q.E.D.

3.10. It immediately follows from Theo-
rem 3.6 that if two homogeneous processes
have the same homogeneity function, then
their physiological clocks are identical.
It is to be noted that outwardly the processes
can be very different, i.e. their cardinal
phases can be completely different, and yet
they have identical homogeneity functions.
Thus, two outwardly different processes
can have a common physiological clock
(ct. different tree species, Section 3.14).

3.11. REMARK. Let E be an arbitrary
environmental function and write Cg(t) =
C(t, E) fort >0. By differentiating equation
(3.7) with respect to time t we obtain

d
(3.12) s Cg(t) = h(E(t))

(with the possible exception of finitely
many t). On the other hand, it is not difficult
to show that if there is a continuous non-
negative function h:R» - R (R = the set
of real numbers) corresponding to the
physiological clock C of the process P in
such a way that (3.12) holds for every
environmental function E (with the possi-
ble exception of finitely many t), then P
also satisfies (2.11) and the homogeneity
condition (3.2). We thus see that the
regularity condition (2.11) and the homo-
geneity condition (3.2) together are equiv-
alent to the mathematically simpler condi-
tion (3.12). Because formula (3.7) almost
trivially follows from (3.12), condition
(3.12) would be a clearly simpler definition
of homogeneity than are (2.11) and (3.2)
together. However, experimental interpre-
tation of condition (3.12) is difficult and
would obviously lead to a review of criteria
similar to (2.11) and (3.12). That is why
we have based our theory of the physiolog-
ical clock of a homogeneous process on
conditions (2.11) and (3.2) which are experi-
mentally more adequate.

3.13. TESTING OF HOMOGENEITY
AND COMPUTATION OF THE HOMO-
GENEITY FUNCTION FROM EXPERI-

MENTAL DATA. Experimental testing of
the homogeneity of a process is simple (at
least in principle) directly by definition
3.3, provided that plenty of reliable observa-
tional data are available from different
cardinal intervals of the process in different
constant states of the environment. If the
process proves to be homogeneous, its homo-
geneity function is determined at the same
time in accordance with equation (3.2.). In
practice, however, great difficulty can be
encountered in carrying out the test. For
instance, only a limited number of cardinal
phases suitable for observation might be
available. However, if the validity of equa-
tion (3.2) can be ascertained in respect of a
sufficient number of cardinal phases and
environmental states, the homogeneity will
be largely tested and the homogeneity
function approximately determined. In that
case, formula (3.7) can be expected to give a
satisfactory approximation for the physio-
logical clock of the process.

The homogeneity condition in itself is a
rather strict restriction for a general process
and obviously there exist numerous non-
homogeneous processes as well. However,
if a non-homogeneous process can be divided
into finitely many successive roughly
homogeneous subprocesses, formula (3.7)
can again be used to approximate ’piece-
wisely’ the physiological clock of the
process.

3.14. COMPARISON WITH THE
PHYSIOLOGICAL CLOCK USED BY
R. SARVAS IN HIS INVESTIGATIONS
IN 1972 AND 1974. The theory of the
physiological clock presented above is a
generalization of the physiological clock
used by R. SArvas in his investigations
made in 1972 and 1974 (i.e. his heat sum
method). He applied the method to the
study of the annual cycle of development
of forest trees.

The process he considered was the annual
cycle of development of an individual tree.
There is only one essential environmental
factor that influences the progress of the
process, i.e. temperature T, and so the
environmental function E(t) takes the form
E(t) = T(t) for t > 0. The cardinal phases
used for the observation of the process
included the different ph’ases of meiosis,



opening of the male catkins, anthesis,
syngamy, autumn dormancy (dormancy I)
and winter dormancy (dormancy II).

The annual cycle of development is not,
in its entirety, a homogeneous process but
is divided into three homogeneous parts:
winter dormancy, the active period, and
autumn dormancy. For every subprocess
an appropriate temperature has been chosen
as the basic state of the environment: for
the winter dormancy this temperature is
2° C, for the active period 2° C (or 2.15°C,
to be exact) and for the autumn dormancy
3.5° C. The homogeneity function of each
subprocess has been determined experi-
mentally. On the basis of the experimental
results it has been possible to assume that in
each subprocess the homogeneity function
is the same for all the investigated tree
species and even for the respective individual
trees. Thus, in each subprocess, there is
only one physiological clock and it is
common to all the individual trees of the
investigated tree species.

The homogeneity function of the active

Acta Forestalia Fennica 156 11

period was called »the rate of progress of
the active period» by R. Sarvas. The
homogeneity functions of autum and winter
dormancies were named analogously. The
active period provides numerous appropriate
cardinal phases for the arrangement of tests
and the results obtained support the opinion
that this subprocess is homogeneous. In the
case of autumn and winter dormancies, the
number of appropriate cardinal phases
available have mnot been sufficient for
the testing of homogeneity. However, the
results obtained do not occasion the abandon-
ment of the opinion that these subprocesses,
too, are homogeneous (within the limits of
satisfactory accuracy). Furthermore, it has
been possible by experimentation to de-
termine fairly accurately the corresponding
homogeneity functions for all the three
subprocesses. Their graphs were presented
by R. SArvas in his 1974 paper (Fig. 22,
page 95; for the figure, the functions have
been so normalized that each function
assumes the value 1 at temperature T =
3.5° C).



4. GROWTH PROCESS AND GROWTH FUNCTION

4.1. We consider a growth process P
whose growth function is V = V(t). The
function V(t) is then a function of time and
of the state of the environment. When
necessary, we express this by writing
V(t) = Vg(t) where E is the environmental
function which determines the state of the
environment during the process. We
assume that the function V = Vgy(t) is
continuously differentiable with respect to
time t for all environmental functions E.

av
The rate of growth is defined as il

V’(t) = V’g(t), or, in other words, as the
derivative of the growth function with
respect to time. We further assume that
Vg(0) = 0 for all environmental functions
E, which assumption only refers to an
appropriate choice of the zero point of the
growth scale.

We often consider the behavior of the
growth function when the environment
remains in some constant state z = (x;,..,
X,). The growth function corresponding to
this constant state is denoted by V,(t), i.e.

Vi(t) = Ve(t), t = 0, where E(t) =z for

all ot >0;
The graph of the function V,(t), drawn on
the xy-plane, is called a growth curve
(corresponding to the constant state z)
and denoted by y = V,(x), as usual.

‘We further suppose that V’zo(t) >

for all t > 0 where Vzo(t) is the growth

function corresponding to the basic state
Zo = (23,..,a,) of the environment. In
other words, we suppose that a growth
process keeps proceeding without stopping
if the environment constantly remains in the
basic state (until the possible final end of
the process).

Often a growth process is studied as a
function of time in different constant states
of the environment, that is, the growth
curves y = V,(x) are the only concern.
Or, alternatively, time is kept constant
and the state of the environment is allowed
to vary, i.e. we study how in a constant
growing time, growth depends on different
constant states of the environment. For
example, Lyr et al. 1967, pages 379 —395,

have studied the growth of a tree in both
of the above ways. A growth model derived
from inspections of this kind is often called
static.

Obviously, in natural conditions the state
of the environment can vary during the
growth process and thus growth actually is
a function of time and of the state of the
environment so that both factors may vary
simultaneously. In the present paper we wish
to study this general case. A growth model
that takes into consideration the wvariation
in the environment during the process is
often called dynamic (cf. Har1 et al. 1970,
1974 and PonsoneN 1975). However, it is
to be noted that in those dynamic growth
models which we shall present, the ’static’
growth curves play an important part:
they provide the observational data from
which we are to calculate the unknown
components of the formula of the ’dynamic’
growth function.

4,2. It is appropriate to consider a
growth process as a first order differential
equation and state on which factors the rate
of growth V’(t) depends and in what way.
In a general case it can be very hard to
form the differential equation required.
However, if the process under consideration
meets some conditions which sufficiently
simplify the situation, it will be possible
to form and solve its differential equation
and thus derive the formula of the growth
function itself.

In Chapters 5 and 6 we shall present two
conditions of this kind: the homogeneity
condition (for a growth process) and the
semihomogeneily condition and also the
mathematical models of the growth pro-
cesses corresponding to these conditions.

In this paper, the mathematical model of
the growth process refers to a whole which
comprises the simplifying assumptions
concerning the growth process or its growth
function, the formula of the growth function,
and the methods by which the unknown
components of the formula are calculated
from experimental data.

4. 3. CONSTRUCTION OF A MATHE-
MATICAL MODEL FOR A GROWTH
PROCESS. Several kinds of mathematical



models can be’ constructed for the same
growth process, depending on the starting
point or on the goal to be achieved. Conse-
quently, we first wish to describe the pro-
gram we shall follow in approaching the
problem. It covers the following points:

(I) The basic assumplions perlaining to
the model. All the assumptions made on
the model should be clearly stated. The
mathematical treatment of the model and,
above all, the derivation of the formula
of the growth function may be based
exclusively on these basic assumptions
(possibly excepting mathematical regularity
assumptions that do not restrict the biological
behavior).

(II) Experimenlal testing of the basic
assumptions. The statement of the basic
assumptions made on the model should be
followed by a demonstration of how they
can be tested experimentally (at least in
principle) in the case of the growth process
involved. If the growth process satisfies
(exactly) the conditions of the assumptions,
the growth is in (accurate) agreement
with the model.

(ITI) Solving the growth function and
computing the components of its formula from
experimental data. The formula of the
growth function is to be derived exclusively
from the basic assumptions. The resulting
formula often includes unknown constants
or functions and it should be stated how
they can be computed from experimental
data. At the same time it will become
evident which kinds of observational data
are to be collected for the final computation
of the formula of the growth function.

Often, the mathematical side of the
above program is rather easy to accomplish
but the experimental side can cause insur-
mountable obstacles. For instance, the
testing of the basic assumptions can be
very hard and laborous. Furthermore, it
can prove difficult to collect for point
(III) a satisfactory number of observational
data that are accurate enough. However,
if these difficulties can be overcome, the
entire growth model will stand on a very
firm experimental and theoretical basis.

4. 4. In the spirit of the above program
we shall present two growth models, i.e.
the mathematical models of a homogeneous
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and a semihomogeneous growth process.
‘We shall also show that some earlier mathe-
matical growth models (Har: et al. 1970,
1974 and PomjoNeEN 1975) can be reduced
to these two basic types.

Often, in constructing growth models it
has been found useful to employ an auxiliary
quantity called the »state of development»
or the »physiological age» etc. (e.g. HARrI
et al. 1970 and 1974). This auxiliary
quantity has been introduced into the model
as a kind of a priori assumption. This was
considered necessary for purely biological
(but weighty) reasons. Now the question
arises: what is the role of an auxiliary
quantity of this kind in a homogeneous
and a semihomogeneous growth process.

‘We shall see that in the case of a homo-
geneous growth process it is not necessary
for the concept of the »state of development»
or for an equivalent one to be included in
the set of the basic assumptions made on
the model. However, in the solution of the
model there appears an integral expression
which we, in describing the behavior of the
model, can with good reason call the
»physiological clock» and, similarly, the
values of the expression can be called the
sstate of development» or the »physiological
age». As a matter of fact, we can show
that if the growth process is in a proper
way interpreted to be a general process
with cardinal phases, the integral expression
in question will be identical with the
physiological clock defined in 2.4.

The semihomogeneous growth process is
a natural generalization of the homogeneous
growth process from which it follows that
the »physiological clock» of the homogeneous
process appears also in the formula of the
semihomogeneous growth function.

Thus, in the formulas of the growth
functions of the homogeneous and the
semihomogeneous processes, there appears
an integral expression whose values may
be called the »physiological age» or equivalent.
However, all the components of this integral
expression can be computed directly from
(appropriate) observational data (as can
all the other parts of the growth function).
Therefore, it is not necessary to make any a
priori assumptions on the form of this
integral expression, its formula or its
numerical values.



5. HOMOGENEOUS GROWTH PROCESS

5.1. We now wish to find, for the
growth process, a condition restrictive
enough to enable the growth function formula
to be easily derived and easily computed
from observational data. A condition of
this kind can be brought about if we require
that the differential equation of the growth
function should be separable, i.e. it should
be of a well-known, easily solvable form.
We choose this condition as our starting
point but present the separability require-
ment in a somewhat unusual form and
call it the homogeneily condition. Below, we
shall show that the homogeneity we are to
define is, when appropriately interpreted,
identical with the homogeneity of the
general process presented in Definition 3.3
in Chapter 3.

We introduce the following notation.
Let Vzo(t) be the growth function corre-

sponding to the basic state z, of the environ-
ment. Then V’,o(t) siQioforesglil ot 260,

and thus Vzo(t) is a strictly increasing
function with an inverse function which is
denoted by Vz—o 1(x), as usual, or in other

words, 'V, (V,—ol(x)) = x for all x > 0.

5.2. DEFINITION. A growth process
is called homogeneous if its growth function
V(t) satisfies the following condition:

"g(t)

63 T

= h(E(t)), t =0,

for all environmental functions E, where
s(t) .= V;o Y(Vg(t)) and the function h:R»
—R is a continuous function depending
only on the growth process itself. The
function h is called the homogeneity function
of the process.

For the sake of brevity, we also call the
growth function V(t) homogeneous and the
function h its homogeneity function, if V(t)
is the growth function of a homogeneous
growth process and h the homogeneity
function of this process.

5.4. THEOREM. If V is a homogeneous
growth function and h its homogeneity
function, then V takes the form

(5.5) V(t) = Vzo(s(t)) where

t
(0.0)" s(t) = f h(E®)) dr.
‘ 0

PROOF. We denote F(t) = V‘o(t)’ t2e0,
and G(x). = Fai@)e x> 05 Lo« G5 the
inverse function of F. Further, let v(x) =
V’,o(V;ol(x)) = F’(G(x)), x > 0. Then, due
to condition (5.3), the growth function V(t)
= Vg(t) satisties the differential equation

av
T h(E(t) ) v(V), from which, by ’sepa-

av
rating the variables’, we obtain —Z—Vs =

h(E(t) ) dt. By integrating both sides of
this equation we obtain

“”fm“

On the other hand, by the formula of the
derivative of an inverse function G'(x) =
1/F’(G(x) ), x > 0. Then

il fo ) f

f G'(V)AV = G(V).
0

h(E(t) )t = s(t).

av
F(GW)

Now the equations (5.7) and (5.8) imply:
G(V) = G(V(t)) = s(t) and so V(t) =
F[G(V(t))] = F(s(t) ). Q.E.D.

Next, we shall prove a couple of equivalent
conditions for the homogeneity of a growth
function.

5.9. THEOREM. A growth function
V = V(t) is homogeneous if and only if it
takes the form

(5.10) V’(t) = f(E(t) )g(r(t)), t = 0, with

t
rt) = f f(E(L) )at,
0



where f and g are continuous functions and

1
f(zy) > 0. In particular, then h =
1(z,)

f is

the homogeneity function of V.

PROOF. If V(t) is homogeneous with h
as its homogeneity function, then it clearly
satisfies condition (5.10) by Theorem 5.4,
because h(z,) =1 due to equation (5.3).
On the other hand, let V(t) be a growth
function such that (5.10) holds for continuous
functions f and g. Let G be the integral
function of g with G(0) = 0, i.e. G'(X) =

d
g(x) for all x > 0. Observe that d—tr(t) =
f(E(t)) for all t > 0. Then it follows that

t
(5.11) V(t) = f St = f £CE(t) Hg(x(t) ddt
0

t
- f 3 G(r(t))dt=G(r(t)), t >0.
o dl

So, in particular, Vzo(t) = G(i(z,)t), 't =0,
which implies G(x) = Vzo (x/i(zy)), ® == 0:
Then we get

8(x) = G'(x) = - V’; (x/1(20) ), X =0,

f()

and by (5.11), V(t) = G((t)) = V, (x(t)/
1(z,) ), which implies r(t) = f(zo)V_l(V(t))

Thus (5.10) takes the form
Vi(t) = #(E(t) )g(r(t)) -
IE®) ) 7= V’q, (t(W)/1(20) ) =

HE®) v
iz

h(E() )V, [v:;(vm )] Lt>0,

e
i
Vi [y Ve ) | =

withh =

i
f. Hence the growth function
1(z,)
V(t) is homogeneous with h as its homoge-
neity function by Definition 5.2. Q.E.D.

5.12, THEOREM. The growth function
V(t) is homogeneous if and only if it satisfies
the condition

(5.13) V'(t) = u(E(t)) f(V(t)),t =0,
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where u and f are continuous functions
with u(z,) > 0 and f(x) > 0 for all x > 0,
that is, the differential equation of V(t) is
separable.

PROOF. Obviously, a homogeneous
growth function V(t) satisfies condition
(5.13). On the other hand, if V(t) satisfies
the separable differential equation (5.13),
its solution takes, as is well-known, the form

(5.14) V(t) = F(s(t)) , where s(t) =
t
f u(E(t) )dt,
0

and F is the inverse function of

* dt
G(x)=fo }(—t),xzo.

By differentiating both sides of (5.14) with
respect to time t we obtain V’(t) = u(E(t))
F’(s(t)), and so V(t) is homogeneous by
Theorem 5.9. Q.E.D.

5.15. TESTING THE HOMOGENEITY
OF THE GROWTH PROCESS AND
COMPUTING THE GROWTH FUNCTION
FROM EXPERIMENTAL DATA. Homo-
geneity can be tested directly with the aid
of the defining condition (5.3), if numerous
experimental data are available. It is then
to be checked that the ratio of the derivatives
V’g(t) and V’zo(s(t)) depends only on the
state E(t) of the environment at time t
but not in any other way on the environ-
mental function E or on the amount V(t)
of growth at time t. The value of this ratio
h(E(t) ) yields, as a byproduct, the values
of the function h, whenever the ratio can
be computed for a sufficient number of
states z of the environment.

However, a considerably more practical
and accurate way to test homogeneity and

“to compute the homogeneity function h is

the following. We assume that functions
V = V,(t) have been determined experimen-
tally for a sufficient number of constant
states z of the environment. If the process
is homogeneous, then by Theorem 5.4

(5.16) Vy(t) = V, ((z)t) for all t >0,

because, whenever the environment is in
a constant state z all the time,
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t
s(t) = f h(z)dt = h(z)t.
0

‘We now must examine whether or not the
experimentally determined functions V,(t)
satisfy equation (5.16) for all z and all
t > 0. This examination can be carried
out graphically in several ways by comparing,
in some appropriate way, the growth
curves y = V,(x) with one another for
different values of z. In the following,
we shall present one method.

If (5.16) holds, then for a fixed z we get

1
(5.17) h(z) = ;Vzol(Vz(w)

for all t > 0. If the right hand side of
(6.17) is constant for different values of t,
this constant is h(z) and equation (5.16)
holds for the studied state z of the environ-
ment. When all states z of the environment
are studied in this way the validity of
(5.16) gets checked and, at the same time,
the function h gets computed from the
experimentally determined growth curves.
If the right hand side of (5.17) is not inde-
pendent of t, the growth process in question
is not homogeneous.

On the other hand, if the relationship
between V,(t) and Vzo(t) is in agreement

with equation (5.16), the growth process
is apparently homogeneous (cf. Remark
6.12). In order to make sure that this is
the case it is necessary to test condition
(6.3) by means of the function h which
is already known. If the process proves
homogeneous its growth function agrees
with equation (5.5). The functions Vzo(t)

and h(z) in this equation have already
been determined above.

As an example of testing the homogeneity
of the growth function V and of determining
the homogeneity function h we consider
the following hypothetical situation. Let
P be a growth process whose progress
depends, in addition to time, on one environ-
mental factor only, for instance, temperature
T. Then E(t) = T(t) for all t > 0. Assume
that temperature T, = 10°C has been
chosen as the basic state of the environment.
Further, assume that the growth curves
Y == Valx): dory T =8y 6,/:8;:10, :12,-:15,
and 20° G have been experimentally de-

termined. Let these curves agree with
those in Fig. 1. Then the graph of the
inverse function V-}'0 Lt) of VTo(t) is
presented in Fig. 2. From equation (5.17)
the function h can be computed. Ils graph
is presented in Fig. 3. Finally, it can be
established by computation (and graphically)
that the functions in Fig. 1 satisfy equation
(6.16) and that the process is obviously
homogeneous.

- R W A o o

1 2 34 56 7 8 9 101 12 13 14 156 16
Figure 1. Example of growth curves y = Vg(t)
in constant temperatures T =3, 6, 8, 10, 12, 15
and 20°C.
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y=V;(x)

Ve,
1 B a8 O 2 8

Figure 2. The graph of the inverse function of
V—ro(t), T, = 10°C.
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Figure 3. The graph of the homogeneity function
h(T).

5.18. REMARK. We now wish to
show that the Definition (5.2) of the homo-
geneity of the growth function is in agree-
ment with the definition of the homogeneity



of a general process (3.3). For this purpose,
the growth process must first be interpreted,
in an appropriate way, to be a general
process whose progress is followed with the
aid of the cardinal phases instead of the
values of the growth function V(t). This
interpretation we make in a trivial way:
we define that the different wvalues V(t),
t > 0, assumed by the growth function V
form the cardinal phases of a growth process.
Then, according to the definition of the
physiological age (2.2), the physiological
age s(t) of the growth phase V(t) is the
time required for the attainment of this
amount of growth when the environment
remains in the basic state z, all the time,
that is, s(t) = v;()‘(V(t) ). Hence, by
Definition 2.4 the expression of the physiolog-
ical clock of the homogeneous growth
process under consideration is C(t,E) =

v;ol(vE(t) ). According to Remark 3.11,

a general process is homogeneous and h its
homogeneity function if and only if

z% C(t, E) = h(E(t)). Now,

d dnny E
5 (s B) = (V. '(Ve)) =

(V2 (V) Vu(t) =
1
V2, (Vo (Ve(®) ))

Ve (B),

d
which means, aC(t, E) = h(E(®)) if and
only if

V'i(t) . s
V, (s(6)) — BCE®) with s(t) = V, "(Vx(®):

Thus the definitions of homogeneity (3.3)
and (5.2) are equivalent.

Note, especially, that if V(t) is homo-
geneous, then by formulas (5.5) and (5.6) of
Theorem 5.4, the formula of the physiological
age is

t

st) = Vo (V) = f ,BE®) at

and so we have for the physiological clock
V2 (Ve®) = C(t, B),
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t
C(t, E) = f h(E(t) ) dt.
0

t
Thus, the integral f . h(E(t) ) dt in formula

(6.5) can be called the physiological clock
of the homogeneous growth process P and
its values s(t) the physiological age of P
at time t > 0.

5.19. REMARK. We shall show that
the growth model used by POHJONEN
(1975) is homogeneous. He investigates the
growth of Italian ryegrass and the growth
function involved is W(t), where W(t) =
the dry weight of the yield at time t. The
environmental function he denotes by X(t),
t > 0. The following assumption is made
on the growth rate of the growth function
(PonsoNeN 1975, page 96, formula 4.7)

Ed? = M(X(t) )v(s(t) ) , where s(t) =

t
f M((X(t) )dt, t > 0.
0

Here, M:R»— R is a continuous function,
a so-called »development rate», and wv(x),
x > 0, is another continuous function, a
so-called »proper growth rater. Both
functions are independent of the environ-
mental function X(t).

Thus, by Theorem 5.9 the growth function

1

ne Mz
as its homogeneity function, where z, is
a (suitably fixed) basic state of the environ-
ment. Then by Theorem 5.4 the growth
function W(t) takes the form

is homogeneous with h =

i R
W) =W, ﬁ(_zss(t) ’

where Wzo(t) is the growth function
corresponding to the basic state z,. The

function h = —— M can be determined
M(z,)

from (appropriately collected) observational
data in accordance with the method de-
scribed in Section 5.15.

5.20. GENERALIZATION OF THE
HOMOGENEOUS GROWTH PROCESS.
If V(t) is the growth function of a homo-
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geneous growth process, then by Theorem
5.4

(5.21) V() =V, (h(@t), t =0,

for all constant states z of the environment.
‘We consider the behavior of the growth
during a long growing time, that is when
t - . Let

Hm: Vo =0 <Zioos
0
t—>

Then by (5.21)

(5.22) lim V,(t) =L
t—>

for all constant states z of the environment
with h(z) > 0. Thus in all non-static
constant states z of the environment,
growth attains the same maximal growth
L as a result of a long growing time. Obvious-
ly, this need not be the situation in a general
nonhomogeneous growth process but rather,
the size of the maximal growth L(z) in a
constant state z can also depend on the
state z. We shall now find out how a shift
could be accomplished, with a minimum of
change, from a homogeneous to such a
non-homogeneous case in which the maximal
growth L(z) could vary with z.

Let P be a growth process whose growth
function in a constant state z takes the form

L(z)

(5:28) Vi) = 7= Vi (@), 20

where 0 < L(zy) < . Hence, lim V,(t) =
t-.oo

L(z). We differentiate both sides of (5.23)

with respect to time t and get

L(z)
L(z,)
OV COP

(5.24) V', (t) =

h(2) V", (h(2)t) =

where we have written: u(z) = L(z)h(z)/
L(z,) and s(t) = h(z)t. If we finally require
that the growth rate V’(t) of the growth
function V(t) is to take the form (5.24)
not only in the constant states z of the
environment, but also when the state of the
environment varies, we arrive at the
following requirement:

(5:25) V4(t) = u(E() V", (s(t) ) with s(t) =
t
f h(E(t) )dt
0

for all environmental functions E(t) and all
t > 0, where u and h are continuous non-
negative functions.

If the growth function V(t) of a growth
process P satisfies condition (5.25), its
behavior in the constant environmental
states z is, short of the constant multiplier
L(z)/L(z,), similar to that of a homo-
geneous growth function, but its maximal
growth L(z) in the constant state z depends
on the state z. We call a growth process
that satisfies condition (5.25) semihomo-
geneous and shall study it more closely in
the next chapter.



6. SEMIHOMOGENEOUS GROWTH PROCESS

6.1. DEFINITION. A growth process is
called semihomogeneous if its growth function
takes the form

(6.2) V() = u(E(t) )V’ (s(t) ) with s(t) =
t
f h(E(t)) dt
0

for all t >0 and for all environmental
functions E(t), where u and h are continuous
functions such that u(z) > 0 and h(z) > 0
for all environmental states zg R,

6.3. We also call the growth function of a
semihomogeneous growth process semihomo-
geneous. The functions h and u of Defini-
tion 6.1 we call, respectively, the homogeneity
function and the sensitivity function of the
growth process (and of its growth function
V(t), too).

We immediately see that semihomo-
geneity is a generalization of homogeneity:
homogeneous are such semihomogeneous
processes for which u = h. From Definition
6.1 we directly get the formula of a semi-
homogeneous growth function by integrating
both sides of equation (6.2):

6.4. THEOREM. If V(t) is a semihomo-
geneous growth function, h its homogeneily
function and u the sensitivity function,
then the growth function V(t) takes the form

t
(6.5) V(t) = f u(E(t) )V’ (s(t) )dt with
0

t
§(t) = f h(E(t) )dt.
0
Furthermore, for the functions u and h
the following holds:
(6.6) u(z) = V', (0)/ V", (0)

for all states z of the environment and,
further,

u(z)
h(z)

for all z such that h(z) > 0.

(6.7) V() = v, (@), t =0,

PROOF. Formula (6.5) is obtained
directly from condition (6.2) by integration.
For proving equation (6.7) let z be an
arbitrary environmental state. If the en-
vironment is in a constant state z all the
time, then

t
s(t) = f h(z)dt"= h(z)t, t = 0;
0
Now, if h(z) > 0, then by (6.5)

t
Vi(t) = f u(z)V’, (h(z)t)ydt =

u(z) i
o [V (M@t | dt =
u(z)

Ha Vi, (o)

and so (6.7) holds. By differentiating (6.7)
with respect to time t and puttingt =0
we get (6.6). In the case h(z) = 0, condition
(6.5) implies

t
V,(t) = fou(z)V’zo(O)dt = u(@V’, (O)t, t > 0.

By differentiating this equation with respect
to t and putting t = 0 we get (6.6). Q.E.D.

6. 8. THEOREM. Let V(t) be a growth
function such that

(6.9) V'u(t) = u(E(t) )v(s(t)) with s(t) =
t
f h(E(t) )dt,
0

where u, v and h are continuous non-
negative functions such that wu(z,) > 0
and h(zy) > 0. Then V(t) is semihomo-
geneous.

PROOF. Leta = u(z,) and b = h(z,) > 0.
Then (6.9) implies: V’zo(t) = av(bt), and
thus . v(t).= V’zo(t/b)/a, t > 0. Then again
by (6.9)

e

Va® = 2 umoiv, (3 o)

a
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for all environmental functions E and all
t >0, which implies that V(t) is semihomo-
geneous by Definition (6.1). Q.E.D.

6. 10, TESTING SEMIHOMOGENEITY
AND COMPUTING THE GROWTH
FUNCTION FROM EXPERIMENTAL
DATA. Suppose that it has been possible
to determine experimentally the growth
curves y = V,(x) for a sufficient number
of states z of the environment. We now
wish to test the semihomogeneity of growth
function V(t) and compute its sensitivity
function u and homogeneity function h by

means of these growth curves. If V(t) is
semihomogeneous, we shall in this way
manage to determine u and h. If V(t) is

not semihomogeneous, this is likely to show
up as nonvalidity of equations (6.7) when
functions u and h are being computed.

Consider growth curves y = V,(x) and
y = Vzo(x). We determine values u(z) and
h(z) from these curves. This can be done
in several ways, for instance, as follows.
For the sake of brevity, we dencte f(x) =
Vzo(x) and’ g(x) = Vi(x) for all"™'k ='0.
Then by equation (6.7)

g(x) = % Hh(Z)%), X = 0.

We define two new functions, F and G,
by equations
f(2x)

F(x) = ey and G(x) = _ggx_)

A 0.
) @ X7

The graphs of the functions F and G can be
easily drawn with the aid of the graphs of
y = f(x) and y = g(x). On the other hand,

g(2x)
g(x)

f(2h(z)x)
= f(h(z)x)

for all x > 0. The value h(z) can now be
easily determined from curves y = F(X)
and y = G(x) by comparing these curves
with each other. For instance, choose an
appropriate number x, > 0 and find X,
such that F(x,) = G(x,). If there are several
X, to choose from, the ‘correct’ one is easy to
distinguish. Then F(x,) = G(x;) = F(h(z)
x,) and so X, = h(z)x, or h(z) = X,/X;.
The value h(z), of course, is to be computed

G(x) = = F(h(z)®)

by means of several pairs (xy, X,) and the
final h(z) is to be determined, for instance,
as the mean value of several results. Lastly,
u(z) is to be computed from the formula
u(z) = h(z)g(x)/f(h(z)x) with an appropriate
value (or values) of Xx.

The method described above is illustrated
by Figs. 4 and 5. The (hypothetical)
functions y = f(x) and y = g(x) appear in
Fig. 4 and the functions y = F(x) and y =
G(x) computed from f and g, in Fig. 5. For
determination of the wvalue h(z), X,=5
has been chosen. From Fig. 5 it can be seen
that F(4) = G(5). Thus, x, = 4. So, h(z) =
4/5 = 0.8. For computation of the value
u(z), x = 7 has been chosen and then we get
3(2) = h@gD/Ih@)T7) = 0.8 g(D/I(5.6) =

.60

yefix)
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Figure 4. The graphs of the functions f and g.
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Figure 5. Determining h(z) from the graphs of F
and G.

When the functions u and h have in this
way been determined from experimental
data, it is mnecessary to check how well
equation (6.7) holds for the different states
z of the environment. If it does not hold
at all, the growth process under consideration
is not semihomogeneous. If (6.7) holds
satisfactorily, the process is apparently
semihomogeneous, cf. Remark 6.12. How-
ever, for final ascertainment of the semi-
homogeneity it is necessary to check by



means of observational data whether or not
the defining condition (6.2) holds for a
sufficient number of environmental functions.
Here s(t) can now be computed with the aid
of the homogeneity function h determined
above. If the growth function V(t) proves
to be semihomogeneous, it is possible that it
may even be homogeneous. Namely, if
u = h, V(t) is homogeneous and the formula
of its growth function is obtained from
equation (5.5). If V(t) is semihomogeneous,
but the functions u and h distinctly differ
from each other, the growth function V(t)
complies with formula (6.5).

6.12. REMARK. If V(t) is semihomo-
geneous (or homogeneous, whence u = h),
then it is necessary, by Theorem 6.4, that

613) Vi) = 12 V. bt >0,

for all states z of the environment. This
gives rise to the question: is the validity of
equation (6.13) also a sufficient condition for
semihomogeneity? In other words, if the
growth curves y = V,(x) have been deter-
mined experimentally and the functions u
and h have been computed from these
curves and the equation (6.13) has proved
to hold for all z, is the growth function V(t)
necessarily semihomogeneous?

In view of the biological nature of the
growth process, the answer is inclined to be
affirmative, which would mean that (6.13)
is also a sufficient condition for semihomo-
geneity. So far, the author has not been
able to prove this. However, this view finds
support in the following.

Consider two growth processes P and P*
whose growth functions are V(t) and V*(t).
‘We assume that they progress exactly in
the same way whenever the environment is
in a constant state z all the time, and this
holds for any z, i.e.

(6.14) V,(t) = VX(t) for all
for all z.

t>0 and

Now it seems natural to conclude that P
and P* always progress in the same way,
even when the environmental state varies
during the process, i.e.

(6.15) Vg(t) = VE()
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for all t >0 and for all environmental
functions E.

In order to formulate, more clearly, the
above problem that remains open, we
define that a set %P of growth processes is
called normal if the two conditions below
are satisfied:

a) For any two growth processes P and
P* in % the following holds: if P and P*
satisfy condition (6.14), then they inevitably
satisfy condition (6.15), too.

(b) The set 7P contains all the semihomo-
geneous growth processes.

From a biological point of wview, the

assumption that the set of growth processes
under consideration is normal seems a rather
slight restriction. If this assumption can be
made, it leads to a considerable advantage:
the validity of equation (6.13) alone guaran-
tees that the growth process is semihomo-
geneous.
Consequently, it would be of great value
for the mathematical research on growth
processes to find a condition that is as
general as possible and guarantees normality
in the above sense.

6.16. REMARK. To conclude with we
shall show that the growth model used by
Hari et al. (1970 and 1974) is semihomo-
geneous. Their model is based on the
following assumptions. As regards environ-
mental factors, only temperature T is assumed
to affect (appreciably) the growth process
under consideration, that is, E(t) = T(t),
t > 0. The growing season has been divided
into days in such a way that the j:th day
begins at time t;,j =1, 2,....,and t;, = 0.
It is then assumed (Harr et al. 1970, page
377, formulas (8) and (9)):

4 J‘tj+1 av "
( 17) tj Tif dbti= g.l ~ f(s,-)a(ri -+ ),

where a and b are constants, f a continuous
non-negative function and s; = s(t;), rj =
S(tj+1) i S(tj) with

t
s(t) = f R(T(t) )dt, t = 0.
0

Here R(T) is a fixed continuous non-
negative function. From assumption (6.17)
it follows:
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t~+1
f(spa(r; + b) = f(sa( ftl R(T(t) )dt +
b+1 :
b) = af(s;) f . (R(T(D) + o)t ~
]

f+1
f . AR(TE)) + of(s(t) )dt,
1

where ¢ = b/(tj; 1 — t;).
from assumption (6.17)

tk k-1 f'+1
dv ey
V(tk)=J —at=> J Sat~
0

Thus, it follows

dt
j=1

k=1 pti g
2 J a(R(T(R)) + )I(s(t) ) dt =

i=1d Y

ty
J a(R(T(t) ) + o)f(s(t) )dt

0

for all k =1, 2,... Then we may assume
that the above result is valid with equality
signs for all t > 0, that is,

t
V(t) = f a(R(T(t) ) + o)f(s(t) )dt, t > 0.
0

By differentiating both sides of this equation
with respect to time t we get

(6.18)

av
at = a®R(T®) ) + o)f(s(t) ).

Therefore, the growth function V(t) is
semihomogeneous with u(T) = a(R(T) + c)
as its sensitivity function and R(T) as its
homogeneity function. Consequently, u(T)
and R(T) satisfy equation (6.7) for all tempera-
tures T. Furthermore, they can be computed
from the experimental growth curves y =
Vr(x) as described in Section 6.10.

On the other hand, by Theorem 5.9 the
investigated growth function V(t) is homo-
geneous if, in equation (6.18), the constant

c is equal to zero. As a matter of fact, the
assumption c¢ %0 does not seem very
natural. Namely, if ¢ < 0 and, at some
tempereture T, the inequality R(T) < |c|
would hold, then at that temperature
growth would go backwards (a > 0, of
course)! Also, if c¢c > 0, then the rate of

dv
growth yrs never drops below the positive

limit acf(s(t) ), not even at very low tempera-
tures ‘T,

However, satisfactory results have been
obtained (HaArr et al. 1970 and 1974) with
the above model based on the assumption
(6.1 withe.b 5.0, (that .is, ..¢ 5= 0,  100).
Furthermore, the value of b has depended
on the growth process under investigation
and has always deviated considerably from
zero. This can be explained as follows.

If in equation (6.18) the homogeneity
function R(T) is replaced by the homogeneity
function R*(T) = R(T) + ¢, (6.18) takes
the equivalent form

i R*(T(t) ) af (s*(t) — tc) with

(6.19) ==

t
s*(t) = f R*(T(t) )dt.
0

Since |c| in any case is a small number, it
seems obvious (within the limits of satis-
factory accuracy) that in equation (6.19) the
expression af(s*(t) — tc) can be replaced
by v(s*(t)), where v(x) is an appropriate
(fixed) continuous function. If this replace-
ment is possible, equation (6.18) takes the

% =TR*(T(tY v(s*(t)). 27 Then, “by

Theorem 5.9, the growth function V(t) is
homogeneous and the formal difficulties
pertaining to the constant ¢ in equation
(6.18) are eliminated. Also, if V(t) is really
homogeneous, the computation of its formula
from the experimental growth curves will
be simplified.

form
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Seloste:
FYSIOLOGISEN KELLON JA KASVUN MATEMAATTINEN MALLI

Fysiologisen kellon kisitettd kidytetddn kuvail-
taessa biologisen kehitys- tai kasvuprosessin kulkua.
Télloin prosessin  kulun ajatellaan riippuvan,
mahdollisesti muiden tekijoiden ohella, prosessille
ominaisesta fysiologisesta kellosta, jonka ’kdynti’
saattaa huomattavasti poiketa tavallisen kellon
kdynnistd. Esimerkiksi erilaisia limposumma-
menetelmid on usein kidytetty téllaisina fysiologi-
sina kelloina.

Kisilla olevan tutkimuksen tarkoituksena on
antaa fysiologiselle kellolle tdsmaéllinen méaaritelmé
ja tutkia matemaattisesti sen roolia kehitys- ja
kasvuprosesseissa.

Tyoén alkupuolella (luvut 1—3) tarkastellaan
fysiologista kelloa. Liahtokohtana on talloin
Risto SARVAKSEN (1972-—1974) metsdpuiden vuo-
tuisen kehityssyklin tutkimisessa kdyttimé lampo-
summamenetelmé. Héinen médrittelemédssddn muo-
dossa limposumma on integraalilauseke, jonka
kaava médrdtaan kokeellisesti tutkittavasta koh-
teesta. Kisilld olevassa tyossd analysoidaan,
mitkd ovat timédn lamposummamenetelmidn mate-
maattiset perusteet sekd esitetiin kuinka yleinen
fysiologinen kello saadaan toimimaan samoilla
periaatteilla. Aiheen kisittely on pédpiirteittdin
seuraava.

Tarkastellaan ensin yleistd prosessia, joka koos-
tuu ketjusta perdkkiisid tapahtumia, mutta mihin
el valttdmatta alunperin liity mitddn numeerista
asteikkoa. Prosessin edistymisen oletetaan riippu-
van ajasta ja ympdéristoolosuhteista prosessin ai-
kana. Tillaisia ympéristotekijoiti voivat olla
esimerkiksi lampatila, kosteus, valaistus, maaperdn
laatu jne. Esimerkiksi metsdpuiden vuotuinen
kehityssykli on erds téllainen prosessi.

Seuraavaksi mdédritellddn prosessin fysiologisen
kellon kidsite. Se tulee olemaan, pyoredsti sanoen,
matemaattinen kaava, josta voidaan laskea, missd
kehitysvaiheessa prosessi kullakin hetkelld on,
kun tunnetaan ympdristotekijat ja niiden vaihtelu
ajan suhteen prosessin aikana.

Varsinaisen matemaattisen ja myo6s kdytdnnolli-
sen ongelman muodostaa kysymys, miten prosessin
fysiologisen kellon kaava voidaan johtaa ja ko-
keellisista  havaintoarvoista  yksityiskohtaisesti
madratd. Yleisessd tapauksessa tehtdvd voi olla
ylipddsemattémédn vaikea. Kuitenkin jos prosessi
tayttdd jonkin tilannetta riittdvidsti yksinkertais-

tavan lisdehdon, voidaan etsitty kaava 16ytéda.
Erdan tdllaisen lisdiehdon toteuttaa esimerkiksi
metsdpuiden vuotuinen kehityssykli ja tédssd kir-
joituksessa kyseistd ehtoa kutsutaan homogeeni-
suusehdoksi. Jos prosessi toteuttaa kyseisen ehdon,
kutsutaan sitd homogeeniksi. Prosessin homogee-
nisuus voidaan kokeellisesti testata (ainakin
periaatteessa) yksinkertaisin koejdrjestelyin.

Esilla olevassa tutkimuksessa saadaan seuraava
fysiologista kelloa koskeva piddtulos: Jos prosessi
on homogeeni, voidaan sen fysiologisen kellon
lausekkeen yleinen muoto helpolla johtaa ja
(sopivasti keratyistd) kokeellisista havaintoarvoista
timén lausekkeen yksityiskohdat laskemalla méé-
rata.

Erityisesti limpésummaan sovellettuna téstd
padtuloksesta seuraa, ettd jos limpdtila on ajan
ohella ainoa homogeenin prosessin kulkuun vai-
kuttava ympiristotekijd, nin sen fysiologisen
kellon lauseke on samaa muotoa kuin R. SARVAKSEN
(1972) esittimd limpoésummaintegraali, ja miele-
kistd (s.o. tietyt normitusehdot tayttivid) lampo-
summaa ei voida millidn muulla tavalla laskea.

Tyo6n jalkimmdisessd osassa (luvut 4—6) tar-
kastellaan kasvuprosesseja. Kasvuprosessille on
ominaista, ettd siihen liittyy jokin ajan mukana
kasvava numeerinen suure V = V(t), jonka arvo
kullakin hetkelld kuvaa prosessin kasvuvaihetta.
Prosessin etenemisen oletetaan riippuvan ajan
ohella myo6s ymparistotekijoistd, joten V(t) on
sekd ajan ettd ympériston tilan funktio. Funktiota
V(t) kutsutaan prosessin kasvufunktioksi. Esi-
merkiksi puun pituuskasvu on kasvuprosessi ja sen
kasvufunktio saadaan asettamalla V(t) = puun
pituus hetkelld t.

Kasvuprosessin hallitsemiseksi riittdd tuntea sen
kasvufunktion V(t) lauseke eli kaava. Jélleen
yleisessd tapauksessa kasvufunktion kaavan johta-
minen voi olla hyvin vaikeaa. Kuitenkin jos
kasvuprosessi toteuttaa jonkin tilannetta riittd-
vésti  yksinkertaistavan lisiehdon, voidaan sen
kaava 16ytdd. Téassd tyOssd esitetddn kaksi tdl-
laista lisdehtoa kasvuprosesseille, homogeenisuus-
ja semihomogeenisuusehdol, sekd johdetaan kum-
paakin ehtoa vastaavan kasvufunktion kaava.
Lisdksi esitetddn, miten kokeellisesti voidaan
testata, toteuttaako tarkasteltu kasvuprosessi jom-
man kumman néistd ehdoista. Edelleen osoitetaan,



miten kokeellisista havaintoarvoista voidaan mii-
ritd vastaavan kasvufunktion eri osat yksityis-
kohtaisesti.

Homogeenisuus- tai semihomogeenisuusehdon
tayttdaville kasvuprosessille johdettu kasvufunk-
tion kaava paljastaa mielenkiintoisen yhteyden
tyon alkupuolella médriteltyyn fysiologiseen kel-
loon. Kaava nimittdin sisdltdd kummassakin ta-
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pauksessa integraalilausekkeen, joka osoittautuu
olevan kyseisen kasvuprosessin fysiologinen kello.
Jos tdamédn integraalilausekkeen arvoa kullakin
hetkelld (prosessin ollessa kdynnissd) kutsutaan
kasvuprosessin (tai kyseisen kasvavan kohteen)
fysiologiseksi idksi, on loydetty tdsmaillinen tul-
kinta kasvun riippuvuudelle ajasta, ympéristoolo-
suhteista ja kasvavan kohteen fysiologisesta idstd.
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ACTA FORESTALIA FENNICA
EDELLISIA NITEITA — PREVIOUS VOLUMES

143, 1975. Pexka KiLkkr and Raimo POKALA.

A Long-term Timber Production Model and its Application to a Large
Forest Area. Seloste: Pitkidn ajan tuotantomalli ja sen sovellutus
Keski-Suomen ja Pohjois-Savon piirimetsilautakuntien alueelle.
144, 1975. YrJO ILvEssALo ja Mikko ILVESSALO.

Suomen metsidtyypit metsikoiden luontaisen kehitys- ja puuntuotto-
kyvyn valossa. Summary: The Forest Types of Finland in the Light
of Natural Developmant and Yield Capacity of Forest Stands.
145, 1975. PEkkA KILKKI ja MARKKU SIITONEN.

Metsikén puuston simulointimenetelmid ja simuloituun aineistoon pe-
rustuvien puustotunnusmallien laskenta. Summary: Simulation of
Artificial Stands and Derivation of Growing Stock Models from This
Material.

146, 1975. SerPo KELLOMAKI.

Forest Stand Preferences of Recreationists. Seloste: Ulkoilijoiden
metsikkdarvostukset.

147, 1975. Sepro KELLOMAKI and VARPU-LEENA SAASTAMOINEN.
Trampling Tolerance of Forest Vegetation. Seloste: Metsikasvilli-
suuden kulutuskestidvyys.

148, 1975 PENTTI ALHO

Metsien tuoton alueellisista eroista Suomessa. Summary: Regional
Differences in Forest Returns within Finland.

149, 1975. TAunNo KaLLio.

Peniophora Gigantea (Fr.) Massee and Wounded Spruce (Picea abies
(L) Karst.) Part II. Seloste: Peniophora gigantea ja kuusen vauriot
osa IIL

150, 1976. Leo HEIKURAINEN ja JUKKA LAINE.

Lannoituksen, kuivatuksen ja limpoolojen vaikutus istutus- ja luon-
nontaimistojen kehitykseen rdmeilld. Summary: Effect of fertilizat-
ions, drainage, and temperature conditions on the development of
planted and natural seedlings on pine swamps.

151, 1976. JORMA AHVENAINEN.

Suomen paperiteollisuuden kilpailukyky 1920- ja 1930-luvulla. Sum-
mary: The competitive position of the Finnish paper industry in the
inter-war years.

152, 1976. YRJO KANGAS.

Die Messung der Bestandesbonitiit. Seloste: Metsikén boniteetin mit-
taaminen.

153, 1976. YrJ6 RoirTo.

The economic transport unit size in roundwood towing on Lake Iso-
Saimaa (in Eastern Finland). Résumé: Le volume Economique du
remorquage de bois ronds sur le lac Iso-Saimaa, en Finlande orientale.
Tiivistelmi: Taloudellinen kuljetusyksikkd Ison-Saimaan nippulautta-
hinauksessa.

154, 1977. NitLo SOYRINKI, RisTo SALMELA ja JORMA SUVANTO.
Oulangan kansallispuiston metsd- ja suokasvillisuus. Summary: The
forest and mire vegetation of the Oulanka national park, Northern
Finland.

155, 1977. Eero KUBIN.

The effect of clear cutting upon the nutrient status of a spruce forest
in Northern Finland (64° 28’ N). Seloste: Paljaaksihakkuun vaikutus
kuusimetsidn ravinnetilaan Pohjois-Suomessa (64° 28’ N).
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