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1. INTRODUCTION

11. Background of the continuous inven-
tory

The development of forest inventory
methods is often connected with i) the de-
mand for the timber products, ii) the objec-
tives of management planning and iii) consid-
erations concerning the state policies and en-
vironmental protection. Forest inventory
methods are also affected by the state of forest
as well as the economical and technological
levels in the country. To meet these demands
single forest inventories have been used for
more than a century.

In order to understand forest changes and
to be able to control the effectiveness of man-
agement activities successive inventories are
necessary (Loetsch and Haller 1973).

One type of successive inventory in the
past was the repetition of the single inventory
in the same area. Examples of this kind of
inventory are the first seven national forest
inventories in Finland and the first five in
Sweden. The inherent drawback of this kind
of successive inventory is the poor precision
in estimating forest change.

An alternative to successive inventory is
the continuous inventory, which is charac-
terized by a periodical remeasurement of all
the trees in a fidex area. The continuous
inventory can be traced back to the ”control
method” which appeared in France hundred
years ago and had been used in Switzerland
for half a century (Spurr 1952). Since a com-
partment was used as the measuring unit, the
method was laborious and expensive.

The continuous forest inventory (CFI)
used in recent years was developed in Europe
and North America during the vyears
1930—1950 (Loestch and Haller 1973). An
important improvement of the CFI is that the
permanent sample plots replaced the com-
partments. As defined by Stott and Semmens
(1962) ”Continuous forest inventory, or CFI,
is a precise, frequently repeated, and directly
comparable measurement of all commercial
trees in systematically placed sample plots.
These plots have fixed radii and are perma-
nently located in the forest. Their treatment

and the treatment of the surrounding forest
must be analogous.”

The CFI test in Finland was suggested by
Nyyssonen (1967) and has been carried out
by two large timber companies since 1958.

Along with increasing demand for monitor-
ing the dynamic changes of both forest and
environment, the CFI has been adopted by
national forest inventories in several coun-
tries. China introduced the method to its
national forest inventory in the 1970’s. Per-
manent square plots were used in northern
China and permanent relascope plots in
southern China. Austria and Switzerland
started using permanent sample plots in their
national forest inventories at the beginning of
the 1980’s (Jaakkola 1986). Recently Sweden
(Cruse et al. 1985) and Finland made this
change in their national forest inventory by
establishing permanent sample tracts. Nyys-
sonen (1967) pointed out that one of the
reasons for not using the method in the Nor-
dic countries earlier was that the technique
based on temporary sample plots can offer
the necessary information about growth and
other factors in these countries.

The sampling technique used in the CFI is
sampling with the partial replacement (SPR),
developed by Jessen (1942) and discussed by
Hansen et al. (1953) and Cochran (1977).
The estimation theory, i.e. the minimum var-
iance linear estimation (MVLE) or
generalized least squares (GLS), the sampl-
ing design and the possible cases of the SPR
have been comprehensively formulated and
summarized by Ware and Cunia (1962), and
Loetsch and Haller (1973) for the purposes of
the continuous forest inventory. Subsequent-
ly, Cunia (1965), Cunia and Chevrou (1969),
and Newton et al. (1974) further generalized
the estimation and extended it to more than
two occasions as well as the case for the
multivariates. In addition, Frayer and Furni-
val (1967), Hazard (1977), Nyyssonen
(1967), Hazard and Promnitz (1974), Dixon
and Howitt (1979), Peng (1982, 1986), Peng
and Zhu (1985), Scott (1984) have studied
the CFI in theory and in practice. A distinct
feature of the GLS method is that it can cope
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with a variety of sample cases and estimate
the current forest state and its change simul-
taneously with the minimum variance.

One problem often met in the CFI based
only on permanent plots is the decrease of the
correlation between the matched measure-
ments over time. In order to alleviate the
effect of the decrease on estimation precision,
the whole area can be divided into the cut
and the non-cut subareas. In a large forest
region, however, determination of the cut and
the non-cut areas tends to be difficult. Under
such circumstances, it is worth examining the
posibilities to improve the efficiency of SPR
by using satellite imagery.

The sampling plan of the CFI is often
designed for a large area. The fact that there
exists a considerable number of sample plots
in a large-scale forest inventory naturally
leads to the desirability that these sample
plots should also be applicable to smaller
areas: subareas or compartments. This is be-
cause the inventory for a small area such as a
compartment is labourious, even with the aid
of ocular estimation and relascope plots.

A more popular approach towards both
whole area and subarea inventories is two
phase sampling. The sample plots in the first
phase are usually those sample plots which
are obtained under a low cost such as photo
sample plots. The sample plots in the second
phase are often the sample plots on the
ground. The two phase sampling used in the
national forest inventory in Finland was car-
ried out by using relascope sample plots and
aerial photo plots (Poso and Kujala 1971,
1978). The inventory method was adjusted
when calculating results for districts. China
has a similar approach. The national forest
inventory in Jiling province in China was
designed for the whole province, but the re-
sults were also used for each county by em-
ploying photo sample plots and regression
models.

Because of the low price and the digital
format of the satellite image data, the trend in
using two phase sampling is for satellite im-
agery to replace the aerial photos. In Finland
such a test began in 1984 (Poso et al. 1984).
The research concerning the practical appli-
cation of satellite imagery is still going on.

12. Satellite pictures and their applica-
tion to forest inventory

The first satellite aimed at the global map-
ping of Earth resources was Landsat-1
lauched in 1972. The satellite imageries cur-
rently employed are Landsat MSS (Multis-
pectral Scanning System), Landsat TM
(Thematic Mapper) and SPOT (Systeme
Probatoire I’Observation de la Terre).

MSS and TM refer to the sensors MSS and
TM. The former have been installed in all
Landsat satellites and the latter only in Land-
sat 4 and 5. TM has more spectral bands,
more radiance levels and finer spatial resolu-
tion than MSS. SPOT was launched by
France in 1986. It has a new type of scanner
which has two modes: panchromatic and
multispectral modes. The image data of these
satellites covers both the visible and near
infrared wavelengths.

The number of wavebands, spatial resolu-
tion and number of classes in spectral
radiances are listed below,

MSS ™ SPOT
Mode | Mode 2

Wavebands 4 7 1 3
Spatial
resolution 79 m 30 m 10m 20m

(for six bands)
Grey levels 64 256

where Mode 1 = panchromatic mode and
Mode 2 = multispectral mode.

Jaakkola (1986) gave a broad summary of
applications of MSS image data to forest
inventories and forest management in the
European countries, especially in the Nordic
countries. The applications are directed to
the sampling design, forest mapping and
forest type classification, estimating the stand
characteristics and  monitoring  forest
changes.

The imagery is often used for forming the
sample of the first stage in the multi-stage
sampling. The three-stage sampling designed
by the University of Freiburg (Jaakkola 1986)
and the two-stage sampling used in Finland
for estimating volume (Saukkola and Jaakko-
la 1983) are examples of the use of imagery.

Forest mapping and the classification of
the land-use classes and forest types are
perhaps the most common ways of using
satellite imagery. Some applications have
achieved an operational level. Jaakkola
(1986) reviewed a number of successful appli-
cations in Europe such as mapping the poplar
groves and beech forests in northern Italy,
Forest cover-type mapping in Germany, and
forest site-type mapping in Finland.

It seems that many methods for estimating
the stand characteristics are still in the ex-
perimental stage. The correlation between
image and ground characteristics is not par-
ticularly high. Some improvement can be
obtained by employing ancillary material,
e.g. from maps and aerial photographs.

Two basic methods utilized for estimating
the stand characteristics are the regression
technique and stratification. Jaakkola and
Saukkola (1979), Tomppo (1987) and Peng
(1987) have developed some regression mod-
els including the conventional models and the
log-linear model for such studies.

Poso et al. (1984) presented a stratiiication
model for compartmentwise estimation. The
model can be used to estimate all the vari-
ables. Peng (1987) compared the two stratifi-
cation methods (supervised and unsuper-
vised) for some qualitative variables. The two
methods gave similar results. However, the
supervised method was regarded as prob-
lematic for the multiparameter inventory.
Kilkki and Paivinen (1987) suggested an ap-
proach which resembles the supervised
method, but it can be used for all the vari-
ables.

For estimating or monitoring change by
using satellite image data, studies have con-
centrated on image transformations, ap-
proaches for detecting the mapping change
and handling the multitemporal image data.

A typical transformation for detecting the
changes of vegetation is the Kauth and To-
mas transformation (Kauth and Tomas,
1976). Later Richardson and Wiegand
(1977), Thompson and Wehmanen (1979),
Badhwar et al. (1982) and Jackson (1983) de-
veloped and discussed the transformation. In
addition, some other transformations such as
multispectral ratios, logarithmic transforma-
tion etc. have been developed by Rouse et al.
(1973), Goetz et al. (1975).

There are a number of approaches which
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can be used in detecting and mapping
changes in the vegetation. A general ap-
proach for doing this is to make a comparison
between the bitemporal image data acquired
at two time points, as described and sum-
marized by Goldberg et al. (1982) and
Schowengerdt (1983). The approach is
straightforward. Another method is “vector
change” analysis (Malila 1980). In this ap-
proach the image data is first transformed
into vegetation components. The image pix-
els are then classified according to the moving
directions and the magnitudes of the first two
vegetation components. The technique is de-
signed for mapping vegetation changes. In
Finland, Saukkola (1982) has developed a
system for monitoring clear cuts. Hame
(1987) has examined an approach which in-
cludes the segmentation and classification of
clear cutting areas and the detection of forest
damage.

Schowengerdt (1983) summarized a couple
of techniques concerning how to handle mul-
titemporal image data, including stacking the
multitemporal image data and the maximum
likelihood cascade in order to improve the
accuracy of the interpretation.

In principle, most of the methods and
techniques concerning the application of im-
age data to forest inventories could be also
suitable for CFI. However, a distinct feature
of the application of the image data to the
CFI is the multitemporal and two-phase
data.

When the permanent sample plots are re-
measured, every plot has two or more than
two measurements for a variable of interest.
If image data is available for each remeasur-
ing period, every permanent plot also receives
the associated two or more image values.
Then, each of the permanent sample plots
contains information concerning both the
current state and change from both ground
reality and imagery. As the number of remea-
surements increases, the sample plots in the
two phases: imagery and ground together
with the different remeasuring periods might
constitute a variety of sample cases.
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13. Purposes of the study

This study is one of the research topics of
the Department of Forest Mensuration and
Management of the University of Helsinki in
Finland on the application of the satellite
data to the forest inventories. The key concern
is how to handle the multitemporal and two-
phase data or how to update data in the CFI
with multitemporal imagery. This is the orig-
inal motive of the study. The basic methodol-
ogy is based on SPR and stratification. The
emphasis of the study is put on the methods
about the integration of permanent sample

plots with image data for the continuous
forest inventory and the compartmentwise
estimation.

The purposes of the study are then

1. to present a general procedure for integ-
rating the permanent plots with digital image
data for the continuous forest inventory of the
large areas and for compartment-oriented es-
timation.

2. to compare some basic estimation
methods, updating techniques and statistical
options used in the procedure.

3. to make efficiency analyses.

2. DESCRIPTION OF THE METHODS

21. Terminology and Notation

211. Terminology

Only most common and important terms
used in the study are defined below.

Population, sample and phase

A population to be sampled is the aggre-
gate from which the sample is chosen (Coc-
hran 1977). In this study it is defined as the
forest area. The population unit is the rela-
scope plot. Therefore the population can be
viewed as a set of all the relascope plots in the
forest area.

The sample is a collection of the population
units which are randomly or systematically
drawn from the population. The unit in the
sample is a sample plot or sample point.

The phase is an information concept (see
Loetsch and Haller 1973). The first phase in
the study is the image phase which contains
only the information on the spectral values.
The second phase in the study is the field
phase which contains the stand characteristic
information.

Image point, permanent sample plot and
temporary sample plot

An image point or image plot is said to be a
sample point in the first phase. Its centre
corresponds to the centre of a relascope sam-
ple plot on the ground. The spectral value of
the image point comes from the spectral value
of the nearest pixel or the average spectral
value of the nearest couple of pixels. The
image sample consists of all the image points
in the first phase.

A permanent sample plot in the study is a
permanent relascope sample plot with BAF
(Basal Area Factor) 2. It is laid out for the
repeated observation. A permanent sample
plot is drawn from the first phase and mea-
sured in the second phase. The permanent
plot sample is composed of the permanent

sample plots. A temporary sample plot is
measured only once.

The image sub-sample is the remaining
part of the image sample after removing those
image points which have been drawn as the
permanent sample plots.

Matched sample plots, matched image
points, occasion and period

For each given target variable, a perma-
nent sample plot has a pair of observations or
matched observations on two occasions, i.e.
two measuring time-points. Accordingly, the
sample plots or image points with remeasure-
ments are sometimes called matched sample
plots or matched image points. A time inter-
val between two occasions is said to be a

period.

Current state, change, total growth and field
variable

The current state refers to the forest state
described by field variables on the present
occasion such as the current volume, current
species composition etc. The field variables
relate to the stand characteristics.

The forest change, or change or net in-
crease is the difference between two occasions
with respect to the field variables. The total
growth is said to be a sum of the net increase
of volume and total drain during a period.

212. Notation

The notation of basic statistical symbols
common to the whole study are as follows:

s} = sample variance of variable i

s;j = sample covariance between variables i and j
sample correlation coefficient between variables i
and j

Z; = covariance matrix of vector J

Ik = covariance matrix between vectors J and K

k-
I



n, = number of permanent sample plots
n’ = number of image points of the image sample
=number of image points of the image sub-sample

2,

The image points and permanent sample
plots from different occasions might consti-
tute a variety of sample cases. The following
list is the notation of the sample cases, to be
met in the study.

Image sample Permanent plot sample

Notation of Occasion Occasion

the sample 1 2 3 1 2 3

P12 * *

11P1 * ¥

12P2 * »

12P12 * N *

112P1 ¥ * 2

112P12 - * * *

1112P12 * 4 * ¥

1123P12 * * * . *

P23 * *

123P23 ¥ . ¥ ¥

1213P23 * * » .
Symbol ”*” in the list indicates where the

sample comes (phase and occasion). I in the
notation represents the image sample, P de-
notes the permanent plot sample and the
numbers refer to the occasions. If the image
points in the image sub-sample come from
two occasions but are not matched, the occa-
sion numbers in the sample notation will be
separated by I, 1112 and 1213, for instance.
For the matched plots and points, the occa-
sion numbers are connected one by one.

The abbreviations often used in the study
are as follows:

D.B.H: diameter at the breast height
GLS: generalized least squares

MD: minimum distance

ML: maximum likelihood

P.C: principal component

PTM: probability transition matrix
RMSE: root mean square error

SPR: sampling with partial replacement
TPS: two phase sampling for stratification

22. Estimation methods for the popula-
tion

The two phase sampling on the basis of the
permanent sample plots and multitemporal
image data can be regarded as a special case
of SPR. The generalized least squares (GLS)
estimation as a traditional estimation method
for SPR is therefore adapted in the study. If
the covariance matrix of the population is
known, the estimates of the variables obtai-
ned with the GLS are the best unbiased ones.

The two phase sampling for stratification
(TPS) or double sampling for stratification
(Cochran 1977) is an alternative estimation
method for the population. In fact the techni-
que will be used mainly for the compartments
in the study.

221. Generalized least squares estimation

Consider a two phase sampling with samp-
le case 112P12. The image point in the first
phase has a pair of observation vectors acqui-
red on two occasions. Each vector is compo-
sed of q spectral values which represent q
bands. In the second phase, there are n,
permanent sample plots. Each permanent
sample plot also has two observation vectors;
each observation vector covers q spectral va-
lues and p field variables.

Suppose that

(1) the samples are randomly selected;

(2) the population covariance matrix of
observation vectors are known;

(3) the relationship between the observati-
on vectors in the second phase and the
state vector which is here defined as
the mean vector of spectral values and
field variables, can be linearly expres-
sed in an observation equation as fol-
lows: (see Theil 1971 p. 236, Dixon
and Howitt 1979)

Z=HX+v (22.1)

where Z = k-dimensional observation vector of sample
means
X = h-dimensional state vector
H = observation coefficient matrix (kxh)
v = k-dimensional observation error vector.
k =2(p+q) +2q
h = 2(p+q)

Then, when Z, H and R, where R, =
covariance matrix of v are given, vector X
can be estimated by

X = (H'R;' H)" H'R}'Z (22.2)

and the covariance matrix of X is produced
by

Py = (H" R{'H)" (22.3)
According to the order of the phase and the
occasion, the detailed explanations in relation
to Z, X, H, and R, are as follows:
2'=[2,2]
where the subscripts refer to phases,
Z,=[2% 729 ]and
z,=(292%)
where the superscripts refer to occasions,
29 = (890500, s W gt s 8 peg ]
= observation vector including means of p field vari-
ables in the second phase and q bands of spectral
values on the first occasion
zV =z, 2,,..., 2]

= spectral vector in the first phase on the first occa-
sion

and Z(?) and Z(lz) can be expressed in the
2 P
same way.

xT = [ X(l\ XIZ; ]
where

=[x g0 g ) )
X0 =[x, x4 ,--»yxp,x(pn,-u,xph‘]

= state vector of means of p field variables and q
bands of spectral values on the first occasion

and X? is on the analogy of X" but on the
second occasion.
I
RGN ()
0 02 y?)

H=
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where

I = 2(p+q)dimension identity matrix
0 = gx(p+q) dimension 0 matrix

0" = gqxp dimension 0 matrix
0@ = gxp dimension 0 matrix
I = g-dimensional identity matrix

1? = g-dimensional identity matrix

where 0, = (2p+2q)X(2q) dimension 0 matrix
(2q) X (2p+2q) dimension 0 matrix

=]
<
I

For estimating a field variable’s change
and its variance during an interval, we mul-
tiply a vector A, which is of the form
A=[o,...,0 -1,0,...,0,1,0...,0]
to the left side of X and R,, and AT to the
right side of R,. The positions of —1 and 1 in
A correspond to the positions of the target
variable in vector or matrix R, at the
previous and the present occasions respecti-
vely. The changes on a vector of p field
variables can follow the way stated above by
replacing p-1 pairs of -1 and 1 at the corres-
ponding places in vector A.

In principle, equations (22.1), (22.2) and
(22.3) are applicable to both the quantitative
and qualitative variables. The estimation for
a qualitative variable, however, is conducted
in terms of classes of the qualitative variable.
The values of a certain class of the qualitative
variable are only two possibilities: 1, if the
sample plot belongs to the class, or 0 other-
wise. It should be noted that in order to avoid
singularity, for each qualitative variable with
m classes, only m-1 classes can be simultane-
ously involved in Eq. (22.1), (22.2) and
(22.3). The estimate and its variance of the
remaining one will be derived readily after-
wards.

The GLS for other cases can be made in a
similar way. So long as vectors Z and X are
determined, H and R, can be be arranged by
following the order and intercorrelations
among the components on Z and X.

In reality the population covariance matrix
would be unkown. Then the permanent plot
sample covariance is used instead.
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222. Two phase sampling for stratification

When the population is large enough, the
estimate and variance of the mean value of a
target variable in a population are of the
following approximate forms when using TPS
(see Cochran 1977, p. 333)

Xy = ZwWX; (22.4)
s{‘ =Zw s+ Zw; (% — X,)%/n’ (22.5)
where w; = weight of stratum i
X; = mean value of the variable of interest in
stratum i

&
[

5 standard deviation of ¥,

It should be mentioned that for sample case
I12P12, the stratification is made on the basis
of the image data from two occasions.

223. Class area transitions of the qualitative vari-
ables

In order to appraise the past activities of
silviculture and to estimate the drain and
growth of the forests, an analysis would be
required of the trend and the amount of class
areas of a qualitative variable during a
period. In such a situation, a convenient way
is to create a class (area) transition table or
matrix.

A class (area) transition table which shows
how sample plots move from a class to other
classes can be easily constructed on the basis
of two measurements of the permanent sam-
ple plots. For a single variable, the class
transition table can be expressed as follows:
where n;; refers to the number of sample plots
of class 1 on the first occasion and class j on
the second occasion.

It is easy to see how the plots of a qualita-
tive variable in classes change during a
period, i.e. the direction and the amount of
the change. For example, n,, indicates that
n;, sample plots of a certain variable origi-
nally belonged to class 1, and that in one
period it has moved to class 2. Since each
sample plot can represent a certain amount of
the forest area, the transition of the sample
plots can be extrapolated to the whole forest
area. Furthermore, n;; can be replaced by the
corresponding proportion of n to the total

Table 2.1 Class transition table.

Occasion 2

Class 1 Class 2... Classj... Class m
OCIass] n Nj.piss n ... n .
c Class 2 ng o Ny ,... L O n; o
c
GPRNE—
$ 3
1 Class i n; Ny . oems n n o
o
0 s emses
I Classm  my | nnoo... n -

number of permanent sample plots in class i
on occasion 1, then the table becomes a prob-
ability transition matrix as in a Markov
chain.

From Table 2.1 the probability transition
matrix can be transformed accordingly,

PuiP22---Pij---Pim
P21 P22 - - P2j - - - P2my

p = Pi1 Pi2 < Pij -+ Pims
Pin| P2 + = P+ P (22.6)
where p;; = n;j/n;, and
n; = number of the sample plots of the i class

on occasion 1

With the image data in the first phase, the
probability transition matrix can be obtained
by GLS or TPS. The application of GLS for
estimating the transition probabilities is the
same as for estimating the proportions of the
qualitative variables mentioned in section
221 but it is now carried out in terms of
classes on both occasions.

By using the TPS estimation, the weighted
probability transition matrix of the popula-
tion can be given by

L

P = E‘.I w; P, (22.7)
where P; = probability transition matrix in stratum i
w; = weight of stratum i
= n//n’
n{ = number of image sample points in stratum
i
L = number of strata

The estimates of transition in quantities or
probabilities, and their confidence limits or
precisions can be obtained according to
(22.3) and (22.5) in section 22.

——

The transition matrix can also be used for
handling multitemporal image and field data.

23. Estimation methods for compartments

Two estimation methods: TPS estimation
and regression estimation will be used for the
compartments in the investigation.

For the compartmentwise estimation, TPS
can be divided into two sub-methods, super-
vised and unsupervised methods. The un-
supervised method is the basic method in the
study.

If multitemporal image and field data are
available, the working steps and associated
statistical options when using the unsuper-
vised method for the compartments in the
study are as follows:

Working step Statistical options

Data preprocessing including
compartment delineation
and digitization

Data registration

Filtering Filtering for spatial

and time series

Transformation Principal component

analysis (P.C)

Canonical variable

transformation (C.V)

Vegetation index

transformation (V.I)

Stratification including
Pre-strafification

Classification Classifying: K-means

clustering or

equal interval classifying

Classifier:

minimum distance

classifier (MD) or

maximum likelihood

classifier (ML)

Compartment-oriented
estimation including
calculation of estimates
in strata

Calculation of estimates
in compartments
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Most working steps and the statistical op-
tions for the unsupervised method are also
suitable for the supervised method.

For the regression estimation, the working
steps and statistical techniques in the study
are:

Data preprocessing including
compartment delineation
and digitization

Data registration

Transformation Principal component

analysis

Fitting regression models

Application of the models
to the compartments

231. Filtering

Filtering is a conventional technique used
in image data processing. The main objective
of filtering is to remove the random error in
the image data and to improve the estima-
tion.

2311. Time filtering

Time filtering is filtering for time series. It
is a technique for handling multitemporal
image data.

Theoretically, for a stationary time series
¢, a linear time invariant filter is of the form
(Harvey 1981, p. 70),

t+u

Yo = Z Wl (23.1)
=iy

where w; = weight of c,; at time t-].
u and v = positive integers or 0

In a continuous forest inventory, it is dif-
ficult to obtain a sufficiently large sample for
a time series of a certain target variable be-
cause of the long remeasurement period.
Thus, instead of using a time series acquired
at a great number of time points, a sample
consisting of a large amount of spatial sample
plots obtained from two successive observa-
tions in time is often available in a continuous
forest inventory. The weighted expression
concerning a time filter such as (23.1) can be
thought of as a weighted linear transforma-
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tion or a kind of adaptive filtering (Niblack
1985) which is not time-invariant. For the
case of two time points, the weighted trans-
formation of image variables is of the form

Y2 = WoC + Wi (23.2)
and wop + w; = 1,

where ¢, and c, are the image variables on
occasions 1 and 2 respectively, w) and w are
their weights. In order to estimate a certain
field variable, a practical way to determine wq
and w; is to maximize the correlation coeffi-
cient between y, and the field variable with
respect to wp or w;. Maximizing the correla-
tion between y; and the field variable, i.e.

dry, , /dw, =0

where 1, , = correlation coefficient between y,; and x
X = a certain field variable

then, the wy and w; can be obtained as fol-
lows:

wy=ay/ (a; + ay) (23.3)
wo=a,/(a; +ap) (23.4)
a3 = Ty 1Se, = Tey aley Sy (23.5)
A1 = Ty xSe; ™ Tey x Ty g Sy (23.6)

and the optimum correlation can be expre-
ssed in the following way:

AR T P TR R SO N A )
(1-12 o) (23.7)

(23.7) can be rewritten as follows:

Iyl = Ire al (1 + (= 1, )/ (1 = 1, ) 172
= |re, £|G: (23.8)

where q, = 1, /1,

G, is defined as the gain in the correlation
because |y, |>|r.. | (or|r «|) always holds.
| e, | is here supposed to be greater than |r,
l, i.e. we can select the greater value of r ,
and r,, as the denominator of q,.

If x is the current state of a field variable,
the weights w) and wq usually have positive
signs. Then y, is a weighted average of the
image variables on two occasions. The filter

takes on “low path” characteristics. If x is the
net increase, the signs of the weights are often
opposite. Then, y, is a weighted difference
between image variables on two occasions.
The filter takes on high path” characteristics
(Niblack 1985, Showengerdt 1983).

2312. Spatial filtering

Spatial filtering is a filtering for spatial
series. A linear and shift-invariant spatial
filtering can be expressed in the following
way (Showengerdt 1983, p. 16—22)

gxy) =[x,y )h(x-x",y-y")dx’dy’ (23.9)

where x and x” = horizontal coordinates of spatial points
y and y’ = vertical coordinates of spatial points
g(x,y) = output of the linear system
f(x",y’) = input of the linear system
h(x-x",y-y’) = point spread function or weights
of f(x",y’)

It is obvious that the spatial filtering is also
a weighted process.

In the discrete case, (23.9) for a finite range
can be written as follows:

ity

gid) = 2 Erihhi-kj-)  (23.10)
=y =]=u
For the one-dimension case,
g(i) = kii‘.: f(k)h(i—k) (23.11)

(23.11) resembles (23.1).

Spatial filtering can be used to blur the
image (smoothing filtering) or to enhance the
edges (edge enhancement filtering) in order
to produce different visual effects. On the
other hand, there is another kind of filtering
which is designed to maximize a certain
goodness criterion rather than the visual ef-
fect. For instance, in a forest inventory image
processing attempts to improve the correla-
tion of the image variable with the field vari-
able. It follows that spatial filtering in a forest
inventory, as with time filtering mentioned
above, should also attempt to maximize the
correlation in question.

In spatial filtering, the adjacent pixels are
naturally the most effective for correlation
maximizing. A central pixel, in which an

image point falls, and all its adjacent pixels
can form a 3 X 3 pixel window. Then, the
filtering of the pixel window could be taken
Into account.

Consider a spatial filter of two adjacent
pixels. The filter can be expressed as (23.2)
except that the subscripts refer to two adja-
cent pixels . Assumes S¢, = S,

Then weights of the filter for maximizing
the correlation can be simplified from (23.5)
and (23.6) as follows:

BT x = Ty xTe (23.12)

LTS L S (23.13)

The weights of the filtering window, which
is a pixel window to be involved in filtering,
can be simply obtained by summing all the
two-pixel filters, each of which consists of the
central pixel and one of its neighbours.

The spatial filter may also consist of a
couple of the nearest image pixels around the
image point. In this case, the filter becomes
unidimensional, as in (23.11), although the
nearest pixels might come from different di-
rections.

232. Transformation

A transformation of satellite digital data, in
principle, proceeds from two considerations:
i) reducing or removing the influence of fac-
tors such as atmospheric scattering, topog-
raphic relief or sun elevation on the satellite
imagery; ii) compressing the redundant data,
which will result in inefficient analysis due to
the high correlations between spectral bands.
In accordance with whether information ab-
out the field variables is involvled or not, the
transformation can be divided into the trans-
formation with and without the ground ob-
servations. Typical transformations, suitable
for both, are principal component analysis
and canonical variable analysis. The latter
deals with two sets of variables. In addition,
the vegetation index transformations related
to forest change will be also presented.

The transformation is made for the sample,
following which the transformation coeffi-
cients, e.g. eigenvectors in the principal com-

2
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ponent analysis, will be used for the image
plots in the compartments.

2321. Principal component transformation

The transformation of spectral values can
be expressed in the following form (see An-
derson 1984, p. 451)

Y=ATC (23.14)

where Y is a vector of principal components,
A is a matrix which is composed of eigenvec-
tors, C is an original spectral vector. Let B be
a eigenvector in A. B can be solved from the
equation

|Zc—AI|B=0 (23.15)

Where A is a Langrange multiplier and I is
an identity matrix. Matrix A can be calcu-
lated from either a covariance matrix (non-
standardized transformation) or a correlation
matrix (standardized transformation). In
most of cases, the choice between the two
matrices depends on the ultimate application.
As Singh and Harrison (1984) mentioned,
“whether standardization is desirable is, in
the ultimate analyses, to be decided on non-
statistical grounds”. For the forest inventory,
the choice is often decided on the purposes of
the inventory, the variance proportion dis-
tribution into principal components and cor-
relations between the stand characteristics
and principal components. Since the standar-
dized transformation is able to remove tem-
porally or spatially-varying gain (which is a
multiplier to the spectral bands) and bias to a
certain extent, the choice from the view point
of normalizing the image data is in favour of
the correlation matrix. In this study, the stan-
dardized transformation will be used in the
main procedure, but the non-standardized
transformation also will be dealt with for
comparison.

2322. Canonical analysis

Canonical variable analysis (see Anderson
1984, p. 480) is also a linear transformation
but deals with the correlation between two
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sets of variables: the image variables and the
field variables in the study. The motive for
using canonical analyses is to maximize the
correlation between the transformed image
variable and the transformed field variable.
For a single quantitative variable, for inst-
ance the volume, the correlation between the
canonical variable and the quantitative vari-
able is equivalent to the multiple correlation
between the quantitative variable and all the
spectral bands.

Subject to maximizing the correlation bet-
ween two sets of transformed variables, the
linear transformation can be written as fol-
lows:

Y. =ATC (23.16)
Y,=BTX (23.17)
where Y. = vector of canonical variables for spectral

bands.

Y vector of canonical variables for stand

characteristics
C = original vector of spectral bands
X = original vector of stand characteristics
A and B = coefficient matrices

Let o and B be vectors in A and B respec-
tively, a and f can be solved from the follow-
ing equation:

[_uc Zc,x] [Q] =0 (23.18)
z)(,C —ux p

The canonical variables for both sets of
variables are independent of each other and
the corresponding correlation coefficients are
ordered in a descending way.

2323. Vegetation index transformation

Using MSS Landsat data, Kauth and
Thomas (1976) developed a linear transfor-
mation to produce four orthogonal indices.
These indices are termed brightness (BR),
greenness (GN), yellowness (YE) and non-
such (NS). Later Wiegand and Richardson
(1982) created a 2-dimensional orthogonal
vegetation index (PVI) based on the same
principle. The original purpose for develop-
ing this procedure was to extract an efficient

component, which is concerned with the phy-
tomass, on the basis of Landsat data. The
most effective index is the green one which
remains after the soil background and ran-
dom errors have been removed. The index is
therefore helpful in estimating the biomass
and detecting change. In fact, the principle
can be also used in TM data. By way of
comparison, we will construct the first two
indices, the soil index and the green index,
based on the TM data available for the study
area.

In order to separate BR and GN, the soil
line should be selected. Image data for two
points on the ground are needed, i.e. a wet
point and a dry point (see Jackson 1983).
Then a data point which represents the green
index is required for forming the second vec-
tor orthogonal to the first. The Gram-Schmit
algorithm employed can be found in
Freiberger (1960) and Jackson (1983).

233. Stratification estimation

Stratification is often encountered in the
statistical literature concerning sampling
techniques. In fact, its use in the study is
rather like classification. Considering that it
is a part of the two-phase sampling, we call it
the ”stratification”. Thus, the term in this
study has a dual meaning.

Although some differences exist between
stratification and classification, the terms are
not separated in the subsequent sections un-
less stated otherwise.

In order to improve the stratification effi-
ciency by using the image data, it is essential
that the pre-stratification has to be made
using additional information such as aerial
photos, topography maps, ready-made forest
type maps and any other material. As a re-
sult, only the forest area is included in the
stratification. Also, in order to estimate
growth the investigated area should be di-
vided into cut and non-cut areas. This parti-
tion should be made for either the sample or
the image points in compartments.

The classification is a decision-making pro-
cess in which every image point will be as-
signed to a stratum to which the po'inF is
closest in light of predetermined statistical
rules. Four steps are involved:

1. determining the stratification factors
and the number of strata;

. classifying or clustering;

. creating the classifier for the image
points in compartments and calculating
the estimates for strata;

4. assigning a stratum code to each image

point in the compartment.

W N

The second and third steps are conducted
for the sample only in the second phase.

The stratification can be categorized into
the supervised and the unsupervised methods
according to the stratification factor. The im-
age variable is the stratification factor for the
unsupervised method, and the estimated field
variable for the supervised method.

2331. The unsupervised method
A. Classification

To make classification more efficient, the
spectral values of imagery bands, as stratify-
ing factors, would be transformed, for inst-
ance into principal components.

The number of the tranformed variables
are determined by the variance proportion
and the correlation concerned. For TM im-
age data, the first three principal components
are frequently selected as the stratifying fac-
tors because the remaining three are less
important.

For the unsupervised method, it is difficult
to precisely determine the number of strata.
There are no satisfactory methods for deter-
mining the number of clusters for any type of
cluster analyses ” (Everitt 1979, 1980). The
main reason for the difficulty in determining
the number of strata arises, perhaps, from the
fact that the threshold of an efficient number
of strata itself can not be exactly decided.
Cochran (1977) discussed the number of stra-
ta in a stratification; under the assumptions
that the regression of a estimated variable y of
interest on a stratification factor is linear and
every stratum has the equal number of sam-
ple units, the variance of the estimate of the
mean value of y can be approximately expre-
ssed in the form

$=L[P/L2+(1-2)]/n (23.19)
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where s? = sample variance of y without strafifying
= number of sample plots
r = correlation coefficient between y and the
strafifying factor
L = number of strata

The part of (23.19) in the brackets can be
regarded as a ratio of the variances between
stratification and non-stratification. Since r?
/L?is much less than (1 — r?)(when L is fairly
large), the effect of the stratification is not
sensitive to the number of strata. If the
number of strata is over ten, there is no a
sharp threshold for the number of strata.
According to (23.19), Cochran concluded
that the effect of the number of strata on the
variance is little beyond L = 6, unless r > .95.
Although (23.19) might be oversimplified in
some cases, it reveals at least some property
concerning the relationship between the
number of strata and the correlation coeffi-
cient.

In practice, a useful approach for deter-
mining the number of strata, and which is
concerned with all the stratifying factors and
variables of interest, is to plot the number of
strata against R, where R is ratio of the sum
of squares between strata divided by the total
(corrected) sum of squares (SAS 1982). Usu-
ally, with an increase of strata, R? also in-
creases. The number of strata at which R?
tends to stabilize can then be selected.

In order to classify the sample into
homogeneous strata in terms of the image
variable, clustering is a common technique.
k-means clustering (see section 2333) is
rather popular in this aspect. An alternative
is the equal interval classifying method. This
classifies the image variables into a number of
classes with an equal interval. Both of
methods will be optionally used in this inves-
tigation.

Creating the classifier means creating a
decision rule for assigning an image point to
an appropriate stratum. A number of options
could be selected for this purpose. These
include the minimum distance method, the
paralleleipiped method, the neighborhood
method, the maximum likelihood estimation,
the generalized linear models etc. (Hand
1981).

One of the simplest ways to determine the
stratum code of an image point, called the
minimum distance (MD) method, is to assign
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the image point to the stratum to which the
point is the nearest, according to the distance.

Statistically, the maximum likelihood
(ML) classifier (see section 2333) is more
efficient, compared to the MD classifier, if the
statistical prerequisites are satisfied. Once
the ML classifier is accepted and applied to
the sample, a process called the ML iteration
might be required because of the redistribu-
tion of the sample plots in the strata. The
iteration will continue until no further change
of the sample plots between strata.

These two classifiers will be optionally
used in the study due to their simplicity and
efficiency.

By using the selected classifier, the image
points in the compartments are classified, i.e.
the last step is completed.

It should be pointed out that the above
discussion is only confined to a pure classifi-
cation which partitions all image points into a
number of strata and decides to which
stratum an image point belongs. The estima-
tion of stand characteristics has not so far
been dealt with. This will be formulated in
the next section since stand characteristics
constitute a basis for the compartment esti-
mation, and can therefore be viewed as a part
of the estimation.

B. Compartment-oriented estimation

Compartment-oriented estimation means
that the estimates of the stand characteristcs
in strata are extended to compartments
through the stratum codes of the image points
within them. The method includes:

— calculating estimates for each stratum
— extending the estimates of each stratum
to the compartments.

The main ideas of the compartmentwise
estimation have been outlined by Poso et al.
(1984). The method is now demonstrated
with respect to two types of compartment
characteristics.

The quantitative characteristics usually in-
clude age, diameter, height, volume, total
growth, removal, mortality and so on. The
qualitative characteristics in Finland involve
the site class, stoniness, taxation class, de-

velopment class, main species and so forth.
For application, these two types of stand
characteristics will be treated in different
ways.

Statistically, a common way to describe a
population or a sample is by mean values for
the quantitative variables and by frequencies
or proportions for the qualitative variables.
The same method can be applied with respect
to acquiring the estimates of stand charac-
teristics for the strata.

Suppose that X;; refers to a mean value of
the jth quantitative characteristic in stratum
i, then the mean vector of p quantitative
characteristics in stratum i can be given by

Xi = [RigoXigse«orXijyernXipl (23.20)

For the qualitative characteristics, a
stratum may include more than one class. In
this case, a frequency-distribution (F-D) mat-
rix, instead of a vector, can be utilised to
represent the stand characteristics for the
stratum.

Assume that there are q qualitative stand-
characteristics in the strata; the maximum
number of classes in all the qualitative vari-
ables is m; the the F-D matrix for stratum i
can be expressed in the following way:

f|,l fl,z o fl.k cee rl.m

fafr. . fox. - fom
Bm || 2o 23.21
1 £ e By onn B (23:21)

R PO
where f; = nj, /n; and % fx=1Lk=12...,m
n, = number of permanent plots in class for
qualitative variable j
n; = number of permanent plots in stratum i
q = number of the qualitative variables.

The mean vectors and F-D matrices are
then available for the compartment-oriented
estimation in the next step.

The estimates of charateristics in a com-
partment can be denoted in the same way as
the estimates of the stand characteristics in
the strata.

For the quantitative characteristics, a
mean vector in the compartment can be
achieved simply by averaging the mean vec-
tors over all the image points in the compart-

ment. The expression of a compartment
mean vector is given by

X =2 niX;/m{ i=12 ...,n (23.22)

where X; = vector of mean values of quantitative vari-
ables in stratum i

n{ = number of image points of stratum i in the
compartment

n; = number of total image points in the com-
partment

For qualitative characteristics, the esti-
mated result for a compartment is also a F-D
matrix as (23.21). The operation can be writ-
ten as follows:

F‘=2. n; F;/n, i=1,2,..n, (23.23)

where F; refers to the F-D matrix of stratum i.
Based on the F-D matrix, we can readily
make a decision for all the qualitative charac-
teristics in a compartment. Of course, we
may select the dominant class as a represen-
tative of the nominal characteristic in the
compartment and calculate the mean class
code for the ordinal variables or just let the
F-D matrix stand for all the qualitative
characteristics in the compartment.

2332. The supervised method

If the sample units in the second phase are
viewed as the training areas and the field
variables are used as the stratification factors,
the stratification is implemented in the so-
called supervised way.

Although the supervised method can also
cover the four steps mentioned in the un-
supervised method, the first two steps are
quite simple because the strata can be de-
cided directly, especially for the qualitative
variable. For the quantitative target variable,
the strata can be obtained by equai interval
classifying. ;

The most important step in the supervised
method is to determine the classifier. In many
cases, the ML classifier would be acceptable.
It is effective for both the qualitative and the
quantitative target variables if the required
conditions are satisfied. The MD classifier
can be also used for the quantitative vari-
ables.
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The mean vector for the strata is still
needed for the supervised method because the
quantitative variables have to be classified by
equal intervals. The F-D matrix for the qual-
itative variable is generally not necessary for
the strata , but it is required for the compart-
ments. This is because by using the ML
classifier for every image point in the com-
partments what we actually obtain is the
probability distribution of an image point
rather than an exactly determined class.

2333. Statistical techniques in the stratifica-
tion

A. K-means clustering

The algorithm (see MacQueen 1967, Har-
tigen 1975) begins by selecting k starting
points which can be used as the centers of the
k clusters. Then every image point is assigned
to the nearest cluster in terms of the distance
from the point to the center of the cluster.
After all image points have been so treated,
means of the k new clusters are recalculated
and used as the coordinates of the new cen-
ters of the k clusters. Based on the new cen-
ters every image point is reassigned. The
process is repeated until the image points
involved in each cluster have no longer relo-
cated. The distance used is Euclidean.

B. Maximum likelihood classification and
the Bayes rule

The matter has been dealed e.g. by Tou
and Gonzalez (1974), Schowengerdt (1983),
or Swan and Davis(1978). Let X be a n-di-
mensional spectral vector, p(i) be the a priori
probability that X comes from stratum or
category i, and let p(X | i) be a conditional
probability density function of stratum or
category i , then the likelihood ratio is of the
form

I(X) = p(X|i)/p(X1j) (23.24)

where p(X|j) is a conditional probability
density function of stratum or category j.

For an image point with spectral vector X,
the decision rule for assigning the point to one
of two strata or categories (i and j) is defined
as follows:
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if 1(X) > T(X) then the image point belongs
to stratum or category i, otherwise stratum or
category j, where T(X) is a threshold value
expressed as

T(X) =p()/p(i) (23.25)
The above decision rule also can be expre-
ssed by discriminant functions. From (23.24)

and (23.25) the discriminant functions can be
derived as follows:

d; (X) = p(X1i)p(i)
d; (X) = p(X1j)pG)

and the Bayes decision rule can be rewitten in
the following way:

if d; (X) > d; (X), then the image point € i
if d; (X) < d; (X), then the image point € j

More often, d; (X) and d; (X) take the natural

logarithm form, i.e.

d; (X) = In[p(X |i)p(i)]
and
d; (X) = In[p(X|j)p()]

Assume that the image variables in
stratum or category i obey a multivariate
normal distribution with mean vector w; and
covariance matrix Z;, then the probability
density function is of the form

p(X|i) = 1/(2m | Zi] Jexp[— (1/2) (X—p) "Z(X— )]
in turn,
d; (X) = In[p(i)]— In(2m)/2 — (X—p)"Z(X—p)/2—
In(|Z])/2 (23.26)
If there are m categories for a target vari-
able, then the probability (posterior probabil-
ity) belonging to category k for an image

point can be expressed as follows:

p(kiX) = exp[di(X)]/ Zexp[d; (X)] i=1,2, ...,m
(23.27)

When the a priori probabilities are un-
known, a common way to determine the a

priori probability is initially to assume that
they are equal to each other or they are
proportional to class (or category) sizes. For
the multitemporal cases, the posterior proba-
bility of an image point on the previous occa-
sion and the transition probability can be
used for estimating the a prior probability on
the present occasion (see section 24).

234. Regression estimation

2341. Conventional regression models for the
quantitative variables

Regression models will be used in the study
for the purpose of comparison. Two models
will be adopted for estimating the volume and
the net increase. For the volume, the model is
of the form

V = exp[(ag + a, In(b, + p;) + a;In(b; + ps)] (23.28)

where p,
Pes

= first principal component

= third principal component and

ay, a), ag, by and by are the parameters to be
estimated. For the net increase, the model is
of the form

D, = ag + exp(by + by pai+b; pea) (23.29)
where p, = second principal component and

ag, by, by and b, are the parameters to be
estimated. It should be pointed out that the
principal components used in the models are
obtained on the basis of the tranformation of
the bitemporal image data.

2342. Log-linear and logistic regression mod-
els for the qualitative variables

The log-linear or the logistic regression
model is applicable to the qualitative vari-
ables, and especially to the nominal vari-
ables.

For the multinomial variables, the re-
sponse of a sample plot to a multinomial
variable is one of the possible categories of
this variable. If the sample is partitioned into

a number of cells (see SAS 1985) through
classifying in terms of image variables, the
estimate of the category probabilities of a
multinomial variable for a cell can be denoted
by the proportion of the counts of the categ-
ory to the total counts in the cell.

Suppose that for a certain qualitative vari-
able, the sample is classified into L cells; for
each cell, there are m possible categories.
Then the log-linear model can be expressed
in the following way

Y=Xf+g i=12 ..., L (23.30)
where Y; = [fm £z o3 fi_,, Ceey f,,m~l]T

fi; = In(pij/pim)

Py = g/ m;

Pim = Dim/ 0;

n; = number of sample plots in cell i

n;; = number of sample plots of category j in cell i

n;, = number of sample plots of category m in
cell i

B = parameter vector

X; = independent variable (image variables)
matrix

€ = error vector of the model

B can be solved by the weighted least squares
method (McCullagh and Nelder 1983, SAS
1985).

The drawback of the log-linear model is
that the sample has to be classified into cells.
Where some cells probably remain contain-
ing only a few observations, which would
cause the zero proportion for many
categories, then they have to be given a small
value in order to derive a solution. This may
produce a biased estimation. An alternative
choice for avoiding such a situation is to
select the logistic regression model instead of
the log-linear model.

A logistic model can be expressed in the
following way:

P=Q+¢g (23.31)

where P; = [py, pij, - - - Pim-1]"
Qi = [qi1, Gz - - = qi.m—l]T
qi; = exp(x;B)/[(1 + X exp(x)]
i=1,2 ..,L j=12 .., ,m-l
x; = the jth row vector in X in (23.30)
B = parameter vector
g = error vector of the model
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B in (23.33) can be solved by means of the
maximum-liklihood method (Cox 1970,
McCullagh and Nelder 1983, SAS 1985,
Press and Wilson 1978).

24. Updating by using multitempotal
image and field data

241. Multitemporal data handling

Updating here is concerned with handling-
the multitemporal image and field data in
order to obtain accurate results for the new
inventory.

The multitemporal data can be handled in
several ways:

— separately by occasions
— by stacking
— recursively.

The first way is inefficient for both the
current state and the forest change. This is
because the multitemporal image data be-
come the separate unitemporal data and the
permanent plots are used in the same way as
the temporary plots.

Stacking multitemporal data is a common
way for data updating because it covers all
the available information. In addition, the
estimation of both the current state and
change can be conducted simultaneously.
The estimation methods presented in the pre-
vious sections are based on stacked image
data. A transformation for stacked multitem-
poral image data could be implemented as
follows:

(1) the transformation is run once by using
all or a part of bands on all occasions

(2) the transformation is made separately
by occasions

(3) the transformation is based on time
filtered image data.

Data recursion is a further treatment of
results obtained by using the multitemporal
data separately. In this case, the estimates
obtained on one occasion can be used for
modifying the estimates on another occasion.
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242. Updating methods

Updating methods are methods for handl-
ing multitemporal image and field data by
means of the estimation methods.

Four updating methods will be discussed in
this study, of which stacking multitemporal
data and time filtering have been presented
already. The remaining two are:

— ML cascade
— estimate-modifying.

Both of these methods are recursive.

A maximum likelihood cascade, called as
ML-PTM-ML model in this study, was de-
veloped by Swain (1978). PTM is an abbrevi-
ation of Probability Transition Matrix. The
model re-determines the probability distribu-
tion of the image points in the compartments
with the help of a priori distribution derived
from a probability transition matrix and the
probability distribution on the previous occa-
sion.

Similarly, another maximum likelihood
cascade, called the ML-ML model in the
study, is the special case of the ML-PTM-
ML. In this model the probability distribu-
tion of the image points obtained by using the
ML classifier on the previous occasion can be
used as the a priori probabilities for the ML
classifier on the present occasion without the
PTM. This model can be used in the case
where there is no big change during the in-
terval.

The framework of the two methods is illus-
trated in Figures 2.1 and 2.2 where the frames
with the dash lines refer to the operation.

For the ML-PTM-ML model, the a priori
probability of an image point can be derived
as follows

p=2ppy i=12 ...,m (24.1)

where p; = a priori probability of an image point which
falls in category or stratum j on the present
occasion
pi = probability of the image point in category i
or stratum on the previous occasion
pi; = transition probability from category i on
the previous occasion to category j on the
present occasion
m; = number of categories or strata on the pre-
sent occasion

Permanent plots Permanent plots
on the previous p=—a Probability j—{ on the present
occasion transition occasion
matrix

ML classifier ML classifier
Probability Probability

distributions distributions

of image points of image points

on the previous on the present
occasion occasion

e 1

A priori probability distributions
of image points on the present Bayesian
estimation

occasion

Probability distributions of image points
on the present occasion

Figure 2.1. Maximum likelihood cascade (ML-PTM-
ML model).

Image data | Sample plots I Image data
on the previous on the present
occasion occasion

R
I ML classifier ]

I ML classifier ]

| Sepesn nesmmrizs |

Ipmnmu:y distributions of image points I

on the present occasion

Figure 2.2. Maximum likelihood cascade (ML-ML
model).

The probability transition matrix can be
easily constructed following the same method
mentioned in section 223. The maximum
likelihood classification and the Bayesian rule
were already presented in section 23. Al-
though the ML cascade was originally de-
signed for the supervised method, both ML-
PTM-ML and ML-ML models can be
adapted for updating data on the basis of the
permanent sample plots. However, it should
be noted that for the supervised and unsuper-
vised methods, the construction of the transi-
tion probability matrix is different. The
former is based on the field variables while
the latter is based on the image variables. In
addition, the ML-ML model can be also used
for updating data based on temporary sample
plots measured on two occasions or on a

single occasion but with multitemporal image
data.

Estimate-modifying in the study means up-
dating data by weighting two estimates: one
is based on the stratification by using the
newly obtained image data; another is based
on the statification by using the old image
data. The weights are equal to the reciprocals
of the variances of the estimates. The method
is time-consuming. In addition, it should be
implemented separately for both the cut and
non-cut areas.

243. Updating data for different sample cases

Basic sample cases for two occasions are as
follows (cf, sestion 212):

- T112P12
- I1PI2
- T12P1

The updating methods described above are
mostly for sample case 112P12, but they can
be applied to the other two cases. Some up-
dating features for the last two cases are now
presented.

Case I1P12

When the image data , together with the
permanent sample plots are involved from
the previous forest inventory, and only the
permanent sample plots have been remea-
sured in the present forest inventory without
new image data, the data updating is relative-
ly simple. The area is divided into non-cut
and cut areas and the strata previously ob-
tained are adjusted, new compartmentwise
estimation is made by using the newly remea-
sured results from permanent plots. If the
supervised method is used in the stratifica-
tion, updating data by using only the new
measurements of the permanent sample plots
can be carried out through the probability
transition matrix.

Case [12P1

Without random bias and gain (see section
2321), updating by only using the new image
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data is also straightforward. The updating
can be completed simply by using the new
image data and the old models which were
created on the basis of the image data and the
measurements from the previous occasion.

However, beyond the forest change, the
image data acquired at different time points
often possesses random biases and gains gen-
erated by seasons, atmosphere, sun elevation
etc. over time. In this case, the image data
should be normalized by means of special
techniques such as the multispectral ratio,
the vegetation index transformation and the
standardized principal component transfor-
mation. Among these techniques, the stan-
dardized principal component transforma-
tion can remove both the biases and the
gains.

In practice, none of these normalized
techniques could effectively remove the ran-
dom biases and gain but still maintain the
forest change for the normalized image data.
More often, beside the random errors these
techniques may also remove a certain amount
of image change information generated from
the forest change. In order to remove the
random bias and gain but maintain the image
changes caused by the forest changes, the
normalization of the image data may still
require ground plots.

25. A framework of the main procedure
in the study

The generalized least squares (GLS) esti-
mation for the population and the unsuper-
vised stratification for the compartments by
using the stacked bitemporal image and field
data (sample case I12P12) constitute the
main procedure in the study. A framework for
the main procedure is illustrated in Figures
2.3 and 2.4.

The frames formed with dash lines in Fi-
gures 2.3 and 2.4 denotes data acquiring or
processing, whereas the frames formed with
solid lines refer to results following the previ-
ous processing.

The left part of Figure 2.3 illustrates the
connection of the procedure for the popula-
tion when using GLS, while the middle and
right parts illustrate the connections of the
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procedure for the compartments when using
the unsupervised stratification.

Figure 2.4 demonstrates the connection of
the statistical options in the stratification step
shown in Figure 2.3.

Aquisition Field works D.linutlon
of image data on two occasions
on two occauonl Conpcn:unn

ke ---I-.._ e
Processed Digitized
image data Ptmn.nt plou compartments

Image dn.a
registration
Spatial filtering
and time filtering
Image points in Transformation Digitized
the first phase (P.C or C.V) compartments
and permanent _—_p - --- with image data
plots in the
second phase Eigenvectors

D.ton.lnlnq

stratum codes for
image points
in compartments

Calculation of estimates
in strata

Estimates and the Estimates
transition matrix
in the population

in the compartments

Figure 2.3. The estimating framework for the population
and compartments.

Permanent sample plots with image data Extra
in the second phase information

Stratification

[x -means cxuna:xn_] Equal interval
classifying

] ]

MD classifier
or ML classifier
for the image points

in compartments

Figure 2.4. Stratification for the compartments.

3. DESCRIPTION OF THE MATERIAL

31. The study area

The study area is located in Hyytidld, the
forest experiment station of Helsinki Univer-
sity, situated about 210 kilometers north of
Helsinki in Finland (Figure 3.1). This area
and the data described later in the paper have
been already outlined in the previous studies
(Poso et al. 1987; Peng 1987). Its geographic
position is 61°50" N and 24°18" E. With low
hills, the terrain slopes gently. The highest
altitude is 190 m but most of the area is
situated between 140 and 160 m above the
sea level. The total area amounts to 198.2
hectares, which consists of 194.3 hectares
forest land, 3.3 hectares water area and .6
hectares other non-forest land.

The forest land is dominated by Norway
spruce and Scots pine mixed with a small
amount of birch and other species. The aver-
age height, the D.B.H and the volume in the
forest area are 16.2 m, 19.8 cm and 176 m*
respectively. The frequencies for some stand
characteristics are based on 1472 field plots
and are presented in Table 3.1.

The explanations on the codes of Table 3.1
are given in section 33.

32. Sample plots on the ground

Relascope plots with a basal area factor of
2 were applied in 1983—84. The total number
of plots measured was 1472 from which 1401
sample points fell on forest land. The dis-
tances between two points are 50 m latitudi-
nally and some 25 m longitudinally (See Fi-
gure 3.1). These sample plots, with the as-
sociated image information, will be employed
in as follows:

1. 1472 sample points will later serve as an
set of input data for simulating the ground
observation and spectral values for the com-
ing periods.

2. The 1401 sample plots on forest land will
be used as a test sample for checking the
estimated results.

¢ o o

Figure 3.1. The location of the study area and a scheme
of the layout of the sample plots.

3. The permanent plot sample consists of
387 field plots which are drawn from the test
sample. The initial measurements of the sam-
ple plots are used as the measurements of the
permanent sample plots on the first occasion.
The remeasurements of all the sample plots
for the coming occasions will be simulated
(see section 35).

33. Stand characteristics of the sample
plots in the study area

The stand characteristics for the sample
plots were defined acccording to Kuusela and
Salminen (1969). These studied more
thoroughly here are as follows: (the number
refers to the code of a class)

Land classes
1. Forest land.
2. Poorly productive land.
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Table 3.1 Distributions of the stand characteristics.

Main species

Pine Spruce Birch Other species
% 44.2 49.3 5.4 1.1
Age classes (year)
0-19 20—-39 40-59 60—79 80-99 100—-119 120-139 > 139
% 14.9 12.7 6.4 15.3 28.2 12.3 8.9 1.3
Volume classes (m* /ha)
0-39 40—79  80—119 120—159 160—199 200—239 240-319 > 319
% 18.6 8.9 7.3 10.2 13.0 12.0 16.7 13.3
Development classes (code)
1 2 3 4 5 6 7 8
% 16.1 13.9 33.0 33.8 0.4 0.2 1.9 0.7
Soil classes (code)
1 2 3
%o 82.1 6.1 11.8
Site classes (code)
1 2 3 4 5
%o 0.1 14.9 57.8 16.4 10.8
Stoniness (code)
1 2 3 4 6 7 8
% 56.8 18.3 1.6 4.5 0.7 0.2 8.4 9.5
Taxation classes (code)
1 2 3 4 5
% 10.0 43.2 28.8 14.2 3.8
3. Waste land. 3. Pine swamp.
4. Agricultural land. 4. Open swamp.
5. Building site.
6. Roads. Site classes
7. store area. L. Very rich site with the main type OMaT (Oxalis
8. Others. Maianthemum).
9. Water. 2. Rich site with the main type OMT (Oxalis Myr-
tillus).

Soil classes
1. Mineral site.
2. Spruce swamp.

3. Damp site with the main type MT (Mynrtillus).
4. Sub-dry site with the main type VT (Vaccinium).
5. Dry site with the main type CT (Calluna).

Stoneness
1. Less stony.
. Stony.
. More stony.
. Swampy.
. Natural peatland.
. Drained peatland.
. Others.
. Heathy peatland.

o RN e S R -]

Taxation classes
1. IA including OMaT, OMT and etc.
2. IB including MT and etc.
3. II including VT and etc.
4. 111 including CT and etc.
5. IV including the productive pine swamp.

Development classes
1. Seedling.
2. Young stands at thinning stage.
3. Middle aged stands.
4. Regeneration maturity stands.
5. Shelter wood stands
6. Under-productive stands: poorly forested.
7. Under-productive stands: unsuitable species, too
old or defective.
8. Open area.

Main species
0. no trees
1. Pine.
2. Spruce.
3. Birch (Betula verrucosa).
4. Birch (Betula pubescens).
5. Aspen.
6. Alder.
7. Other broad leaved species.
8. Other conifers.

Age (year).

Basal area in m? /ha.
Average height in m.
Average D.B.H in cm.
Volume in m’ /ha.

Table 3.2. Wavelengths of TM bands.
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Composition (10 %): pine, spruce, and broad leaved
species.

Beside the stand characteristics listed
above, there are others, such as type of thin-
ning, forest improvement measures etc.,
which were used as stand characteristics in
the field work but were not used in the study.

34. Satellite image data for the study area

The Landsat-5 TM image data used in the
study were acquired in September of 1984
and in June of 1985. That means that for the
study there are two sets of digital image data
in the same area but acquired at different
occasions with an interval of nine months. The
two sets of image data acquired in 1984 and
1985 are called ID-84 and ID-85 respectively.

The prominent features of the TM image
data are the reduced pixel size (30 m X 30 m
for bands 1—5 and band 7), more spectral
bands and the wider range of the grey levels
(256 for the maximum value), in comparison
with the Multispectral Scanner (MSS). Ex-
cept the thematic band 6, the other 6 spectral
bands which consist of three visible bands
and three infrared bands are arranged from
the blue band to the near infrared band. The
wavelengths of the TM spectral bands are
given in Table 3.2.

The histograms of the two sets of image
data are shown in Figures 3.2(a)—(b).

The spectal values of the ID-84 and ID-85
indicate large differences. The numeric val-
ues of ID-85 are much higher than those of
ID-84.

The histograms also show that with respect
to magnitude and range of variation, bands 4
and 5 are superior to other bands.

The correlation coefficients of ID-84 and
ID-85 are shown in Table 3.3. For the qual-

Band 1 2

4 5 7

45—.52 .52-.60

Wavelength
(wm)

.63—.69

.76—.90 1.55~=1.75 2.08—-2.35
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Figure 3.2. Distributions of spectral values of six bands.

Table 3.3. Correlation coefficients between stand characteristics and spectral values of six bands.
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Soil class
Site class
Stoniness
Tax. class
Majn species
Dev. class
Age

D.B.H
Height

B.A

Volume
Composition:
Pine

Spruce

B.L

Soil class
Site class
Stoniness
Tax. class
Main species
Dev. class
Age

D.B.H
Height

B.A

Volume
Composition:
Pine

Spruce

B.L

Soil class
Site class
Stoniness
Tax. class
Main species
Dev. class
Age
Height
D.B.H
B.A
Volume

Composition:

Pine
Spruce
B.L

Band | Band 2 Band 3 Band 4 Band 5 Band 7
Data = ID-84
0.074 0.130 0.131 0.021 0.142 0.136
0.235 0.293 0.289 0.126 0.277 0.285
0.109 0.112 0.102 0.090 0.107 0.086
0.159 0.224 0.201 0.082 0.194 0.206
0.333 0.442 0.470 0.344 0.482 0.470
0.422 0.530 0.556 0.605 0.582 0.531
—0.427 =0.557 —0.554 —0.665 —0.590 —0.522
—0.443 —0.566 —0.578 —0.638 —0.606 —0.556
—0.487 —0.611 —0.621 —0.673 —0.661 —0.608
—0.453 —0.532 —0.557 —0.578 —0.592 —0.556
—0.436 —0.558 —0.551 —0.609 —0.587 —0.537
0.245 0.321 0.333 0.158 0.332 0.345
=0.315 —0.436 —0.445 -0.325 —0.485 —0.468
0.086 0.154 0.152 0.267 0.205 0.149
Data = ID-85
0.135 0.106 0.166 0.095 0.201 0.216
0.334 0.261 0.414 0.121 0.374 0.445
0.132 0.125 0.130 0.125 0.139 0.151
0.222 0.169 0.288 0.129 0.264 0.324
0.410 0.399 0.460 0.496 0.567 0.553
0.547 0.663 0.602 0.570 0.576 0.546
~0.514 —0.626 —0.531 -0.619 —0.558 —0.498
—0.537 —0.644 —0.578 —0.559 —0.579 —0.537
—0.591 —0.700 —0.640 —0.591 —0.642 —0.604
—0.540 —0.644 —0.595 —0.532 —0.598 -0.572
—0.525 —0.627 —0.569 —0.545 —0.597 —0.557
0.342 0.277 0.411 0.023 0.418 0.469
—0.401 -0.377 —0.446 —0.308 —0.563 —0.556
0.037 0.094 —0.019 0.467 0.178 0.070
Data = ID-simul
0.092 0.091 0.083 0.054 0.083 0.102
0.201 0.256 0.250 0.052 0.223 0.254
0.095 0.076 0.097 0.097 0.098 0.102
0.134 0.205 0.170 0.043 0.149 0.174
0.306 0.387 0.388 0.307 0.403 0.409
0.478 0.570 0.610 0.629 0.615 0.616
—0.461 —0.565 —0.590 —0.628 —0.616 —0.581
—0.532 —0.640 —0.680 —0.672 —0.705 -0.673
—0.509 —0.616 —0.658 -0.649 —0.675 —0.644
—0.485 -0.526 —0.565 -0.579 —0.594 —0.565
—0.510 —0.579 —0.605 —0.605 -0.630 —0.602
0.114 0.148 0.134 —0.039 0.109 0.134
-0.312 —0.395 —0.388 -0.273 —0.397 —0.402
0.024 0.049 0.027 0.104 0.052 0.038

Note that Dev. class = Development class, B.L. = Broad Leaved species, B.A = Basal Area and Tax. class = Taxation class.
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itative variables such as soil class, site class,
main species, taxation class, development
class and so on, the correlation coefficient
between a spectral band and a qualtitative
variable was calculated as follows:

-
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where r = correlation coefficient between a spectral
band and a qualitative variable
¢;j = spectral value of the jth image point in class
i of the qualitative variable
¢ = mean value of the spectral band of image
points in class i
¢ = mean value of the spectral band of all image

points
m = number of classes of the qualitative variable
n/ = number of image points in class i for the

qualitative variable

This resembles the correlations between
the scores and the dependent variable in a
regression model containing the dummy vari-
ables. Similarly, the correlations of these
qualitative variables appear as positive
values.

From Table 3.3, it can be seen that the
correlations between variables concerned
with the biomass like the volume, basal area,
height, D.B.H, age and development class,
are similar. For the data in the fall these
variables are more related to the near in-
frared bands (band 4 and band 5) than the
visible bands (e.g. band 3 and band 2). For
the image data in the summer, however, they
are more correlated with band 2, then bands
3, 5 and 4.

On the other hand, the variables concerned
with water and the colour such as main
species, tree species composition, soil class,
site class and taxation class, are always more
correlated with the near infrared bands (band
5 and 7), especially for the data in the fall.
This is because the reflectance and the ab-
sorbed range of both the vegetation and the
soil are placed in the infrared bands (see
Curran 1985).

The correlations between a spectral band
and the different classes in regard to each
qualitative variable are not the same. Figure

3.3 displays the correlations between the dif-
ferent categories (classes) of the major qual-
itative variables and data ID-84. These corre-
lations are computed by means of the binary
variables 1 and 0. It follows that if the spect-
ral values of a certain class is lower than the
rest, the class indicates a negative correlation
and vice versa. For instance, with the lower
spectral values, spruce as the main species
and development class 4 display negative cor-
relations.

One may find that the correlations of band
4 with most classes of the main species, soil
class, taxation class and site class are lowest,
but it is high with many of the development
classes.

The correlations between the differences of
the spectral values on the first two occasions
and the net increase of the field variables are
shown in Table 3.4. The image data on the
first occasion comes from ID-84 and the
spectral values on the second occasion come
from the simulated image data : ID-simul
(see section 35). Although the correlations
are quite low, the relationship of the correla-
tion with the spectral bands remains similar
to those of image data ID-84 in Table 3.3.

35. Simulation

The true field data available for the study
is based on a single measurement. The avail-
able image data are bitemporal although, the
interval is only nine months and corresponds
to only a unitemporal field data. Consequent-
ly, for the purposes of the study the multitem-
poral image and field data for the coming
occasions had to be simulated for the pur-
poses of the study.

351. Simulation of the ground variables

The simulation of the forest characteristics
for sample plots was manipulated by means
of a special programme called MELA created
by the Finnish Forest Research Institute. The
programme was originally aimed at long term
forestry planning (Siitonen 1983, Kilkki
1985), and it consists of two stages: the simu-
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Figure 3.3. Correlation coefficients between variable classes and spectral bands.

lation of the possible management schedules
(production model) and the decision stage.
In the first stage, in which a compartment
is used as a calculation unit, the simulation
principally includes a natural growth process
(ingrowth, growth and mortality) and man-

3

made measures such as thinning, clear cut-
ting and other silvicultural treatments.

In the second stage, linear programming
was applied to determining an optimal pro-
duction. According to the requirement of the
present study, the second stage was im-
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Table 3. 4. Correlations between the differences of the spectral values on the first two occasions and the net increase

(Data = ID-simul)

Band | Band 2 Band 3 Band 4 Band 5 Band 7

Net increase

Volume —0.110 =0.157 —0.168 —0.187 —0.148 —0.134
Basal area —0.148 —0.190 -0.212 —0.230 —0.200 —0.184
Height -0.129 —0.145 —0.183 —0.241 —0.231 —0.196
D.B.H —0.121 —0.123 —0.168 —0.184 —0.203 —0.196
Composition:

Pine —0.083 —0.121 —0.154 —0.145 —0.163 —0.149
Spruce 0.001 0.017 0.004 —0.039 —0.035 —0.024
B.L —0.052 —0.124 —0.105 —0.128 —0.095 —0.099
Drain:

Cut 0.115 0.155 0.171 0.167 0.156 0.150
Mortality 0.012 —0.009 0.020 -0.035 0.003 0.032

plemented for achieving a fixed net income
which corresponds to an average yield level in
the district during a planning period of 5
years.

In order to investigate the potential of mul-
titemporal image data for the continuous
forest inventory on more than two occasions,
the whole simulation consisted of 5 periods
covering 25 years. The management mea-
sures occurred at the middle of each interval,
i.e., the third year from the beginning of every
period. The areas of thinning and clear cut-
ting accounted for about 10 % of the total
area during a period of five years (see Table
3.5).

I)n fact only the simulated material of the
first two periods will be used in this investiga-
tion.

352. Simulation of the image data for the coming
periods

The simulation of digital image data also
consisted of two steps: (1) model fitting, and
(2) randomization.

A prediction model for digital data at each
period was based on the test sample which
contains both the field variables and the
spectral values (image data ID-84). The in-
dependent variables involved in the mul-
tivariate regression model deal with most
stand characteristics including the soil class,
site class, stoneness, taxation class, main

Table 3. 5. Cutting areas in the first two periods.

Periods
1 2

Thinning (ha) 22.97 4.05
Clear cutting (ha) - 9.54

species, age, basal area, height, D.B.H, vol-
ume and species composition.

In order to investigate the potential effi-
ciency of the different image data, two regres-
sion models, which were fitted by least
squares, were chosen for the simulation.

Model 1

The model consisted of two regression sub-
models. First, the predicted image values
were generated from these two sub-models.
Then they were weighted. The reason for
using two additive models was to yield image
data such that the correlations of all the stand
characteristics with spectral values are close
to the original ones.

The independent variables in the first sub-
model include the site class, the taxation
class, basal area and D.B.H.The model is of

the form:

mi m2
G=a+2 dyay+2 &yt b G
= 3=
+byn(D +3) + ¢ (3.2)

where ¢; = spectral values of band i
a, = constant
a,; = score of class j of the site class
a,; = score of class j of the taxation class
&;; = 1 if the sample plot belongs to class j of site
class, or 0 otherwise

8,; = 1if the sample plot belongs to class j of the
taxation class, or 0 otherwise
D = D.BH

G = basal area

m,; = number of site classes

m, = number of taxation classes

b,—b, = regression coefficients to be estimated
€ = model error

The independent variables in the second
sub-model cover main species, stoniness, age,
height, basal area, D.B.H and compositions
for three species and the group of species
which can be expressed as follows:

% m2
G = 30+,-| 8 a +EI 8y ay;

+bA+bH+byD + by In(G+3) + by P+ bg S +
b;B+e¢ (3.3)

where 8,; = 1 if the sample plot belongs to the j class of

stoniness, or 0 otherwise

8,; = 1 if the sample plot belongs to class j of
main species, or 0 otherwise

a,; = score of class j of stoniness

ay; = score of class j of main species

A = age

H = mean height

P = proportion of pine

S = proportion of spruce

B = proportion of deciduous species

m; = number of classes of stoniness

m, = number of main species

b,—b; = regression coefficients to be estimated

The scores, regression coefficients, R? and
residual mean squares for six bands can be
found in Appendix 1. The image data (in-
cluding five periods) produced by this model,
together with the associated ground measure-
ments, is called ID-simul. In the rest of the
paper, the stratification and the estimation by
using the multitemporal image data are
mainly based on this data.
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Model 2

The image values in the second model are
highly correlated to the quantitative stand
charateristics. This image data is intended for
both the analysis and comparison-stage of the
investigation. The model is of the form

& = ay+ b H + b, In(H+3) + by V

+ by In(V+10) + bs [(In(V+10)]* + ¢ (3.4)
where V = volume
H = height
by—bs; = regression coefficients to be esti-
mated

The aim of using only these independent
variables in (3.4) was to obtain those image
data which are hightly correlated with the
these field variables. The regression coeffi-
cients of (3.4) are listed in Appendix 1. The
data derived from this model is known as ID-
simu2.

In the second step of the simulation of the
multitemporal image values, the image val-
ues predicted by the regression models were
adjusted to the desired level by means of a
randomizer and the correlation matrix for the
spectral bands. It includes i) generating the
normally but independently distributed vari-
ables for each band on the basis of a ran-
domizer; ii) regenerating the random vari-
ables with joint normal distribution by using
the transformation of a triangle matrix
(Rubinstein 1981) based on the given correla-
tion matrix and on the results from the first
step. The second step was repeated several
times, modifying the given correlation matrix
until the correlation matrix of the spectral
bands reached a satisfactory level.

The histogram of data ID-simul on the
second occasion in 1989 is shown in Figure
3.2 and the relevant correlations are pre-
sented in Table 3.3. It can be seen that the
distributions and the correlations of the simu-
lated spectral values with the simulated stand
characteristics are similar to those of the orig-
inal values.

The data we now have are the multitem-
poral image and field data on six occasions
(five periods). The data on the first occasion
consist of the unitemporal field data and
bitemporal image data (ID-84 and ID-85).
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The data on the subsequent occasions are
simulated.

36. Computer programmes in the study

Beyond programmes MELA and NALLE,
the computer programmes used in the study
consist of FORTRAN programmes and SAS
programmes (SAS 1985).

The FORTRAN programmmes, except
those for the image data registration, were
made by the author of this paper and used for
the following aspects:

— multitemporal image data simulation
— image data registration (made by Markku Simild)

spatial and time filtering

vegetation index transformation

GLS and double sampling for the population
Stratification and compatmentwise estimation
updating data: ML-PTM-ML and ML-ML models,
estimate-modifying.

The following SAS procedures are used in
the study:

PRINCOMRP for the principal component analysis
CANCORR for the canonical variable transforma-
tion

CATMOD for the logistic and log-linear models
NLIN for the non-linear regression models
FASTCLUS for k-means clustering.

4. RESULTS

41. Data preprocessing

411. Compartment delineation

With the aid of field work the whole area
was delineated into 68 management compart-
ments (of which 65 compartments belong to
forest land) on the photograghs. Then the
compartment boundaries were digitized by
the NALLE programme developed by Timo
Pekkonen in the Finnish Forest Research In-
stitute. The average compartment area was
3.0 hectares. The size distribution is as fol-
lows:

Compartment size
(hectare) <1.01.0-2.93.0-4.95-9.9=10
Frequency (%) 33.8 33.9 16.9 2.3 3.1

412. Image registration

The registration used in the study consists
of two steps which have been described by
Poso et al. (1987). The first step is a coordi-
nate transformation which is accomplished
by a two-variate linear function. The trans-
formation has been checked using 16 control
points for the ID-84 data and 13 control
points for the ID-85 data with the corres-
ponding standard deviation (distance) 13 m
and 15 m respectively.

The second step was to seek an optimum
overlapped position of satellite imagery with
respect to the study area on the map. This
was accomplished by shifting the imagery
and calculating the respective correlation
coefficients between the spectral values and
the ground truth. This method is motivated
by an inference that an optimum overlapping
should produce a maximum correlation. The
experimental results indicate that the correla-
tion is sensitive to the movement.

After the shifting, the correlation coeffi-
cients between the main measurements such
as volume, age, diameter and height, and the
spectral values were increased 0.1 for the ID-
84 and 0.05 for the ID-85. The causes of the
location er:or have been discussed by Poso et
al. (1987).

The optimum positions are not precisely
the same for all the spectral bands and all the
field variables. For instance, the optimum
position for volume may not be the optimum
one for main species, or an optimum position
for band 2 may not be the optimum one for
band 5. In this case, spatial filtering may
provide help.

413. Filtering
4131. Spatial filtering

The weights needed for the simplest two-
pixel filter can be calculated from (23.12) and
(23.13). The parameters required for the cal-
culation are obtained from the sample.

Figure 4.1 illustrates the autocorrelations
between pixels with respect to the spectral
values and Figure 4.2 illustrates the correla-
tions between the field variable (volume and
composition) and the spectral values of the
pixels as a function of the spatial distance.

It can be seen from Figures 4.1 and 4.2 that
both the autocorrelations between the pixels
with respect to the spectral values and the
correlations between the field and image vari-
ables show slight differences caused by diffe-
rent directions of shift. The correlation curves
of Figures 4.1 and 4.2(a) are close to those
concerning the spatial autocorrelations with
respect to volume (see Nyyssonen et al.
1967). The behaviour of the correlation
curves for pine proportionis different from the
others which may have importance in spatial
filtering.

As an extention to the filtering of two adja-
cent pixels in all directions, a filtering win-
dow with 3 X 3 pixels can be formed.

According to (23.13), (23.14), (26.9) and
image data ID-85, the weights of the filters
covering two adjacent pixels and the gains in
the correlations in four directions are pre-
sented in Table 4.1.

It can be seen that the weights of different
filters, which represent different bands and
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Figure 4.1. Autocorrelations between

different directions, are different although, in
most cases the weights are larger for the
central pixel, i.e. w > .5. However, we may
find that the weights of some bands are less
than .5 with a higher gain in the correlation
(band 5 and 7 for volume from North to

Table 4.1. Weights and gains of the spatial filters.

spatial pixels (Band 2 from ID-85).

South, and the weights of the filters of bands
1—4 for the proportion of pine from South to
North).

The reason for this is that the registered
position of the image data is not optimum for
all the bands and for all the variables. For

Directions
N-S S-N W-E E-W
For volume

r* w Gain w Gain w Gain w Gain
Band 1 —.53 .69 1.044 .72 1.032 .63 1.062 .76 1.023
Band 2 —.63 .81 1.012 .82 1.011 .88 1.004 .80 1.011
Band 3 =07 .78 1.015 .84 1.007 77 1.013 .81 1.009
Band 4 -.55 .93 1.001 .89 1.002 1.06 1.001 .76 1.010
Band 5 -.60 49 1.051 1.17 1.009 .54 1.038 1.21 1.007
Band 7 -.56 49 1.063 1.21 1.008 .64 1.028 95 1.000

For proportion of pine

Band 1 34 .60 1.079 45 1.159 .58 1.086 .54 1.098
Band 2 .28 .72 1.027 .32 1.193 .73 1.020 .56 1.061
Band 3 41 .78 1.015 45 1.103 .74 1.018 59 1.047
Band 4 .02 -.40 1.564 ~1.32 2.869 -.89 1.853 =70 1.725
Band 5 42 .80 1.007 .54 1.042 .51 1.044 .82 1.006
Band 7 47 A0 1.013 .64 1.029 .67 1.023 71 1.017

Note that N-S = from North to South, W-E = from West to East and so on; w represents the weight of the central pixel of a pixel window; the weight of the

adjacent pixel is therefore 1-w; and r* denotes the correlation before filtering.
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Figure 4.2. Correlations of spectral values and variables as a function of the

distances.

example, the position of the image on bands 5
and 7 for volume should be moved further to
the North.

The conflict between the optimum posi-
tions of the bands or the field variables is
most likely caused by random variation. This
is probably smoothed by using spatial fil-
tering.

However, if the optimum position for a
certain band or variable is found, the gain in
the correlation for the band or the variable
through spatial filtering tends to be low, ex-
cept for those bands or variables in which the
original correlations are low. For example,

bands 1—4 have reached the best position for
volume. The gains in the correlations for
bands 2-4 are so small that they can practi-
cally be ignored. Only band 1 achieved a
meaningful gain in the correlation. The origi-
nal correlation of band 1 with volume was
quite low.

Further, those variables which smoothly
vary over space probably show a good gain in
correlation. For instance, the gains for species
composition are higher than those for the
volume (see Table 4.1).

Another type of spatial filter is composed of
the nearest 2—3 pixels to an arbitrary image
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point. The reason for selecting the nearest
2—3 pixels is that in many cases the fourth
nearest pixel is no longer the adjacent pixel to
the image point side by side. The average
distances from an arbitrary image point to
the 3 nearest pixels are 11.4 m, 21.0 m and
27.3 m which are calculated as follows:

d= % (x*+y)"2dydx/(15%2) (4.1)
I u

where x = horizontal coordinate
y = vertical coordinate
k, I, vand u = parameters for the integration

When an image point is located in the
shade part in Figure 4.3, the first three near-
est pixels to the image point are illustrated in
Figure 4.3. The integration ranges of (4.1) are
illustrated in Figure 4.4. Numbers 1, 2 and 3
refer to the first, second and third nearest
pixels to the image point in Figure 4.3, and
the associated integration ranges in Figure
4.4.

Table 4.2 lists the weights of the nearest
pixel of the two-pixel filters: one is composed
of the nearest and the second nearest pixels;
another is composed of the nearest and the
third nearest pixels. The corresponding cor-
relations after filtering are also presented in
the table.

It can be seen that the results of the two
filters in Table 4.2 are fairly near, especially
for the case of volume. One reason is that the
difference of the average distances of the sec-
ond and the third nearest pixels to the image
point is only six meters.

In comparison with the results in Table
4.1, the results in Table 4.2 look better for
species composition but worse for volume.
The gain in the correlation regarding volume
is insignificant except in band 1. With ran-
dom selection of the image points the results
of the two filters should be analogous. The
ground sample plots, however, are allocated
systematically and hence might have a
periodical coincidence, more or less, with pix-
els. If the centres of most of the ground
sample plots are located within the range
formed by directions E-W and S-N, the gain
in the correlation for volume might be low.
This is because along these two directions the
gain in the correlation for volume is weak
when using the filtering window (see Table
4.1).

Figure 4.3. The area of image points for 3 nearest pixels.

y (m)
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15 30

Figure 4.4. The integration ranges for 3 nearest pixels.

The gains in correlations between volume
and some bands in Table 4.1 look higher. But
in this case, also, there are big variations
within the spectral bands. As a result, the
multiple correlation based on all of the spect-
ral bands for the field variable might not
increase as much as does the correlation bet-
ween a single spectral band and the field
variable.

The next set up describes two filter win-
dows. Their weights are given in Table 4.1.

.2/8 .2/8 .2/8 -.2/8 | —.2/8 | .2/8
.2/8 8 .2/8 -.2/8 | .84 .5/8
.2/8 .2/8 .2/8 .2/8 .5/8 .5/8

Table 4. 2. Weights of the nearest pixel of two-pixel
filters and the corresponding gains.
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Table 4. 3. Correlations obtained by using the filtering
window (3 X 3 pixels).

Filter of the first and

the second nearest pixels

Filter of the first and
the third nearest pixels

w Cain w Gain

For volume

Band 1 71 1.031 .78 1.016
Band 2 .90 1.002 .86 1.005
Band 3 .87 1.004 .89 1.003
Band 4 .92 1.001 91 1.001
Band 5 .99 1.000 1.12 1.002
Band 7 .90 1.002 .96 1.000

For proportion of pine (species composition)

Band 1 .52 1.092 .56 1.071
Band 2 .57 1.055 .64 1.033
Band 3 .55 1.055 .70 1.019
Band 4 —-.30 1.405 —1.18 2.230
Band 5 .60 1.027 77 1.008
Band 7 .65 1.024 74 1.011

The left window above is for bands 1—4
and the right window is for bands 5 and 7.
Although the weights of these two filters do
not exactly follow the optimum weights in
Table 4.1, for most bands they approach the
best ones. After filtering, the correlations and
the associated gains by using the two filter
windows stated above are presented in Table
4.3.

It can be seen from Table 4.3 that the gain
in the multiple correlation is rather weak. In
addition, the window which was designed for
volume proves to be useful for the estimation
of tree species proportions. The gain for the
proportion of pine in Table 4.3 is higher than
the gain for volume.

4132. Time filtering

The weights of the time filters concerned
with volume, age, and species proportions
(pine and spruce) for image data ID-84 and
ID-85, according to (23.3) and (23.4), are
listed in Table 4.4.

Table 4.4 shows that the weights of the
filters regarding volume and age are favor-
able to data ID-84, except for bands 5 and 2,

Band
1 2 3 4 5 4
For volume
Correlation —.551 —.634 —.579 —.549 —.622 —.579
Gain 1.048 1.008 1.016 1.005 1.038 1.036

For proportion of pine
Correlation 0.378 0.305 0.436 0.035 0.430 0.476
Gain 1.099 1.089 1.056 1.207 1.021 1.008
Multiple correlation —.666
before filtering
Multiple correlation
after filtering -.670

while the weights of the filters regarding
species composition are mostly in favour of
ID-85. One reason for this is that most bands
of ID-85 which were acquired in the summer
indicate higher correlations with the species
composition than those of ID-84 acquired in
the fall. This feature is not specific to volume
or age. This suggests the use of separate time
filters for the images of different seasons.

For comparison, two time filters, of which
one is for volume and another for species
composition, are used for the compartment
estimation. The correlations before and after
filtering are presented in the lower part of
Table 4.4. It can be seen that although the
filter is for volume, the correlation concerned
with age is also improved for most bands.
The weights of the filter for species composi-
tion are the average values of two filters in
which one is for pine and the other for spruce.
Also, the correlations for most bands are
enhanced by using the filter for species com-
position.

414. Transformation
4141. Principal component analysis
The eigenvectors and the correlations bet-

ween stand characteristics and the principal
components, which are obtained in a standar-
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Table 4.4. Weights and correlations related to the time filters.

Volume Age Species proportion
Pine Spruce
Weights
ID-84 ID-85 ID-84 ID-85 ID-84 ID-85 ID-84 ID-85
Band 1 .55 45 .56 44 .30 .70 44 .56
Band 2 .56 4 44 .56 7). .27 .75 .25
Band 3 .59 41 7 129 J7 .83 44 .56
Band 4 .83 17 .76 24 1.82 —.82 .92 .08
Band 5 .48 .52 73 .27 —.06 1.06 .19 81
Band 7 .60 40 L .25 .01 .99 .31 .69
Correlations before filtering
Band 1 —.457 =479 — 442 —453 224 349 —.307 —.384
Band 2 —.563 —.584 —-.517 —.590 321 .285 —.416 —.360
Band 3 —.560 —.547 —.537 =473 .323 429 -.425 —.467
Band 4 —.602 =.522 —-.637 —.586 131 —-.010 -.261 -.210
Band 5 —.551 —.583 —.527 —.495 .354 454 —.469 —.556
Band 7 —.514 =,527 —.465 —.426 .390 .531 —.482 —.578
Correlations after filtering
Filtering Filtering
for volume for species composition

Band 1 —.556 932 .358 —.414

Band 2 —.632 —-.612 .336 —.432

Band 3 —.606 —.554 .430 —.488

Band 4 —.612 —.657 —.047 —-.178

Band 5 —.601 —.534 454 —.558

Band 7 —.560 —.478 .530 —.582

dized transformation for 12 stacked bands
from two occasions are shown in Tables 4.5,
4.6 and 4.7. The results in Tables 4.5 and 4.6
are calculated on the basis of all the image
points (1401). The transformed image vari-
ables, as described in the previous paper
(Peng 1987), have some distinctive features.

First, all the twelve elements of the first
eigenvector have positive signs. This implies
that the first principal component is the
weighted summation of all the image bands
on two occasions.

Secondly, the first six elements of the sec-
ond eigenvector are positive, while the re-
maining six elements are negative. Mean-
while, the first six elements correspond to the
six bands on the first occasion and the rest

elements are the transformation coefficients
for the six bands on the second occasion.
Thus the second principal component is the
weighted difference of the image data on two
occasions. The first two principal compo-
nents seem to be the results obtained by using
a smooth (summation) or "low path” filter,
and an edge enhacement (difference) or "high
path” filter.

As a natural result of the preceding fea-
tures, the first principal component is often
correlated with the current states of field
variables, whereas the second principal com-
ponent relates to forest change.

In comparison with results using the image
data on a single occasion (see Table 4.6),
using the image data from two occasions

e

Table 4. 5. Eigenvectors of bitemporal image data (12
stacked bands and 1401 image points).

Data = ID-84 plus ID-simul

PC1 P.C2 PC3

Data = ID-84 plus ID-85
PC1 P.C2 PC3

Occasion 1:

Band 1

0.2275 0.2852 0.9041

0.2364 0.2176 0.5855

Band 2 0.2817 0.3032—.1689 0.2888 0.2738 0.1292
Band 3 0.2899 0.3163—.0402 0.3006 0.2273 0.2081
Band 4 0.2772 0.2770—.3284  0.2752 0.4506 —.2419
Band 5 0.3025 0.3016—.1527 0.3188 0.1586 0.0380
Band 7 0.2884 0.3029—.1159 0.3054 0.1182 0.1499
Occasion 2:

Band 1  0.2605-.2875-.0023 0.2722—.3806 0.0059
Band 2 0.2988-.2817 0.0275 0.3004—.2180—.2293
Band 3 0.3070-.2846 0.0364 0.2948—.3707 0.0821
Band 4  0.2944-.2688—.0555 0.2515 0.2294 —.6654
Band 5 0.3167-.2705 0.0361 0.3081 —.2523 —.1034
Band 7 0.3077-.2800 0.0337 0.2998—.3708 0.0419

increases the correlations of the first principal
component with most variables by 5—10 %.
The results are similar to those obtained by
using time filtering for the current state.

Table 4.6 presents the correlations ob-
tained when using all and a part of important
spectral bands on two occasions. It can be
seen that the results are very similar. One of
the reasons is that the different band combi-
nations differ in the variance proportions of
the first three principal components. The var-
iance proportion of the first three principal
components for the transformation using all
the bands is less than those for the transfor-
mation using only some of bands (see Table
4.6).

Table 4.7 presents the results based on the
transformations using the standardized and
non-standardized matrices regarding image
data ID-84 and ID-85.

From Table 4.7 one may find that as a
whole, there are no big differences between
the two transformations. If considering only
the first principal component, the standar-
dized transformation on the summer image
data is better than the non-standardized
transformation, especially regarding volume
and height. For the image data aquired in the
fall, the conclusion is quite the opposite. The
reason for this is that for volume and height
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the best spectral bands ot the image data in
the fall are bands 4 and 5 which have the
large variation (see Figure 3.2), they there-
fore have more weights than other bands in
the non-standardized transformation. The
best bands for volume and height in the
summer imagery are bands 2 and 3, i.e. those
bands whose distributions are narrow.

4142. Canonical variable transformation

Table 4.8 presents the canonical coeffi-
cients for 12 bands transformed on the basis
of the volumes on two occasions.

Except a few bands, the second canonical
coefficient vector in Table 4.8, like the second
eigenvector of the principal component trans-
formation is associated with the changes of
the stand characteristics.

Table 4.9 demonstrates a comparison on
the correlations. One set of correlations is
between the principal components and field
variables and the other set is between the
canonical variables and field variables. It can
be seen that for most quantitative variables
the correlations concerned with the first ca-
nonical variables are better than those con-
cerned with the first principal component.
Furthermore, the canonical transformation is
not only good for volumes on two occasions, it
is also beneficial for all the stand charateris-
tics in relation to the tree size, such as height,
D.B.H, age and basal area, but not for the
species composition.

By using the bitemporal image data, the
second canonical variable like the second
principal component is usable for estimating
the net increase (see Table 4.9).

4143. Vegetation indices

For forming the Kauth and Thomas’s ve-
getation indices, a key step is to select dry and
wet points on the ground. Since there was no
such materials to hand, the selection has to be
made from the image points falling on the-
open sites in the study area. Two points (the
dry and the wet) selected in this way have the
highest and the lowest spectral values respec-
tively. Unfortunately, after transformation,
the correlations between the greenness and
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Table 4. 6. Correlation coefficients between principal components and field variables (from 1401 image points).

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
(ID-84 plus ID-simul) (ID-84 plus ID-85) ( ID-84)
Band 1-6 Band 1-6 Band 1-6

on two occasions on two occasions

on single occasion

On occasion 1:

Dev. class —0.479 —0.061 0.069 —0.418 0.048 —0.171 —0.441 0.082 —0.122
Age —0.702 —0.056  0.082 —0.664  0.168 —0.086 —0.631 0.098 —0.160
Volume (V) =0.710 —0.030 0.040 -0.659 0.029 -0.076 —0.623 0.063 —0.095
Basal area (G) —0.706 —0.033 0.004 —0.655 0.002 -0.074 —0.622 0.026 -0.027
Height (H) —0.786 —0.047 0.044 =0.719 0.036 —0.125 —0.697 0.069 -0.079
D.B.H (D) -0.742 -0.018 0.052 —0.661 0.067 -0.123 —0.644 0.077 =0.097
Composition:

Pine 0.311  0.125  0.053 0.318  0.435  0.098 0.331  0.034 -0.169
Spruce —0.454 -0.161 0.014 —0.520 —0.245 —0.009 —0.472 0.032 0.146
Broad leaves 0.167 0.097 -0.122 0.287 —0.382 —0.147 0.194 —0.113 0.087

During occasions 1—2:
Net increase for

H 0.074  0.220  0.000 — — — = = =

D =0.134  0.209  0.026 — — — — — -

G 0.077  0.230 -0.011 — — — — .

\% —0.015  0.18¢ -0.020 — — — — — —

Total growth =0.311  0.068 —0.101 — — — — . .

Variance proportion of the first

three principal components 0.84 0.84 0.92

Band 3,4,5,7 Band 3,4,5,7 on occasion 1

on two occasions Band 2,3,5,7 on occasion 2

On occasion 1:

Age —0.707 —-0.043 -0.232 —0.647 —0.126 —0.255 - - -

Volume -0.706 —0.021 -0.124 —0.661 -—0.036 —0.183 — — —

Composition:

Pine 0.297 0.128 —0.289 0.396 -0.192 -0.202 — — —

Spruce —-0.447 -0.170 0.209 —0.527 0.097 0.221 - - -

Between occasion 1—2:

Net increace for V —-0.028 0.185 0.049 — — — — — —_

Variance proportion of the first

three principal components 0.91 0.91 —
Band 4,5,7 Band 4,5,7 on occasion |

on two occasions Band 2,5,7 on occasion 2

On occasion 1:

Age =0.709 -0.043 -0.225 —0.650 =—0.161 —0.262 — — —
Volume -0.705 —0.022 -0.119 —0.662 —0.061 —0.204 — — —
Composition:

Pine 0.277  0.128 —0.279 0.382 —0.227 -0.171 — - —_
Spruce -0435 -0.170 0.207 —0.528 0.152 0.164 — — —
During occasions 1—2:

Net increase (V) —0.024 0.179  0.052 — — — i o —

Variance proportion of the first
three principal components 0.94 0.94

Note that Dev. class = Development class.

45

Table 4.7. Correlations between principal components and field variables based on the correlation matrix and the

covariance matrix.

Correlation matrix

Covariance matrix

PC1 P.C2 PC3 PC1 P.C2 PC3
Data = ID-84 (in the fall)
Main species 474 .109 185 470 .228 114
Site class .284 .087 147 .246 .228 141
Volume —.624 .064 —.096 —.627 = 113 —.057
Height —-.697 .069 —.080 —.702 -.107 —.062
variance
proportion (%) 77.2 8.6 5.8 86.9 9.0 1.8
Data = ID-85 (in the summer)
Main species 518 453 291 .556 457 222
Site class 346 466 176 244 539 131
Volume —.649 -=.131 —.041 .639 .015 =15
Height =719 =129 =091 —.690 .020 -.211
Variance
proportion (%) 77.1 10.7 5.5 80.6 16.6 1.6

most of the field variables are quite low. A
natural way to improve the correlations con-
cerned with the greenness is to change the
direction of the soil line (the line between the
dry and wet points). This is done by simply
fixing the dry point, then repeatedly changing
the direction from the dry point to the wet
point for each of six bands to find out the
effective direction on the basis of the correla-
tions obtained.

Based on the iterative process, the effective
direction for the greenness is mostly decided
on band 4 and band 5 for data ID-84 (in the
fall), and bands 1, 2 and 3 for data ID-85 (in
the summer). The vegetation index coeffi-
cients, for data ID-84 and ID-85 are presen-
ted in Table 4.10.

It can be seen that for ID-85 the greenness
index is just the weighted difference between
the visible bands and near infared bands, but
for data ID-84, it is the difference of bands 5
and 1 with other bands. It should be pointed
out that although the transformation is for
the greenness, the brightness also has the

ood correlations with most field variables
(see Table 4.11). Consequently, if the bright-
ness and the greenness are involved in the
stratification, the results would be beneficial
for the estimation of most field variables.

Table 4. 8. Canonical coefficients of 12 bands for the
volumes on two occasions (C.C refers to the canoni-
cal coeffecient).

Band
1 2 3 4 5 7
Occasion 1
CCl1 096 .108 .066 .341 .085 —.075
CC2 —.309 —.298 —.498 —.274 042 .658
Occasion 2
CCl1 149 086 —.011 .200 .068 .178
cC2 .087 —.814 599 .893 —.686 .591

42. Estimation for the population

421. Current states and changes
The GLS (Generalized Least Squares) esti-

mates and variances of current states and
changes for volume and main species (pine)
within a period of five years are indicated in
Table 4.12. For comparison, the results of five
sample cases, the TPS (Two Phase Sampling
for stratification) and the test sample (TS)
are listed in the table. The table covers two
periods: occasions 1—2 and occasions 2—3.
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Table 4. 9. Correlations of the canonical variables (C.V)
and the principal components with image data on
two occasions (from 387 image points).

CVl CV2 PCl PC2 PC3

Occasion 1
Volume (V) —.729 .04l —=.713 —.023 —-.014
Basal area (G) —.727 —.014 =.721 —.004 —.033
Height (H) -.792 .004 =.776 —.047 .002
D.B.H (D) —:767 =012 —.749 —.026 .001
Pine .242 —.095 319 1119 —-.030
Spruce -.383 .087 —.447 -.136 .035
B.L 153 —.083 16 (112 —.047
Age -.704 .029 —.665 —.059 —.013

Occasion 2
Volume -.714 —.059 —.702 .036 .011
Basal area —.639 —.164 —.642 105 .006
Height —.810 —.031 =.796  .005 —.003
D.B.H -=.773 —.021 —.755 .011 —.005
Pine 167 —.139 242 147 -.022
Spruce —.435 .090 —.495 —.110 .019
B.L .099 —-.132 .063  .167 —.051

During occasions 1—2

Net increase for

v .031 —.215 023 128 .055
G .130 —.225 18 164 .060
D —.101 —.049 =.102  .213 —-.036
H 204 —.146 190 235 —.021
CUTI -.102 .178 =.109 —.103 —.063
Composition change:

Pine =211 -.137 =.211 —.090 .023
Spruce -.268 .024 —.264  .082 —.055
B.L -.198 —.148 —.184  .164 —.006

In the first period, there was no clear cutting,
only thinnings producing small changes in
the species composition, were imposed on six
compartments. In the second period, three
compartments were regenerated by clear cut-
ting and no compartment was treated by
thinning. Although the total drain in the first
period is greater than that in the second
period, the intensity of cutting is lower in the
former. The results reveal a strong dependen-
cy of the variances of the estimates on the
correlations. The variance of case 112P12 in
the first period was reduced by 35 % for the
volume and by 25 % for the proportion of
pine in comparison with case P12, i.e. the

Table 4. 10. Transformation coefficients for the vegetati-
on indices.

Data = ID-84
Brightness  .1413 .0565 .0537 .2204 .9608 .0480
Greenness  .0471 —.1510—.3587 —.4372 .1620—.7920
Data = ID-85
Brightness .6315 .2706 .5413 .2977 .3022 .2346
Greenness .4194 .0618 .2068 —.3887—.7667—.1963

Table 4. 11. Correlations of some variables with the
vegetation indices.

Brightness Greenness

Age .620 .647
Volume 610 619
Height .685 .691
D.B.H 631 647
Compositions:

Pine 319 .256
Spruce 477 407
B.L 218 .223

case in which only the permanent sample
plots were used for the estimation.

In comparison with case P12, the reduction
in the variance of the total growth of volume
for case I12P12 was 17 %. Furthermore, we
might find that the gains in precision for the
current states of volume and main species in
both periods 1 and 2 are rather similar, simp-
ly because their correlations with the image
variables for the two periods are close to each
other.

The analysis described above is also appli-
cable for the net increase of volume. During
the first period, the reduction of the variance
of the net increase for case I12P12 is only 5 %
in comparison with case P12. The reduction
is much less than that attained by the current
volume. This is because the correlation coeffi-
cients between the net increase of volume and
the image varaibles are very low (around
=2+

The variance of the net increase of volume
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Table 4.12. Estimates and variances for five cases.
Current state Net increase Total growth
Case Estimate Variance Estimate Variance Estimate Variance
Volume (m* ha)

Period 1:

P12 186.33 40.97 16.91 8.78 30.24 .54
12P12 188.24 27.02 17.24 8.66 30.35 .48
112P12 188.21 25.74 16.88 8.48 30.34 45
1112P12 188.18 24.25 16.84 8.50 30.34 45
1123P12 187.78 25.49 16.38 8.36 30.28 44
TPS 187.05 29.70 17.08 9.18 30.29 55
TS 190.70 11.35 14.87 2.74 30.22 .16
Period 2:

P23 195.29 43.57 8.96 23.54 31.26 .77‘
123P23 196.41 27.03 8.39 16.06 31.19 .70
1213P23 196.49 25.70 8.16 17.05 31.19 .70
TPS 194.18 29.60 7.95 17.20 31.26 77
TS 201.05 12.54 10.35 5.89 31.03 .22

Main species (Pine %)

Period 1:

P12 48.04 6.48 2.09 1.227 — —
12P12 47.05 5.62 1.80 1.189 — —
112P12 47.00 5.17 1.66 1.176 — —
1112P12 47.00 5.09 1.69 1.180 — —
1123P12 47.12 5.03 1.61 1.156 — —
TPS 46.84 6.11 1.87 1.879 — —
TS 46.29 1.78 2.04 .398 - —
Period 2:

P23 51.86 6.47 2.66 1.155 — —
123P23 51.34 5.31 2.94 1.021 —- —_
1213P23 51.29 5.22 2.96 1.033 — —
TPS 50.42 6.20 3.15 1.816 — —
TS 50.30 1.79 260 - 272 — —

during the second period is large owing to the
clear cutting. The reduction of the variance of
the net increase of volume for case 123P23 is
32 % as compared to case P23. It is almost
the same as that attained by the current state
of volume since the absolute value of the
relavent correlation coefficient is over .60.
Large changes tend to increase the varian-
ce of the net increase but at the same time the
correlation of the net increase of volume with
image variables increase as well. It follows
that the increase of the variance of the net

increase can be partly offset by image data.
In other words, with the help of image data
the whole area can be roughly splitted into
the cut and non-cut areas.

Table 4.12 shows that the variances of
estimates which result from the double samp-
ling for stratification, i.e. TPS, is higher than
that in the GLS. However, the results of the
two estimations sometimes approximate to
each other if the stratification is good. Unlike
the GLS, the double sampling for stratificati-
on does not only rely on the permanent plot
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sample and the number of image points, but
also on the stratifying factors, specified num-
ber of strata, method of clustering etc.

422. Class probability transition for the qualitative
variables

Here, only two qualitative variables (deve-
lopment classes and main species) when the
simulated material is used, change over time.
It can be seen from Table 4.13 and Table

4.14 that most of the change of main species
appeared in pine and broad leaved species
because of both cutting and growth during
the period. The change is slow for the species
but more rapid for the development classes.
Most development classes had a movement of
about 20—40 % upwards during the five-year
period. The estimates and the variances of
the transition matrices using the GLS, and
the estimates on the basis of the test sample
are shown in Tables 4.13 and 4.14.

Table 4.13. Probability transition matrices for main tree species.

(a) GLS (Case 112P12)

Estimates
Occasion 2
0 1 2 3 4 6 7 8
0 .308 692 .000 .000 000 000 .000 .000
1 018 949 .033 .000 .000 .000 .000 .000
2 000 .053 .942 .000 .005 .000 .000 .000
1 3 .000 .079 112 .809 .000 .000 .000 .000
4 .000 136 .162 .000 .702 .000 .000 .000
6 000 .000 .000 .000 .500 .000 .500 .000
8 000 .190 622 .000 .188 .000 .000 .000
Variances
Occasion 2
0 1 2 3 4 6 7 8
0 .0703 .2108 .0000 0000 0000 .0000 0000 0000
1 .0001 .0026 .0002 0000 0000 .0000 0000 0000
2 .0000 0003 .0023 0000 0000 .0000 0000 0000
1 3 .0000 .0075 .0074 0009 0000 .0000 0000 0000
4 .0000 .0201 .0200 .0000 1000 .0000 .0000  .0000
6 .0000 .0000 .0000 .0000 2170 .0000 22170 .0000
8 .0000 .0305 .0966 .0000 .0356 .0000 .0000  .0000
(c) Test sample
Estimates
Occasion 2
0 1 2 3 4 [3 7 8
0 .333 667 .000 .000 .000 .000 000 .000
1 011 .948 .036 .000 .005 .005 000 .000
2 .002 .055 935 .000 .008 .000 000 .000
1 3 036 214 .036 714 .000 .000 000 .000
4 000 154 154 .000 .692 .000 000 .000
6 000 .000 .000 .000 .800 .000 200 .000
8 000 .063 .323 .000 .625 .000 000 .000
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Table 4.14. Probability transition matrix for the development classes.
(a) GLS
Estimates
Occasion 2
1 2 3 4 5 6 7 8
1 .706 294 .000 .000 .000 .000 .000 .000
2 .059 .637 .203 .101 .000 .000 .000 .000
3 .038 .000 .523 421 .018 .000 000 .000
4 .035 .000 .015 .837 113 .000 000 .000
1 5 .000 .000 .000 716 .284 .000 000 .000
6 .000 1.00 .000 .000 .000 .000 .000 .000
7 .250 .528 .000 .000 222 .000 .000 .000
8 1.00 .000 .000 .000 .000 .000 000 .000
Variances
Occasion 2
1 2 3 4 5 6 7 8
1 .0071 .0046 .0000 .0000 0000 .0000 0000 0000
2 .0010 .0087 .0030 .0014 0000 .0000 0000 0000
3 .0003 .0039 .0032 0002 0000 .0000 0000 0000
4 .0003 .0000 .0001 0036 0007 .0000 .0000  .0000
1 5 .0000 .0000 .0000 1621 .0597 .0000 .0000  .0000
6 .8038 .0000 .0000 .0000 .0000 .0000 .0000  .0000
7 .0519 1125 .0000 .0000 .0606 .0000 .0000  .0000
8 .2809 .0000 .0000 0000 0000 .0000 0000 0000
(b) Test sample
Estimates
Occasion 2
1 2 3 4 5 6 7 8
1 .738 .262 .000 .000 000 000 .000 .000
2 .063 626 .258 .053 000 000 .000 .000
3 .048 463 461 .028 000 000 .000 .000
4 .036 .000 .015 .827 122 000 .000 .000
1 5 .000 .000 000 .600 400 000 .000 .000
6 1.000 .000 .000 .000 000 000 .000 .000
7 .591 .364 .000 .000 045 000 .000 .000
8 1.000 .000 000 .000 000 000 .000 .000

43. Estimation for compartments

The results in this section are based on
sample case I12P12 and the unsupervised
method by using the principal component
transformation, K-means clustering and MD
classifier.

4

431. Stratification
4311 Number of strata
For the unsupervised method, the number

of strata is determined by the R? (defined in
section 2331) in the study. Figure 4.5 shows
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Figure 4.6. Numbers to be merged with respect to num-
bers of strata (M.N=minimum number of sample
plots in a stratum).

the dependency of the number of strata on R?
for six variables which have different correla-
tions with the image data based on data ID-
84 and ID-simul. It can be noted in Figure
4.5 that i) for most of the field variables the
maximum level was almost achieved with 30
strata; ii) as a whole, the efficient stratum
number is not sensitive to the correlation
coefficients between the field variables and
the stratification factors; iii) for the field vari-
ables which are almost uncorrelated with the

stratifying factors such as net increase, there
is no identifiable threshold for determining
the stratum number.

In practice, an increase in the number of
strata can readily make tedious the job of
merging the small strata into the larger stra-
ta. Figure 4.6 illustrates the numbers to be
merged as a function of initial number of
strata. The number to be merged rises rapid-
ly when the given number of strata exceeds
35.

In consideration of the cases stated above,
the initially given number of strata in the
study was 35, of which only two strata had no
more than a single sample plot.

The minimum number of permanent
sample plots specified for a stratum is two
simply because of the minimum requirement
for estimating the sample variance.

4312. Classification

K-means clustering was used for the classi-
fication. The initial seeds are 35 observations.
After merging, the final number of the strata,
in which every stratum has at least two samp-
le plots, was 34. The distributions of the
sample plots as well as the distributions of
cluster centres for each pairs of stratification
factors are shown in Figures 4.7(1a)-4.7(3a)
and Figures 4.7(1b)-4.7(3b) where the num-
ber in parentheses is the number of the samp-
le plots in the cluster (stratum). Note that the
distribution of the clusters closely matches
the distribution of the sample plots, though
some strata are quite large.

Figure 4.8(a) demonstrates the means of
the first and the second principal components
by strata as a function of the volume of the
growing stock. In the figure r refers to the
correlation coefficient between the means of
the volume and the principal component in
the strata. It is evident that the volume is
highly related to the first principal compo-
nent but only weakly related to the second
one.

Note that the first principal component
with positive values changes fairly rapidly
from the open area to the young stand. The
change of the values around zero becomes
gentler. This part of the principal compo-
nents corresponds to the middle-aged and
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mature forests. It suggests that it might be
easier to detect the natural changes in the
open areas and the young stands than in the
middle-aged and mature forests. It follows
that clear cutting can be found easily, while
the forest thinning is difficult to detect.
Figure 4.8(b) illustrates the mean values of
the first and the second principal components
by strata as a function of the net increase
(volume). The fluctuations of both principal

components among the strata are large. The
correlation (r) for the second P.C shows a
higher value than that for the first one.

432. Estimates of the stand characteristics by strata

Estimates of volume, height and species
proportion are shown in Figure 4.9, where
the strata are arranged in an ascending
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Figure 4.8. Relationship between estimates and P.C-values by strata.

order by volume and the proportion of pine
on the basis of occasion 1. It can be seen that
estimates of the volume in the strata are
evenly distributed within a range of 0—420
m® /ha and most of the strata indicate a
positive growth.

If the strata characterized by the negative
growth consisted only of the cut and thinned
permanent plots, they would produce good
net increase estimates for the compartments.
Unfortunately, those strata contain only a
small proportion of the cut permanent plots.
Other cut permanent plots are scattered in

those strata which have a positive growth.
This fact causes a slight underestimation in
the net increase for the non-cut compart-
ments and a serious overestimation of the net
increase for the cut compartments.

In Figure 4.10, the variances are shown of
the estimates of volume and net increase in
the strata where the number of permanent
sample plots is more than ten. The variances
of the low-volume strata are small, but the
variation coefficients remain higher than tho-
se of the high-volume strata (see Figure 4.10).

It should be pointed out that the weighted
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average variances over all strata, whose roots
are denoted by the dash lines in Figure 4.10,
are very close to the residual mean squares of
a linear model formed by these variables and
the image variables in the study. It follows
that the weighted average variances might be
estimated approximately from the sample va-
riance and the correlation coefficient between

the stratifying factors and a certain field vari-
able.

For the qualitative variables, as can be
seen in Figure 4.11, in most strata no classes
have a proportion of more than 50 %. As a
result, the coefficients of variation for the
qualitative variables are large (see Figure
4.11). However, the development class and
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main species show some exceptions. This is
because they are, to a certain extent, more
strongly correlated with the image variables.

433. Estimates of the compartment characteristics

A list of the estimates of the basic charac-
teristics in a compartment is given in Appen-
dix 2. For each quantitative variable, the
mean values, standard deviations, and coeffi-
cients of variation are listed. For the qualita-
tive variables, the frequency distributions are
presented.

Two criteria will be adopted for appraising
the estimates of the quantitative variables in
the compartments. One is the correlation
coefficient between the estimates and mea-
surements, and another is the root mean
square error (RMSE).

For the qualitative variables, the criterion
for estimation accuracy used here is the prop-
ortion of the number of the correctly esti-
mated compartments to the total number of
compartments.

Figure 4.13(a—c), Tables 4.15 and 4.16
demonstrate the accuracy of the estimation of
several important characteristics. Figure 4.13
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Figure 4.11. Distributions of some qualitative stand variables within strata (which are arranged in a ascending order by proportions of first classes, or pine).
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is arranged in an ascending order on the basis
of the volume measurements. As with the
estimates for the population, the estimates of
the compartment characteristics indicate that
the estimation errors are highly related to the
respective correlations. It can also be found
that the larger errors appeared at either end
of the estimate distribution (Figure 4.13), but
especially at the lower end. One reason for
this is that there are only a small number of
sample plots at either of the distribution end.
If the area is not divided into the cut and non-
cut subareas, the error in the net increase is
so high that the root mean square error is
greater than the mean value.The highest
overestimates in the net increase appear in
the cut compartments. In Figure 4.13(c) six
heavily thinned compartments show a posi-
tive net increase with large errors. For the
non-cut compartments, the net increase is
underestimated, but in comparison with the
cut compartments, the bias is slight.

The estimated results for the qualitative
variables are shown in Tables 4.16 and 4.17.
Although the main tree species and develop-
ment classes have the highest correlations
with the image variables, the estimation ac-
curacies are not of the highest order. This is
because the estimation accuracies are also
dependent upon the number and proportions
of the classes of the variables. In the study
area, the dominant soil class is the mineral
soil (over 80 % of the whole area, see Table

3.1), the accuracy therefore looks good. In
fact, the accuracies for the other soil classes
are equal to zero (see Table 4.17).

For the main tree species, both pine and
spruce achieve rather satisfactory accuracies.
The lower estimation accuracy for birch and
other broad leaved species is probably ex-
plained by their low distribution in the study
area. The errors for the development class are
distributed fairly evenly. This situation seems
contradictory, following the correlation of
these classes with the image variables where
classes 1 and 4 are in stronger correlation
than classes 2 and 3 (see Figure 3.3(b)). The
reason for this seeming contradictory is that
the first four development classes (classes 1—
4) are on an ordinal scale. Thus, the rep-
resentative class for the first four classes is the
average of these four classes. As a result, the
average values often appear in class 2 and
class 3 rather than classes 1 and 4. Therefore
the accuracies for the middle part look better
than the edge part. If the development class is
treated in the nominal scale, the most accu-
rate results are still obtained by classes 1 and
4 (see Table 4.17).

Figure 4.14(a)-(b) plots the distributions of
the relative errors of the estimates of both the
volume and the net increase of volume in the
compartments. For about 60 % of compart-
ments the relative errors are for the volume
less than 30 %. The low accuracy arises from
the fact that most of the compartments are
small. The accuracy for the net increase of
volume is naturally lower than for that of the
volume.

It should be pointed out that image points
located at compartment boundaries may in-
crease the errors of the estimates. This was
discussed by Poso et al. (1987). However, the
present experiment indicates that there are
no large differences between the results of
including and excluding the image points at
boundaries.

One reason for the low accuracy when
estimating change is that the thinned area
can not be effectively detected by image data.
In this connection, partitioning the popula-
tion into cut and non-cut sub-populations
should be taken into account.

Figures 4.13 (d-f) and 4.14 (c-d) and
Tables 4.15 and 4.16 present the effect of
dividing the area into cut and non-cut sub-
areas. It can be seen that the partition is more
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Figure 4.13. Estimates and measurements in compartments (which are arranged in a ascending order by measure-

ments).

beneficial for the estimates of the net increase
but less beneficial for the estimates of the
current states of the field variables.

Of course, to partition the area into cut and

non-cut subareas, the sample plots and the
estimated compartments have to contain the
relevant information which may require extra
work.
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Table 4.15. Means, root mean square errors and the correlations without and after dividing the area into cut and non-
cut subareas (Data = ID-84 plus ID-simul).

Compartments Image points
Variable Mean RMSE  Correlation Mean RMSE  Correlation
Without dividing the area into cut and no-cut subareas
Current state on occasion 2:
Volume 140.4 45.6 911 190.7 90.6 .697
Age 50.3 18.9 .848 74.2 27.6 723
Basal area 18.6 3.7 .904 20.2 8.3 612
Height 16.2 3.5 .909 17.0 4.4 .813
Composition:
Pine 4.4 2.8 528 4.0 3.7 414
Spruce 4.0 2.6 653 4.5 3.2 .581
B.L 1.6 1.7 229 1.5 2.0 193
During occasions 1—2:
Total growth 29.5 8.8 720 30.2 14.2 .355
Net increase for
Volume 21.5 30.8 371 14.9 61.0 .186
Basal area 2.9 3.8 425 1.6 6.6 .264
Height 1.2 1.5 .736 0.8 2.1 428
Composition:
Pine =.2 9 .505 =3 1.4 .295
After dividing the area into cut and non-cut subareas
Current state on occasion 2:
Volume 140.4 41.2 925 190.7 89.9 .704
Age 50.3 18.7 .852 74.2 27.1 733
Basal area 18.6 3.7 941 20.2 7.7 .683
Height 16.2 3.6 .888 17.0 4.2 .829
Composition:
Pine 4.4 2.7 .581 4.0 3.5 .502
Spruce 4.0 2.5 .705 4.5 3.1 627
B.L 1.6 1.6 .383 1.5 1.9 .264
During occasions 1—2:
Total growth 29.5 7.6 .801 30.2 13.6 426
Net increase for
Volume 21.5 13.8 924 14.9 44.5 .698
Basal area 2.9 1.8 911 1.6 4.7 .728
Height 1.2 1.0 .867 0.8 1.8 .653
Composition:
Pine -2 9 672 -3 1.3 .496

Note that the units of the mean and RMSE are m*/ha for volume, year for age, m*/ha for basal area, m for height and 10 % for composition. The same tothe
subsequent tables.
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Table 4.16. Estimation accuracies (%) of the qualitative variables in the compartments (Data = ID-84 plus ID-

simul).

Compartments Sample points
Soil Tax. Site Stoneness Main Dev. Soil Tax. Site Stoneness Main Dev.
Class class class species class class class class species class
Without the cut partition
90 63 66 80 78 61 81 43 57 57 67 47
After the cut partition
90 60 67 81 73 63 82 45 55 57 68 55

Table 4.17. Classification accuracies for the qualitative variables in compartments (without the cut partition).

Soil class Site class
Estimates Estimates
Class 1 2 3 Correct  Accuracy Class 2 3 4 B Correct  Accuracy
number (%) number (%)

1 59 0 0 59 100 2 0 6 0 0 0 0

2 1 0 0 0 0 3 0 40 0 2 40 95

3 5 0 0 0 0 4 0 1 0 0 0 9

Sum 65 0 0 59 91 5 0 3 0 3 3 50

Sum 0 60 0 5 43 66

Main Species Taxation class
Estimates Estimates
Species  Open Pine  Spruce Birch Correct  Accuracy Class 2 3 4 5 Correct  Accuracy
area number (%) number (%)
Open area 0 2 0 0 0 0 1 0 2 1 2 0 0 0
Pine 0 32 3 0 32 91 2 1 36 1 1 0 36 92
Spruce 0 8 19 0 19 70 3 0 10 0 1 0 0 0
Birch 0 0 1 0 0 0 4 0 2 1 5 1 5 56
Sum 0 42 23 0 51 78 50 1 0 0 0 0 0
Sum 1 51 3 9 1 41 63
Development class Development class
(based on the ordinal variable) (based on the nominal variable)
Estimates Estimates

Class 1 2 3 4 5 Correct  Accuracy Class 1 2 3 4 5 Correct  Accuracy

number (%) number (%)

1 8 6 0 0 0 8 57 1 14 2 0 0 0 14 89

2 0 10 7 0 0 10 59 2 4 9.2 5.0 9 45

3 0 1 18 0 0 18 95 3 0 1 0 8 0 0 0

4 0 0 9 4 0 4 31 4 0 10 .17 0 17 94

5 0 o 2 0 O 0 0 5 50 10 0. 2-90 0 0

Sum 8 17 36 4 0 40 61 Sum 18 13 2 32 0 40 61
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Figure 4.14. Distribution of compartments into classes of relative errors in estimation.

44. Effects of the statistical options and
methods

The three criteria for the quantitative and
qualitative variables used in section 43 will be
used to evaluate the statistical options and
methods in the compartmentwise estimation.

441. Transformation options

The results listed in Table 4.18 are based
on the unsupervised stratification using diffe-
rent transformation techniques and various
combinations of spectral bands. The initial
numbers of clusters (strata) are the same for
all the transformations.

Table 4.18(a) demonstrates that if the first
three principal components are used as the
stratification factors, the best combination is
not the case in which all the image bands are
utilized in the transformation. Instead, the
combinations which cover only 3—4 effective
bands on two occasions give better results.
Beside the randomness of the sample, the
reason for this is that the first three principal
components contain more variance for these
spectral bands (see Table 4.6). The results for
the standardized and non-standardized prin-
cipal component transformations coincide
with the results in section 4141. For the image
data acquired in the fall (data ID-84 and ID-
simul), the non-standardized principal com-
ponent transformation shows better results
than does the standardized transformation.
For the image data acquired in the summer (
data ID-85), the reverse seems to be true.

The canonical variable transformation in
the study was calculated for volume, species
composition and main species. The real im-
age data such as the bitemporal image data
(ID-84 plus ID-85) and unitemporal image
data (ID-84) produces nearly the best esti-
mates (see Tables 4.18(b) and 4.19).

On the other hand, for a single quantitative
variable, the canonical variable transforma-
tion seems better when compared with a
qualitative variable with several classes.

The transformation using the first four
principal components did not improve the
accuracy. The improvement might require an
increase in the number of strata.
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442. Classification options

In order to remove the effect of the sample
in the second phase of the comparison, the
results in Tables 4.20—4.25 were calculated
on the basis of 1014 image points in the first
phase, and the image points (387) associated
with the sample plots in the second phase, are
not included.

A. Clustering and equal interval classifying

Table 4.20 shows that interval classifica-
tion is also rather effective, especially for the
case with a single stratification factor as in
the case of a single canonical variable (see
Table 4.19). The interval used in the single
canonical variable is .3 producing 18 strata
(classes).

When the investigated area is homogene-
ous, the clustering method is likely to lead to
a few over-large strata, which may reduce the
efficiency of the stratification. In the study
area, for instance, most of sample plots are
centered on the mature or nearly mature
forest stands, the estimated results for these
compartments using the equal interval clas-
sifying method appear better than those using
the clustering method.

B. Classifiers MD (Minimum distance)
and ML (Maximum likelihood)

As mentioned in section 23, the ML clas-
sification in'the unsupervised method may
require an iteration process. To accomplish
the iteration, the minimum number of image
points in a stratum is specified 5 in this study;
2 for the MD method. The 35 strata were
therefore merged into 25. In the first itera-
tion, 20 image points from 387 moved from
their original strata to others. Six iterations
were required for completion, i.e. no further
image point changed stratum. Figure 4.15
illustrates the changes of the numbers of stra-
ta when using the iteration based on bitem-
poral image data (ID-84 plus ID-simul). It
can be seen that after the iteration, the
number of the image points decreased in the
large strata, and increased slightly in some
small strata.

In Tables 4.20 and 4.21 both the MD and
ML classifiers show very similar results. It
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Table 4.18 (a). Means, root mean square errors and correlations by using different transformations.

Compartments Image points
Band Estimated Mean RMSE Correlation Mean RMSE  Correlation
combination P.Cor C.V  variable
Data = ID-84 plus ID-simul for occasion 2 (Case 112P12)
Principal component transformation (standardized)
3,4,5,7 Volume 140.4 43.0 921 190.7 89.3 707
Age 53.1 16.7 .893 74.2 26.1 .757
Net increase (V) 21.5 29.4 495 14.9 61.0 .198
Composition:
Pine 44 23 721 4.0 3.5 464
spruce 4.0 2.0 .866 4.5 3.2 .562
B.L 1.6 1.7 312 1.5 2.1 193
4,5,7 Volume 140.4 41.6 931 190.7 91.2 .695
Age 53.1 14.4 931 74.2 26.0 .761
Net increase (V) 21.5 29.2 .570 14.9 61.0 184
Composition:
Pine 44 2.4 712 4.0 3.5 454
Spruce 4.0 2.3 779 4.5 3.2 541
B.L 1.6 1.6 .387 1.5 2.0 .270
1,2,3,4,5,7 Volume 140.4 46.7 906 190.7 92.0 685
Age 53.1 17.3 .885 74.2 26.9 731
Net increase (V) 21.5 30.2 446 14.9 61.0 186
Composition:
Pine 4.4 2.7 .581 4.0 3.6 419
Spruce 4.0 2.5 697 4.5 3.2 .539
B.L 1.6 1.7 252 1.5 2.0 184
Principal component transformation (non-standardized)
1,2,3,4,5,7 Volume 140.4 43.8 903 190.7 89.7 .705
Age 53.1 15.6 910 74.2 259 .760
Net increase (V) 21.5 29.9 459 149 61.0 184
Composition:
Pine 44 2.5 .660 4.0 5.5 455
Spruce 4.0 2.2 .788 4.5 3.2 .563
B.L 1.6 1.6 436 1.5 2.0 .218
3,4,5,7 Volume 140.4 41.6 912 190.7 90.1 .701
Age 53.1 15.7 914 74.2 26.0 .756
Net increase (V) 21.5 29.4 572 14.9 61.0 .184
Composition:
Pine 4.4 2.7 575 4.0 3.5 450
Spruce 4.0 2.4 737 4.5 3.2 .553
B.L 1.6 1.7 .303 1.5 2.0 .226
Canonical variable transformation (for volumes on two occasions)
1,2,3,4,5,7 Volume 140.4 4.9 912 190.7 91.9 .689
Age 53.1 16.3 .898 74.2 26.9 .736
Net increase (V) 21.5 27.1 .700 149 62.9 149

Table 4.18(a) cont.
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Band Number of  Estimated Mean RMSE Correlation Mean RMSE  Correlation
combination P.Cor C.V  variable
Canonical variable transformation (for composition)

3.4.5,7 2 Composition:
Pine 4.4 2.2 .770 4.0 3.6 .505
Spruce 4.0 2.2 814 4.5 3.3 518
B.L 1.6 1.6 .377 1.5 2.0 .265

Vegetation indix transformation

1,2,3,4,5,7 2 Volume 140.4 43.5 922 190.7 89.9 .702
Age 53.1 19.3 .838 74.2 26.8 .738
Net increase (V) 21.5 30.3 434 149 60.9 .201
Composition:
Pine 4.4 2.8 .486 4.0 3.6 .388
Spruce 4.0 2.5 674 4.5 33 .523
B.L 1.6 1.7 .340 1.5 2.0 .206

Table 4.18(b). Means, root mean square errors and correlations by using different transformations.

Compartments Image points
Band Number of Mean RMSE Correlation Mean RMSE  Correlation
combination P.C or C.V  variable
Data = ID-84 plus ID-85 for occasion 1 (Case I12P1)
Principal component transformation (standardized)
1,2,3,4,5,7 3 Volume 118.9 489 .868 175.8 91.1 677
Age 49.8 18.8 .828 70.2 28.0 678
Composition:
Pine 4.5 2.1 .762 43 3.8 544
Spruce 3.8 2.2 .738 4.5 8.7 .587
B.L 1.7 17 .688 1.2 3.1 413
Principal component analysis (non-standardized)
1,2,3,4,5,7 3 Volume 118.9 50.7 .855 175.8 90.7 .681
Age 49.8 20.4 .786 70.2 28.5 .669
Composition:
Pine 4.5 2.0 815 43 3.8 .593
Spruce 3.8 2.1 .838 45 3.8 638
B.L 1.7 1.4 .808 L2 3.0 462
Canonical variable transformation (for the volume on occasion 1)
1,2,3,4,5,7 1 Volume 118.9 45.7 .893 175.8 88.8 .696
Age 498 18.5 .838 70.2 27.4 .695
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Figure 4.15. Changes of image points in strata before and after the ML iteration.
Table 4.19. Estimation accuracies of the qualitative variables by using different transformations.
Compartments Sample points
Band Number of Tax. Site Main DV Tax. Site Main D.V
combination  stratifying factors class class species class class class species class
Data = ID-84 plus ID-simul for occasion 2 (Case 112P12)
Principal component transformation (standardized)
3,4,5,7 3 64 67 83 73 43 56 67 57
4,57 3 73 72 73 72 45 59 69 57
1,2,3,4,5,7 4 64 67 76 64 43 58 67 51
Principal component transformation (non-standardized)
1,2,3,4,5,7 3 64 66 76 73 45 58 69 51
3,4,5,7 3 63 69 78 67 45 59 67 49
Canonical variable transformation (for main species)
1,2,3,4,5,7 3 66 67 84 — 44 58 70 —
Vegetation index
1,2,3,4,5,7 2 64 64 73 67 44 55 67 57
Data = ID-84 and ID-85 for occasion 1 (Case 112P1)
Principal component transformation (standardized)
1,2,3,4,5,7 3 70 76 73 64 49 63 72 50
Principal component transformation (non-standardized)
1,2,3,4,5,7 3 70 76 76 50 50 61 74 46
Canonical variable tranformation (for main species)
2,3,4,5,7 3 - - 78 - - — B

=

Table 4.20. Means, root mean square errors and correlations by using different options in the stratification.

Sample
phase  Transformation Classifier Variable
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Compartments Image points
Mean RMSE  Correlation Mean RMSE  Correlation

2 PC MD Volume
Age
Net increase

Composition:

Pine
spruce
B.L
2 P.C ML Volume
Age
Net increase

Composition:

Pine
spruce
B.L

2 P.C MD Volume
Age

Composition:

Pine
spruce
B.L

2 P.C ML Volume
Age

Composition:

Pine
spruce
B.L
2 Cv MD Volume
for growing Age
stock
2 C.V for Equal  Volume
growing interval Age
stock
1 P.C ML Volume
Age

Composition:

Pine
spruce
B.L

Data = ID-84 plus ID-simul for occasion 2 (Case 112P12)

145.6 49.4 .908 192.4 91.9 .687
54.2 20.9 .866 74.3 27.0 726
20.8 36.2 124 14.1 62.7 .163
4.6 82 375 43 3.8 .327
3.8 2.6 635 4.5 3.3 .508
1.6 2.2 —.061 1.2 2.2 .061
145.6 50.4 904 192.4 92.0 .686
54.2 19.9 .864 74.3 27.6 722
20.8 35.5 .198 14.1 62.6 .166
46 3.1 403 43 3.8 311
3.8 2.5 .704 45 33 .508
1.6 2.1 .166 1.2 2.1 126

Data = ID-84 for occasion 1 (Case 11P1)

124.8 59.5 818 178.3 93.7 632
50.9 21.7 % jr L 70.5 29.3 .646
4.5 29 .481 4.2 3.6 .399
3.8 25 667 45 33 510
1.7 2.3 176 1.3 2.1 140
124.8 59.3 .820 178.3 94.4 640
50.9 21.7 .780 70.5 28.8 .646
4.5 3.0 464 42 8.5 442
3.8 2.6 .623 4.5 33 525
1.7 2.2 436 1.3 2.0 .227
124.8 58.3 .829 178.3 95.5 .635
50.9 20.3 .808 70.5 28.1 .660
124.8 57.6 .835 178.3 938.7 671
50.9 20.3 .805 70.5 28.1 649
124.8 61.9 .796 178.3 97.6 .609
50.9 22.1 .756 70.5 29.4 632
4.5 2.9 .486 4.2 3.7 .367
3.8 2.5 .681 4.5 33 490
17 23 .256 1.3 2.1 162




66

Table 4.21. Estimation accuracies of the qualitative variables by uing different options for the stratification.

Compartments Image points
Sample Transformation  Classifier Tax. Site Main Dev. Tax. Site Main Dev.
phase class class species class class class species class
Data = ID-84 plus ID-simul for occasion 2 (Case 112P12)
2 P.C MD 56 60 72 63 42 56 66 46
2 P.C ML 52 64 69 66 42 57 64 48
Data = IDD84 for occasion 1 (Case I1P1)
2 P.C MD 58 63 67 50 42 54 68 43
2 PC ML 55 61 69 55 44 57 68 49
1 P.C ML 58 63 72 52 41 54 69 41

should be emphasized that the lower limit of
the image points in a stratum for each clas-
sifier is different, i.e. 2 for the MD and 5 for
the ML. If the minimum limits of the num-
bers of sample plots in the strata were the
same, the ML would give slightly better re-
sults than did MD.

The ML classifier can also be created from
the large image sample, i.e. the image sample
in the first phase. The advantage by using the
image sample in the first phase is that the
minimum number of image points in a
stratum can be relatively large in comparison
with the use of the permanent plot sample.
However, the results obtained by using the
ML classifier created from the large image
sample has not given satisfactory results (see
Table 4.20). This failure may be attributed to
the fact that both the image and field vari-
ables are more strongly correlated with each
other in the second phase sample than that in
the large sample. In addition, the large sam-
ple can not be used for the partition into cut
and non-cut subareas. The calculation is also
time consuming. For instance, the ML clas-
sifier on the basis of the first phase sample in
Table 4.20 was obtained after 36 iterations.

As a whole, the difference between these
stratification options is not significant.

443. Supervised stratification

The training area of the supervised method
in the two phase sampling is just the ground

sample of the second phase and not the usual
subjectively selected forest area.

For the variable of volume, each sample
plot is classified into volume classes with an
interval of 20 m*/ha except for the first class
(less than 10 m® /ha) and the last class (grea-
ter than 410 m® /ha). Other quantitative
variables such as height, D.B.H, basal area,
age and net increase were simultaneously
classified as the volume classification was
progressing.

Three models: ML-PTM-ML, ML-ML
and ML were used in the supervised method.
The ML-PTM-ML model was used for vol-
ume classes, main species and development
classes based on the bitemporal image data:
ID-84 plus ID-simul and measurements at
two periods with a time interval of 5 years.
The probability transition matrix presented
in section 22 was based on the permanent
plot sample. Based on the same bitemporal
image data, the ML-ML model was used for
those qualitative variables which did not
change over the five year period. Besides, the
ML-ML model was also used for both the
quantitative and the qualitative variables
based on the bitemporal imageries (ID-84
plus ID-85) and unitemporal measurements
in the first period (the interval of the two
image data is only nine months). It implies
there is no any movement between classes for
these variables. The ML model was used for
the stacked image data on two occasions as
well as for the single image data.

A comparison between the supervised (us-
ing only a single ML) and unsupervised

method for most qualitative variables was
presented by Peng (1987).

The normal distribution is assumed as a
prerequisite for the use of the ML classifier.
In addition, the proportions of the sample
plots in the strata were initially used as the a
priori probabilities for the qualitative vari-
ables. Equal probabilities as the a priori
probabilities are assumed for the quantitative
variables. The test based on the three criteria
indicates that under the case in which the a
priori probability is unknown, treating the a
priori probability in this way is better than
others in the study area. The MD classifier as
a contrast is used only for the image data
from a single occasion.

Tables 4.22 and 4.23 present the results, in
which the supervised method appeared
slightly better than the unsupervised method
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(refer to Tables 4.22 and 4.20) for estimating
volume. However, for estimating the qualita-
tive variables they are quite similar. Com-
pared with the results from the unitemporal
image data using a single ML, the ML-PTM-
ML and ML-ML models also give better
results, except for some qualitative variables
such as the site class and the taxation class
based on ID-84 plus ID-simul using the ML-
ML model. One of the advantages of using
the supervised method is that it optimizes the
use of the ground sample information, pro-
vided that prerequisites for the ML are satis-
fied. However, a problem also derives from
the sample. If the sample is not large enough
for a variety of forest types to be represented
or the statistical assumption of the normal
distribution does not hold for some variables,
biased estimates are likely to arise.

Table 4.22. Means, root mean square errors and correlations by using different updating techniques (supervised

method).
Compartments Image points
Updating technique Estimates Mean RMSE  Correlation Mean RMSE  Correlation
Data = ID-84 plus ID-simul for occasion 2 (Case 112P12)
ML (stacked image data) Volume 145.6 48.0 .906 192.4 90.2 .700
Age 54.2 21.2 817 743 26.6 747
Net increase 20.8 34.2 342 14.1 64.2 .016
ML-PTL-ML Volume 145.6 45.6 915 192.4 92.4 .691
Age 54.2 19.8 847 74.3 26.3 753
Net increase 20.8 34.4 318 14.1 64.2 .025
Data = ID-84 PLUS ID-85 for occasion 1 (Case 112P1)
ML (stacked image data) Volume 124.8 55.2 .833 178.3 89.5 .697
Age 50.9 20.1 .801 70.5 26.9 712
ML-ML Volume 124.8 55.8 818 178.3 90.7 .704
Age 50.9 20.0 791 70.5 26.6 716
Data = ID-84 for occasion 1 (Case I1P1)
ML Volume 124.8 58.8 810 178.3 95.3 .640
Age 50.9 21.9 .760 70.5 28.8 657
MD Volume 124.8 64.4 .795 178.3 116.3 618
Age 50.9 24.5 713 70.5 323 619
Data = ID-simul for occasion 2 (Case 12P2)
ML Volume 124.8 55.1 904 178.3 96.3 645
Age 50.9 22.3 821 70.5 29.3 673
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Table 4.23. Estimation accuracies of the qualitative variables by using different updating techniques (supervised
method).
Compartments Image points

Updating technique Tax. Site Main Dev. Tax. Site. Main Dev.

class class species class class class species class

Data = ID-84 plus ID-simul for occasion 2 (Case I12P12)
ML (stacked image data) 42 66 66 68 44 58 62 54
ML-PTM-ML — — 75 65 — — 69 56
ML-ML 51 66 - — 49 59 — —
Data = ID-84 plus ID-85 for occasion 1 (Case 112P1)
ML (stacked image data) 60 74 66 55 48 61 65 51
ML-ML 65 78 69 55 49 63 71 50
Data = ID-84 for occasion 1 (Case I1P1)
ML 52 66 66 51 44 59 65 49
MD 14 25 42 40 09 20 37 34
Data = ID-simul for occasion 2 (Case 12P2)

ML 48 66 69 55 42 59 61 49

The MD classifier for the supervised
method is not as good as the ML classifier,
especially for the qualitative variables.

To estimate the net increase of volume, two
alternatives can be selected for the supervised
method. According to the test, the stratifica-
tion based on merely the net increase only
using the supervised method did not give the
satisfactory results because of the weak corre-
lation. The results listed in Table 4.23 come
from the second method which simply follows
the stratification by volume. The accuracy of
the method is a little lower than that obtained
by the unsupervised method. The estimate of
the net increase of volume, following the vol-
ume stratification, could be expected to be
better When the area is partitioned into cut
and non-cut areas.

444. Regression estimation

The comparison between the stratification
method and the regression methods shown in
section 24, have been presented in a previous
paper by Peng (1987). Both two methods

gave similar results.

The important thing in using the regres-
sion estimation method, is the selection of the
appropriate regression model. Since the re-
sponses of image data to forest differ in vari-
ous parts of the distribution of stand charac-
teristics, the segmented model should,
perhaps, be applied in the manner of the
model developed by Tomppo (1987). Also, in
order to maintain the compatibility among
field variables, the simultaneous equation
model may need to be considered. Since the
regression model is effective in many cases,
the method remains promising. Of course,
finding a good regression model requires
much elaborate work.

45. Effects of updating methods

Two updating methods to handle the mul-
titemporal image data have been discussed
already. The first one is stacking multitem-
poral image data which was used for the
unsupervised and supervised stratifications in
sections 43 and 44. Another one is a recursive
method including the ML-PTM-ML and

ML-ML models. It was utilized in the super-
vised method in section 443. In reality, both
updating methods can be used in either the
supervised or the unsupervised manner to
handle the multitemporal image data.

As described above, the stacked image data
can be readily used for simultaneously es-
timating both the present state and changes
in the forest, while the recursive method is
mostly directed to the present state of the
forest resources.

In Tables 4.24 and 4.25 the results of four
methods concerning updating data are based
on the real data: data ID-84 and ID-85.
These methods are combined with the un-
supervised method and used for estimating
the current states of the compartment charac-
teristics. It should be emphasized that the
ML-PTM-ML and the ML-ML models used
in the unsupervised stratification differ from
the supervised one in the stratification factors
as described in section 24. In the unsuper-
vised method, the transition of the stratum is
accomplished through a change of the spect-
ral values of the image points, while for the
supervised method, it is accomplished on the
basis of the change of the stand characteris-
tics of the sample plots. Although both transi-
tions contain sampling errors, the former in-
clude an extra random error: the error of the
change of spectral values of an image point
over time.

In the event, the transition error of the
unsupervised method may be larger than that
of the supervised method. However, consider-
ing the statistical assumption of the normal
distribution when using the ML classifier, the
unsupervised method is, perhaps, easier to
apply. Final results indicate that the accuracy
of using the ML recursion models for the two
methods are analogous.

The results of Tables 4.24 and 4.25 were
obtained on the basis of the use of the two
filters, one for volume and the other for tree
species composition as discussed in section
413. The results are similar to those obtained
using the stacked image data.

Time filtering can be also used for estimat-
ing the net increase. At the moment, the signs
of the filter weights for the two imageries are
opposite. However, merely a single difference
filter would not produce an effective estimate
for the net increase, because the net increase
is also related to the current state of a field
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variable. For estimating the net increase,
therefore, two kinds of filters are required at
the same time: one for the current state and
another for the net increase. In such a case,
the stacked image data might meet the re-
quirement since after principal component
transformation of the stacked image data, the
first two principal components often result in
two types of eigenvectors which are similar to
a summation filter and a difference filter re-
spectively.

As in canonical variable transformations,
the problem of time filtering based on correla-
tions is whether the weights calculated from
the sample are approximate to those cal-
culted from the population. Naturally, if the
sample is sufficiently large, it should be so.

Table 4.24 demonstrates that beyond the
technique of using the stacked image data
and the time filter, the estimate-modifying
approach is also efficient. The method is
straightforward but needs much computer
time.

The presented results have been obtained
without spatial filtering because the gains in
the correlation for some important stand
characteristics were rather weak.

The results in Tables 4.24 and 4.25 con-
firmed the inference. The accuracy of using
spatial filtering is quite close to that without
spactial filtering (see the technique “only us-
ing ID-85” in Tables 24 and 25) except the
tree species composition (pine and spruce)
which achieves more gains in the correlation
by means of spatial filtering. It implies that
spatial filtering may help in the estimation of
those variables which are not very sensitive to
the position of the image points, or less corre-
lated with image data, such as species com-
position and most of the qualitative variables.

The test of updating data for sample case
I1P12 is not in the present study since the
basic method is the same as when using single
image data for the stratification. The differ-
ence is only that the image data is old while
the measurements are new. The partition of
the cut area is necessary for this updating.

The key point of updating data in sample
case [12P1 is how to normalize the two im-
ageries to the same level. An attempt to nor-
malizing ID-84 and ID-85 by using the mul-
tispectral ratio and vegetation indices failed
in this study. In this case, the standardized
principal component was chosen for the nor-



70

Table 4.24. Means, root mean square errors and correlations by using different updating techniques (Unsupervised

method).
Compartments Image points
Updating technique Variable Mean RMSE  Correlation Mean RMSE  Correlation
Data = ID-84 plus ID-85 for occasion 1 (Case I12P1)
Stacked image data Volume 124.8 56.3 .834 178.3 91.3 672
Age 50.9 20.3 .800 70.5 27.6 .685
Composition:
Pine 4.5 2.5 .664 4.2 3.3 527
spruce 3.8 2.3 .690 4.5 31 577
B.L 1.7 2.0 .535 13 1.9 .387
ML-PTL-ML Volume 124.8 57.9 .822 178.3 90.3 678
Age 50.9 20.3 .796 70.5 28.1 670
Composition:
Pine 4.5 2.5 .669 4.2 3.2 .554
spruce 3.8 2.0 .821 4.5 3.0 616
B.L 1.7 1.9 .600 1.3 1.9 425
ML-ML Volume 124.8 57.2 .829 178.3 90.0 .681
Age 50.9 19.9 811 70.5 27.8 .680
Composition:
Pine 4.5 2.5 .665 4.2 3.2 .555
spruce 3.8 1.9 .832 4.5 3.0 .628
B.L 1.7 1.8 .656 13 1.9 454
Estimate-modifying Volume 124.8 54.4 .853 178.3 — —
Age 50.9 20.0 .807 70.5 — —
Composition:
Pine 4.5 2.6 .650 4.2 — —
spruce 3.8 2.1 777 4.5 — —
B.L 1.7 2.6 .430 1.3 — —
Time filtering Volume 124.8 56.2 .831 178.3 90.0 .684
Age 50.9 19.8 811 70.5 27.2 .700
Composition:
Pine 4.5 2.8 .555 4.2 3.4 .500
spruce 3.8 2.2 .753 4.5 3.0 .631
B.L 1.7 2.1 479 1.3 2.0 .252
Data = ID-85 for occasion 1 (Case 11P1)
Only using ID-85 Volume 124.8 59.6 810 178.3 91.5 .669
Age 50.9 21.3 .784 70.5 28.5 .658
Composition:
Pine 4.5 2.5 675 4.2 3.2 .558
spruce 3.8 22 721 45 3.1 .583
B.L 1.7 1.8 .730 1.3 1.8 484
Spatial filtering Volume 124.8 58.7 814 178.3 91.9 .662
based on ID-85 Age 50.9 22.3 743 70.5 28.4 .660
Composition:
Pine 4.5 2.4 .707 4.2 3.1 .591
spruce 3.8 23 .710 4.5 3.1 .608
B.L 1.7 1.9 612 1.3 1.8 470
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Table 4.24 cont.
Compartments Image points
Updating technique Variable Mean RMSE  Correlation Mean RMSE  Correlation
Updating data based on Volume 124.8 59.1 812 178.3 92.3 655
the old model Age 50.9 22.1 .753 70.5 30.4 .600
Composition:
Pine 4.5 2.7 636 4.2 3.4 476
spruce 3.8 2.2 776 4.5 3.0 .604
B.L 1.7 2.4 .050 1.3 23 —.041

malization. The old image data and the mea-
surements were used in clustering, building
the MD classifier and for calculating the esti-
mates of the stand characteristics in the stra-
ta. The new image data was used for deter-
mining the stratum code for the image points
in the compartments based on the old MD
classifier. The effect shown in Tables 4.24
and 4.25 are close to those obtained from
sample case I1P1 (using image data ID-85).

Although the standardized principal trans-
formation used in the study succeeded in

normalizing the two imageries, there is still a
problem of lacking the fresh ground observa-
tions. With a long inventory interval, the old
ground observations may not cover all the
combinations of the present forest. Further,
the normalizing of image data may also re-
move the image changes generated from the
forest growth. The technique of normalizing
the image data and maintaining the effect of
the forest growth requires further develope-
ment.

Table 4.25. Estimation accuracies of the qualitative variables by using different updating techniques ( pervised
method).
Compartments Image points
Updating technique Tax. Site Main DV Tax. Site Main DV
class class species class class class species. class
Data = ID-84 and ID-85 for occasion 1 (Case 112P1)
Stacked image data 63 69 75 49 48 64 72 47
ML-PTM-ML 63 67 73 53 47 61 73 47
ML-ML 63 66 75 55 47 61 73 46
Time filtering 61 69 73 50 46 61 74 46
Estimate-modifying 63 70 73 47 — —_— — —
Data = ID-85 for occasion 1 (Case I1P1)
only using ID-85 63 70 73 4“4 48 64 72 48
Spatial filtering 63 73 72 53 48 63 74 46
Updating data based on
the old model 53 52 73 46 43 53 72 43




5. EFFICIENCY ANALYSIS

51. Precision analysis

511. Estimation of the population parameters using
the the multitemporal image and field data

The multiple correlation coefficient of the
spectral bands with a field variable is equiva-
lent to that of a canonical variable of these
spectral bands with the field variable. In this
connection, the following analysis is based on
two canonical variables which are transfor-
med with respect to a certain field variable on
two occasions respectively.

In practice, the sample variances and the
correlation coefficients will be used in the
expressions below instead those for the popu-
lation.

Let ¢, = canonical variable on occasion 1
c, = canonical variable on occasion 2
¢, = mean value of the canonical variable of the
permanent plot sample on occasion 1, i.e.
f ¢y /n,
Sy = mean value of the canonical variable of the
image sub-sample on occasion 1, i.e.

nl
z o, /n

Cyp = mean value of the canonical variable of the
permanent plot sample on occasion 2

& = mean value of the canonical variable of the
image sample on occasion 2

x, = field variable on occasion 1

x, = field variable on occasion 2

X, = mean value of the field variable on occasion 1
Xy, = mean value of the field variable on occasion 2

Then, a minimum variance linear estimate
%o of 1y (population mean of x,) in Ware and
Cunia’s way (1962) can be rewritten as fol-
lows:

0= Fop + A&y, — €11) + B(&p — &) (5.1)

where A and B are unknown coefficients to be
estimated. Noting that pairs Xgp and Cyp, Xip
and ¢y, €)p and Cyp, €11 and &y are related to
each other, we can express the variance of X,
as follows

& =52, /n, + A?s? (I/n, + 1/n]) + B, (1/n, + 1/nj)
g 2As,, S¢, Ty, /Np + 2By, S¢, Ty, /np + 2ABs, s,
Tecp /0 (5.2)

where all the sample variances and correlati-
on coefficients are calculated from the perma-
nent plot sample

Minimizing sA with respect of A, B, we
have the followufg results:

A = £7(5q, /5e) (TperTeper = Taged)/(1 = T20))

B = (50, /5¢) (Tyyefere, = Tpe)/(1 = 1)

and
2 =55, (1= 1,0 )/my (5.3)
where " = n’ /njand n" = n, + nj

2 = (2 2 2
e = (Mo + Too = 2aq Toe Tao)/ (1= o)
2 2.1 2.2 1 Txac fepeg 12

(5.4)

It can be seen that r, . is exactly the same
as equation (23.7). It implies that the GLS
coincides with time filtering which maximizes
the correlation between the bitemporal image
data and the field variable. It also means that
the GLS does not only minimize the variance
of the estimate of the mean of a field variable,
but also results in a single image variable
which has the highest correlation with the
variable.

Formula (5.4) can be rewritten as the follo-
wing expression:

[Tl = I, | Gy (5.5)
where G,, is the gain in the correlation
Gy, = [1 4+ (qy, = 16,6)"/(1 = 18, )] (5.6)
and

Qr, = Tape, /gy (SUPPOSE | Ty, | > | 1y, 1)

From (5.5) and (5.6), it could be concluded
that

(1) 111 =1y lie. Gy, = 1 holds in any
cases.

If Lo, = Tanes Ty » 1462 G, = Feopthenin, ¢
= F e This 1s the case that the new image
data does not contain any new information
concerning the correlation between the image
data and the field variable. In this case, the
bitemporal image cannot improve the preci-
sion in estimating the current state of the field
variable and it acts as a unitemporal image
data. Beyond this exception, the bitemporal
image data alway is more effective than the
unitemporal image data.

(2) Ifro ., > 0 and q; > re ¢, | Iy, | will
decrease with increase of r .. Then the case
with unmatched image data in the image sub-
sample is more effective than the case with
the matched image data in order to estimate
the current state of the field variable. This is
why case I112P12 in Table 4.12 is better than
case 112P12 in estimating the current state.
In many cases q, > r.,. Therefore, the
matched case is not best suited for estimating
the current state of the field variable.

(3) If r ., > 0 and q, < r. cI,lr,(l | will
increase with r .. The case is opposue to the
previous one but “probably rarely occurs, un-
less very big change would appear in the
forest. Based on the equations listed above, it
is apparent that the correlation coefficient
provides direct information on the precision
of the estimation on the current state of the
field variable (see (5.3)). To estimate the
current state of the field variable, the correla-
tion of the unitemporal image data with the
field variable is still most important.The gain
in the correlation by using the bitemporal
image data depends upon how much new
information is carried by the new image.

For estimating the change of the field vari-
able durmg an interval, the estimate D and
its variance sﬁ can be derived in the same
way:

D = &y, — X1, + Ap (€1, — €1 ) + Bp (& — &) (5.7)

where Ap and By are the parameters to be
estimated, and after minimizing the variance
of D, we have

sy =sb (1 —frdo)/n, (5.8)
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where
sh = 2+ 85, = 25, S, T,y (5.9)

the = (the, + The, = 2fp, T, Tepe)/ (1 = 1) (5.10)

D, = 8y Tagiey = Sx, Tyyey) / S (5.11)
ey = (Sx Tagies = Sx Txpeg) / S (5.12)
A = 1" (sp /5¢)(rpc; Tepe, = rl).rg)/(l = Woyen)

B=1f'(sp /sq)(rl).(»l Tepep = rD.q)/(] - r?,,c?)

(5.10) can be also rewritten in the manner of
expression (5.4)

[rpcl=1rpe,|Go (5.13)
where
Gp=[1+ (= Ty, )2 /(1 = 136)] (5.14)

Qo = T /Tne, and assume | g, | < 1.

Although (5.13) and (5.5) are identical in
form, | rp . |in (5.13) is often much lower than|
ry,c | in (5.5) because | rp, | in (5.12) is much
lower than | Iy, |in (5.5). On the other hand,
qr, is more commonly negative, and r., is
mostly positive. Then Gp will increase with
r. - It implies that the matched case is, more
often better than the unmatched case for
estimating changes in the forest. In addition,
the gain Gy is often greater than the gain G,
simply because, in comparison with the un-
itemporal image data, the bitemporal image
data offers more information concerning the
forest change.

If the change intensity is large as in the
case of clear cutting, the increase in | rpg |
arises mainly due to the increase in | rp, |
rather than that in Gp. On the other hand, if
the quality of the image data were to be
improved, the major increase in | rp | might
be due to the increase in Gp. In the case of
Landsat TM, the increase in | rp. | mostly
relies on the rp, rather than Gp. In other
words, the detection of forest change depends
more on the nature of forest change than on
the image data.

Table 5.1 presents the correlations between
X, (and D) and the canonical variables for
spectral bands, and the corresponding gains
for different images and occasions.

In Table 5.1 the gain in the correlation
concerned with the net increase of volume is
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Table 5.1. Correlations of x, and D with the canonical variables and the associated gains.

For volume
on the present occasion

21,2 Teyel Txg,c2 Txg,c

For net increase of volume

between two occasions

Gy ™ ™Dy ™, Gp

Data = bitemporal image data (ID-84 plus ID-simul)

From occasion 1 to occasion 2:
.502 —.592 —.643 —. 715

From occasion 2 to occasion 3:
438 —-.520 —.679 -, 123

1.11 .096 —.051 150 1.56

1.06 141 -.507 —.649 1.28

Data = bitemporal image data: ID-84 plus ID-85

Occasion 1:
.785 —.637 —.636 =,675

1.06 - S = -

greater than the gain in the correlation with
the current state of volume, although the
correlation for the net increase of volume is
lower than that for the current state of
volume.

In addition, the high correlation between
the image variable and the net increase from
occasion 2 to occasion 3 is primarily due to
high rp, and not to gain Gp. The reason why
rp,, from occasion 2 to occasion 3 is so high is
that the spectral values of the cut area are
located at the end of the radiation distribu-
tion. In this case even the unitemporal image
data can be used for effectively estimating the
net increase.

In spite of the difficulty of detecting a small
change with the aid of TM image data, the
reduced correlation between measurements
on two occaions could be partly offset by
using the bitemporal image data. This is
because the large change can be effectively
separated out.

512. Effective ranges of the filter weights

The analysis made above is also applicable
for the time filtering or spatial filtering based
on maximizing the correlation between the
image and field variables. However, the de-
termination of the weights of the filters is a
key step when filtering in a forest inventory.
Although the optimum weights can be calcu-
lated theoretically, in practice the weights are

estimated on the basis of the sample. It fol-
lows that the estimated weights might not be
optimal. The applicability of the filters can be
questioned if the weights are not optimal. In
this section, we discuss the question of the
effective weight ranges for the filter.

The effective weight range here means that
the weight within the range will produce a
weighted image variable which is more
strongly correlated to the field variable than
the original image variable.

The following expression is derived from
(23.2)

e = (W Sc, Txe, + Wo s, rx.(,)/

232 2 2 12
(wi se, + wo S, + 2w wy S¢; Se, fc,.r.,)

(5.15)
where x denotes the field variable like x, or D.

Equation (5.15) can be rearranged as fol-
lows:

e = Tog (9u9uqr + 1)/
(@7 qs + 1+ 29, qu )"
where q, = s, /s,

qQu = w, /wg

Qr = Ty, ITygy

Let|re, | 2|1y |, then|q, | < 1.
In order to enable |r, | > | Iy, |, we have

Table 5. 2. The optimum weights and the effective
weight ranges for time filters.

For the current state For the net increase of volume

of volume between two occasions
Optimum Effective Optimum Effective
weight weight range weight weight range

Data = bitemporal image data (ID=84 plus ID-simul)
From occasion 1 to occasion 2:

w =4 0<w <.84 w =543 w,>I or w<—-.53
wo =.56 .26 < wy < 1.0 wg=—4.43  w;<0 or w>1.53

From occasion 2 to occasion 3:
w; =.33 0<w, <.8 w=-177 w;<0 or w;> 2.82
wo = .67 .15 <w < 1.0 wy =277 we>1 or we<—1.82

Data = bitemporal image data (ID-84 plus ID-85)
Occasion 1:
w, =.50 0l1<w,; <10 —_ —
wo = .50 0<w,<.99 —_ —

Qu>2 (o, = q.)/[q, (g7 = 1)]if g <0 (5.16)
Gu < 2t = )/ [q, (G2 = 1)]ifqu >0 (5.17)

When s, = s, (5.16) and (5.17) can be
simplified as follows:

Qu>2(re, = q.) / (qf = 1)ifqu <0 (5.18)
qu<2(r,—q,) / (gF = 1)ifq, >0 (5.19)

Then the effective weight ranges of wo and w;
can be obtained in accordance with wy + w,
=1 and q,.

Table 5.2 is based on equations (5.5),
(5.15), (5.18) and (5.19). From Table 5.2 it
can be seen that the effective weight range is
rather wide if the variances and correlations
of the two original image variables (or the
weights) for two occasions are close to each
other. This is especially so if they are almost
equal (see the results of the bitemporal image
data ID-84 plus ID-85 in Tables 5.1 and 5.2).
In this case, the effective weights cover al-
most the whole range from 0 to 1.The effec-
tive weight ranges for the time difference
filters are larger than those for the time sum-
mation filters. A spectial feature of weights of
the difference filter is that they are situated
outside range 0—1. It seems that for time
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filtering the weights of filters may not be the
optimal, though in many cases some gain in
the correlation still can be obtained to vary-
ing degrees.

The weights of the spatial filter differ from
the time filter in that it gives more weights to
the central image pixel or the first nearest
pixel for most spectral bands. In other words,
the weight of the central pixel or the first
nearest pixel is closed to 1. Consequently, the
effective weight range for these filters be-
comes narrow. Accordingly, there is a danger
that the weights from the sample may be
located outside the effective range. In this
case the correlation becomes weaker after
filtering. On the other hand, if the weight of
the central pixel approaches 1, the gain in the
correlation is so small that it can almost be
ignored. Under the circustance, spatial filter-
ing for these bands is not essential.

513. Estimation of a compartment characteristic

Let x. be a random variable in a compart-
ment, then x. can be expressed as follows:

Xe =Pt (Xe = M) =P+ € (5.20)

where p. = mean value of x. in the compartment
€ = x. — W = random error with 0 mean value
and the variance of x. in the compartment

In stratified sampling, with a random dis-
tribution of the sample plots, a certain
characteristic of an arbitrary image point in
the compartment, can be similarly estimated
from

Xi=%t¢g (5.21)
where X ; = estimate of the characteristic of interest at

image point i in the compartment
%; = sample mean value of the characteristic in

stratum j to which the image point belongs
random error with 0 mean value and the
variance of the characteristic in stratum j

=

Note that both %; and g in (5.21) are ran-
dom variables at the moment. Suppose that X;
and g; are independent of each other, then the
variance of X.; within a stratum can be ap-
proximately denoted by the following expres-
sion:
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Figure 5.1. Standard errors and actual errors of estimates of volume in the compartments (which
are arranged in a ascending order by positive standard errors of volume).

S, =g+ (5.22)

where s% = sample variance of X

sf]. = variance estimate of

It is apparent that for the case of nc'J image
points drawn from stratum j and when %; is
still used as the estimate of the mean of these
image points, equation (5.22) will become

s%m = s%’ + sfj /né’ (5.23)

Equation (5.23) implies that the first part
in the right hand side, i.e. the variance of the
stratum mean value, does not change with an
increase in the number of image points as
long as the mean value is used as the estimate
of these image points.

If there are n/ image points are systemati-
cally or randomly allocated in a compart-
ment, the variance of the average value of
estimate %; over these image points can be
approximately expressed as follows:

s§=2;.sz%+2j:szij/n'r 1=L2 .., L (5.24)

—
where w; = ng /n!

L. = number of strata in the compartment

In practice, the plots within a stratum may
not be distributed according to the statistical
assumptions, especially in a large forest area.
Then equation (5.24) may lead to bias.

Figure 5.1 illustrates the standard errors sz
calculated from (5.24), and the actual errors,
which are the differences between the esti-
mates and measurements of volume for all 65
compartments. It can be seen that 90 % of
the actual errors fall in the range of & 2s5 . As
autocorrelation exists between the neighbor-
ing image points, the variances in (5.24)
might be underestimated.

Assume that the first part in the right-hand
of (5.24) could be replaced by s? /n,, where s?
is the sample (permanent plots) variance of
the field variable, and 2 w; s} could be ap-
proximately denoted by the residual mean
square of a linear model formed by the image
and field variables, then the following expres-
sion can be derived from (5.24)

n./[n'c/n, /(1=r%) + 1] = (1-r?) /E? (5.25)

where t = t-statistic
¢ = coeflicient of variation of the field variable, %
E = allowable error for the estimate in the com-
partment, %
r = correlation coeflicient between the field and
image variables

(5.25) can be used for investigating the
effect of the correlation on the precision of the
estimates in the compartments with different
sizes. Of course, (5.25) is not adequate for
every compartment, but it can help us to see
the relationship between the correlation coef-
ficient, the precision and the compartment
size. The distributions and the variation of
the compartments in (5.25) represent an av-
erage level in the investigated area.

Assume that an image point in a compart-
ment represents a forest area of .09 hectares
(30 m X 30 m). Under the condition of ¢ =
70 % for the volume in the study area and
different r-values, Table 5.3 shows the de-
sired numbers of the image points in the
assumed compartment for the given E based
on equation (5.25).

According to (5.25), for an allowable error
of 30 % the minimum number of image
points in a compartment in the study is 12. In
this case, 51 % of compartments can attain
the given precision. Actually, about 60 % of
compartments in the area reached this level
(see Figure 4.14). When the correlation rises
to .95, with an allowable error of 20 %, the
minimum number of image points in a com-
partment is 2.2. about 82 % of the compart-
ments should attain the given precision ac-
cording to (5.25). Actually, about 90 % of
compartments in the area reached this level
based on data ID-simu2 in which volume is
highly correlated to the image data.

In Table 5.3, we find that image data with
a TM-like quality remains ineffective for a
small compartment, e.g. | hectare. It can also
be seen that the size of the compartment has
an effect on the the estimate, though the
relationship between E and n. weakens with
the increase of n;, especially when n, is grea-
ter than n,,. Figure 5.2 demonstrates the rela-
tionship between the number of image points
and E.

By using the supervised method, the var-
iance of the estimates for each of image points
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Table 5.3. Correlations, precisions and numbers of the
image points in compartments.

E = 30 %:

n’. 12 8 5

Area (ha) 1.0 7 5
= 20 %:

n’, 26 18 10

Area (ha) 23 1.6 9

E =10 %:

n’. 101 71 38

Area (ha) 9.1 6.4 3.4

in the compartment comes from two sources:
one is the probabilities (proportions) of stra-
ta; another refers to the variances of the mean
values of the variable in all the possible clas-
ses. Assume that the probability (proportion)
and the mean value of the field variable in the
class are independent of each other, then the
final variance of the estimate of the variable
at an image point can be derived according to
the theory on the error propagation of two
independent variables.

52. The number of permanent sample
plots and image points

The number of sample plots for a variable
can be derived from equation (5.3). Accord-

ingly
np=t2c2(l—f'r2)/li2 (5.26)

where ¢ = coefficient of the variation of a field variable,
%
E = allowable error, %
t = t-statistic
r = correlation coefficient between the image
variable and the field variable
f'=ni/n'

When 1, E and c are given, the question is
how to decide f .

The total cost of the two-phase sampling
can be expressed as follows:
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Figure 5.2. Precisions and numbers of image points for the compartment.

cr=crten+or (5.27)

where ¢ = fixed cost
¢ = total cost of the image points
crp = total cost of the permanent sample plots

The total cost of the permanent sample
plots can be estimated on the basis of the
average cost of a permanent sample plot. The
total cost of the image points may not be so
estimated. The average cost of an image point
depends on how the points are selected and
charged.

: If the image material used in the forest
inventory could be picked and charged by the
small image windows which are around the
image points or the sample plots, the number
of the permanent sample plots and the image
points can be calculated by (5.26) and by the
following expression (Cochran 1977, p. 341)

n, /0’ = [ (1-r?)/r’ ¢, ]'2 (5.28)

where ¢; = cost of the unit image point

Cp = cost of the unit permanent sample plot

$up_pose that the window size of the image
point is 7 X 7 pixels (210 X 210 m), the cost

of a single image point in Finland is shown as
follows:

Number of image points Cost of the unit image point

1000 26 FM

5 000 9 FM

10 000 .7 FM
> 20 000 .6 FM

In order to evaluate the cost of a unit
permanent sample plot, we have to confine
the discussion to some given conditions.

On the basis of the national forest inven-
tory in southern Finland during recent years,

(1) the sample plots are specified as i) a
circular plot of .03 hectares and ii) a
relascope plot with BAF 2;

(2) the number of the sample trees mea-
sured accurately for each sample plot
is about two on average;

(3) the distance between sample plots is
400 m, i.e. in a large area the lay-out of
the sample plots would be non-uniform
or tractwise;

(4) the basic work in a sample plot in-
cludes determining the locations of the
plot and trees, tree tally, measuring
sample trees and stump survey;

(5) the working group in the field work
consists of three persons using the car
as the means of travel.

Under the above assumptions, the main
difference in the costs of the permanent sam-
ple plots in a large area compared with a
small area is determined by the travelling
time.

According to the results of the national
forest inventory in  Finland  during
1984—1985, and following the assumptions
specified above, the costs of the permanent
sample plots with respect to distance are
presented in Table 5.4.

Comparing the results listed in Table 5.4
with those concerning the cost of the unit
image point listed above, the ratio ¢; /¢, is
placed within the range 1/100 to 1/700.

It should be noted that the ratio ¢; /¢,
obtained above is mostly for the net increase
of volume. If the variables of interest are
concerned with proportions such as land-use
classes and main species, as could be ex-
pected, the ratio ¢; /c, would be much larger
than that for the net increase of volume. Even
for the volume, the ratio might be greater
than 1/200 since an inventory for this purpose
may only require temporary sample plots.

Table 5.5 presents the values of n, /n” with
regard to different r-values and the ratio c,
/c;. The best np /n’ is around 1/11 forr = .6
under ¢; /¢, = 1/200.

When the allowable size of the image mate-
rial which should be purchased is at least a
quarter of the image scene other than the
image window around the image point, the
total cost of the image points largely depend
on the investigated area rather than on the
number of the image points. In this case, the
prerequisite of using the image data profit-
ably in the two-phase sampling is that

f'r*>cp/orp (5.29)
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Table 5.4. The costs of the permanent sample plots.
Completed number
of the sample plots Cost of the unit
Traveling per group in a working day sample plot (FM)
distance
(km/day) Circular relascope Circular Relascope
plot plot plot plot
20 4.6 6.2 343 258
50 4.3 5.8 386 295
80 4.0 34 437 338

Table 5.5. Ratio n, /n’ and 1-fr? as a function of r and ¢,
/ey

/=100 /o =200 /=300  cpfe; =600
W W R L E o S W A N

49 980 .35 .974 .28 971 .20 .968
23 877 .16 .866 .13 .861 .09 .768
13 687 .09 672 .08 .669 .05 .658
.08 411 .05 .392 .04 .38 .03 .379
.05 .230 .03 .218 .03 .214 .02 .206

Lo e N

Figure 5.3 illustrates the profitable region
of using image data in the CFI in relation to
¢ /cp and [

Since the price of the image data is rather
low, in most cases the image data used in the
forest inventory would be finacially accept-
able.

53. The feasibility of using satellite
imagery

In Table 5.5 (1—f'r?) indicates the reduc-
tion of the permanent sample plots by means
of the two-phase sampling.

If the fixed cost is excluded , the cost ratio
of the CFI with the image data to the CFI
without the image data, for the same given
precision, can be expressed as follows:

e = (1= A1 + (e /c)? /(1= (5.30)
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Figure 5.3. Rational areas of Cyy/Crp.

The e, with regard to the different ', ¢ /€55
and r are presented in Table 5.6. It is clear
that under the assumption that the image
data can be picked and charged in terms of
the image windows around the image points,
the use of the permanent sample plots with
the image data is effective, especially for those
variables which are highly correlated with the
image variable.

The cost of a compartmentwise estimation
using satellite imagery consists of two parts:
one is the cost of the image material and the
computer processing time used in the estima-
tion of the compartments; the other is the
shared unit area cost from the CFI in the
whole area.

Since the cost of the first part of the com-
partmentwise estimation is rather low (less
than 1 FM/ha), the main expenditure of the
compartmentwise estimation arises from the
second part which depends on the extent of
the inventory population in the two-phase
sampling.

Suppose the numbers of sample plots are
500, 1000 and 2000, and the associated
forest inventory areas are 2 000, 100 000 and
500 000 hectares, then the costs (with circular
plots and relascope plots in parentheses) are
9 (7) FM/ha,4 (3) FM/ha and 2 (1) FM/ha

Table 5.6. Cost ratio of an inventory with image data to
an inventory without image data.

f =23 =9
q/cp ci/ey
r 1/100 1/300 1/600 1/100 1/300 1/600

.988 979 976 984 975 972
910 .894 .888 .893 .878  .871
.765 .743 734 427 705 697
.553 .526 515 .481 457 447
425 394 .382 .327 303 294

L oo nio

respectively under the assumptions given in
section 5.2.

In comparison with the cost of the tradi-
tional compartmentwise survey (i.e. total cost
is around 45 FM/ha, with field work is
around 20—30 FM in recent years) the cost of
the comparmentwise estimation when using
satellite imagery listed in the previous para-
graph remains rather small, especially if the
sampling population is large. An important
prerequisite for this comparison is that the
estimation must be reliable.

For operative forest planning which re-

quires rather precise estimates for every com-
parment, the comparment-oriented estima-
tion using image data could not offer satisfac-
tory estimates for the small compartments.
This problem can be partly solved with the
help of the supplementary information such
as old inventory results or map material.
Extra field work, however, is inevitable in
operative forest planning. How much extra
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field work should be added depends on the
accuracies of the estimates to which the esti-
mation aspires and the given precision re-
quirement.

In a continuous forest inventory of a large
area, the comparment-oriented estimation is
an extra benefit. With its low cost, the estima-
tion might reduce the cost of the operative
forest planning.



6. DISCUSSION AND CONCLUSIONS

The study has focused on how to combine
multitemporal image and field data in both
continuous forest inventories and compart-
mentwise estimations.

The integration of the image data with
permanent sample plots is a natural extention
of the traditional SPR. With its minimum
variance, the GLS method has been shown to
be an effective way of handling a variety of
cases.

For estimating the current state of a field
variable which has a fairly high correlation
with the image data, the combination of im-
age data and sample plots is demonstrating
quite effective. Perhaps the unitemporal im-
age data is enough for the estimation. The
gains in the correlation when using Landsat
TM bitemporal image data are around 5—
10 % in the study area.

For estimating change in the forest, the role
of multitemporal imageries in a continuous
forest inventory is that of a "classifier” which
classifies a large change into smaller changes.
As a result, the effect of the correlation reduc-
tion on estimaing forest change will be allevi-
ated by multitemporal image data. Bitempor-
al image data can effectively detect large
changes such as clear cutting. The advantage
of partitioning the large change becomes evi-
dent in this case. To determine a small
change, such as thinning, the TM image data
proved to be ineffective in the study area. The
estimation precision in this case depended
mostly on permanent sample plots.

Availability of cheap image data compared
with laborious compartmentwise surveying,
as well as the presence of permanent sample
plots over a large area further encourages the
compartment-oriented estimation.

The application of the multitemporal im-
age data to the compartmentwise estimation
can be accomplished using a space-time mod-
el (see Bennett 1979) as follows:

Y, =SU, (6.1)
where Y, : output

U, : input
S : transfer function

In (6.1) the image data, with its spatial and
temporal distribution, can be viewed as the
input and the estimates of the target variables
would be the output.

In reality, it seems that the input and
output in (6.1) should be exchanged, i.e. the
image data should be the output and vice
versa. For the purpose of the present applica-
tion, (6.1) can be thought of as the inverse
transformation of the real model. The trans-
fer function is the key part of the model.
Indeed, most parts of this investigation deal
with the transfer function, which includes:
the spatial filter, time filter, transformation,
discriminant function, estimation models for
compartments, etc.

The filtering for both spatial and time
series can be used for maximizing the correla-
tion of the filtered image variable with the
target variable. The gain in the correlation
can be estimated through the sample.

Where the imagery is well registered, any
gain in the correlation by using the filtering of
spatial series for most quantitative variables
is likely to be low. The filtering may help to
improve the correlation for only those vari-
ables which are less correlated with the image
variables or which change over space smooth-
ly. Spatial filtering is therefore suitable for
special applications, e.g. the classification of
the site class.

The filtering of time series for multitempor-
al imageries with a short interval is more
effective than spatial filtering. It is convenient
to handle multitemporal image data for es-
timating the current state of a field variable.
For estimating both the current state and
change of a field variable simultaneously, a
transformation such as P.C or C.V is conve-
nient.

The advantage of time filtering is that it
can maintain the respective feature for every
spectral band after filtering so that the fil-
tered material can be used in other applica-
tions.

In a multiparameter inventory, the princi-
pal component transformation, especially the
standardized one, corresponds well to the
unsupervised method. When multitemporal

image data are available, the selection of only
the important bands for the transformations
should perhaps be considered.

The canonical variable transformation can
be specialized for a certain target variable
(especially in the case of quantitative vari-
ables). It might be used to enhance the esti-
mation effect of a variable peculiarly. Both
the P.C and C.V transformations can com-
plement each other.

The problem with the vegetaion index
transformation is how to determine the effec-
tive transformation coefficients. The vegeta-
tion index transformation employed in this
investigation were effective in the estimation,
but it did not succeed in normalizing the
image data for the biomass.

Pre-stratification is necessary. In particu-
lar, the area should be divided into cut and
non-cut subareas when estimating forest
changes.

Clustering can result in clusters which are,
to a large extent, a response to the actual
distribution of the objectives. It may also
produce the over-large clusters. The ML iter-
ation may be helpful for adjusting the strata.
Equal interval classifying may be more effec-
tive for a homogeneous forest area. Both MD
(minimum distance) and ML (maximum
likelihood) classifiers are recommended for
the unsupervised method because the differ-
ence between them is small. Of the two, the
MD is less limited. The ML classifier is li-
mited by the minimum number of the sample
plots in a stratum. However, where the condi-
tions for the ML classifier are met, it is likely
to be better than the alternative.

With respect to the supervised method, the
ML classifier has also to be considered in
many cases, especially for the qualitative var-
iables.

On the whole, the unsupervised method is
fairly adaptable and able to make all the field
variables compatible with each other. The
estimation accuracies of the major stand
characteristics when using the method are
almost the same as those achieved when us-
ing methods, as demonstrated in this study.
These properties are particularly suitable for
a multiparameter forest inventory. However,
the method may not be the best for all the
variables of interest. The shortcomings could
be compensated by means of transformations
or other pertinent methods.
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Stacking the multitemporal image data is a
straightforward updating method. It enables
the estimation of both the current state and
the change of a field variable to be carried out
simultaneously.

Without fresh field measurements, the up-
dating of data using only new image data and
old models remains problematic. The main
difficulty is the normalization of the mul-
titemporal image data.

The precision analysis indicated that for
estimating the current state of a field vari-
able, the unitemporal image data perhaps is
sufficient. The gain in the correlation for the
current state when using bitemporal image
data varies from 5 % to 10 % in this study.
Image data such as Landsat TM can effec-
tively reveal only large changes. Its efficiency
to detect small changes remains poor, al-
though the gain in the correlation when using
bitemporal image data for estimating forest
change is higher than that in estimates of the
current state.

With a short interval and normalized im-
age data, equal weights for a time filter can
achieve almost the maximum gain in the
correlation for some quantitative variables.
At least the effective range of the weights of
the time filter are rather large.

Contrary to time filters, the effective range
of the weights of a spatial filter may be rather
narrow. The precisions of estimates of com-
partment characteristics depend to a great
extent on the correlations, the variation of the
characteristics in the area and the compart-
ment size.

For image data such as Landsat TM, the
precisions of most compartment characteris-
tics in small compartments of the size less
than 1—2 hectares in Finland remain low.

Operative forest planning probably re-
quires extra field work beyond the compart-
ment-oriented estimation when using image
data. Although the inventory results obtained
with the aid of image data could satisfy the
demands of strategic forest planning, some
estimates of the stand characteristics which
are almost uncorrelated with the image data,
such as stoniness, still require checking with
the help of ancilliary information, e.g. old
forest inventory results and map material.

As long as the image points in the first
phase can be selected in terms of image points
and associated image windows, the use of
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image data is effecient for most field variables
in a large forest inventory.

It should be pointed out that the present
investigation has spent a great deal of time on
the simulation of the multitemporal data by
means of trial and error in order to obtain
realistic image material. Although the statis-
tical nature of the simulated material was
close to realistic, there may be differences

between them. Nevertheless, the emphasis of
the study has been on the methodological
issuses in using multitemporal data rather
than real figures. Furthermore, the real data
were used to verify the results obtained from
the simulated data in many cases. The dis-
cussion and conclusions above, are also based
on this verification.

7. SUMMARY

Purposes of the study

The study is concerned with the methodol-
ogy and efficiency of integrating multitem-
poral image data with permanent sample
plots in a continuous forest inventory and
compartmentwise estimation.

Material

The study area (192.8 hectares) is located
in Hyytidld, Finland. 1472 relascope sample
plots were measured in the field, of which 387
sample plots were used as the permanent
sample plots. Two Landsat-5 TM imageries
with an interval of nine months were avail-
able for the study.

The remeasurements of the sample plots
and the associated multitemporal image data
for the coming occasions were simulated us-
ing the MELA programme and regression
models. The correlations between the image
data and the important quantitative and
qualitative variables were tested with respect
to the spectral bands.

Estimation methods

Two estimation methods were used for the
population: the generalized least squares
(GLS) and two-phase sampling for stratifica-
tion (TPS). The main method is the GLS
estimation. It can cope with a variety of
sample cases with minimum variance. The
GLS used in the study is designed for estimat-
ing the current state and change, as well as
the class area transition of field variables
based on multitemporal image and field data.

There are also two estimation methods
which were applied to the compartmentwise
estimation in the study: TPS and regression
estimation.

TPS includes two sub-methods, i.e. the
supervised and unsupervised methods. The
unsupervised method is the main method for
the compartmentwise estimation.

A number of statistical techniques or op-
tions for the data preprocessing and the
stratification are presented and compared.
The data preprocessing includes the com-
partment delineation, image registration, fil-
tering and transformation.

Filtering for both the time and spatial
series aimed at maximizing the correlation
between the image and the field variable. The
optimum weights of a filter and the gain in
the correlation can be estimated from the
sample.

Two types of spatial filters were assumed.
One is the filtering window of size 3 X 3
pixels. The other one is the filter which covers
the nearest two or three pixels to an arbitrary
image point. The time filtering dealt with
only two time points.

Three transformation options were tested.
They are the principal component tranforma-
tion, the canonical variable tranformation
and the vegetation index transformation. In
the principal component transformtion, both
the standardized and non-standardized
methods were examined.

The canonical transformation was com-
puted on the basis of the image and field
sample. It was used for maximizing the corre-
lation between the transformed image vari-
able and a special field variable in the study.

The vegetation index transformation was
originally developed for extracting the image
component concerned with the biomass. On-
ly the first two components, i.e. brightness
and greenness were extracted using an
othogonal transformation in the study.

In the stratification step, some basic clas-
sification options were presented. These op-
tions were K-means clustering or equal inter-
val classifying, and the MD (minimum dis-
tance) classifier or ML (maximum likeli-
hood) classifier. In addition, the R-square
value which here is a ratio of the variances
between strata to the total variance, was used
for determining the number of strata.

To test the regression estimation, exponen-
tial regression models were developed for es-
timating volume and net increase. Log-linear
and logistic regression models were intro-
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duced for the qualitative models.

Updating methods concerned with handl-
ing multitemporal image and field data
through the estimation methods were also
presented. Stacking all the available data and
making a recursion for the estimates from one
occasion to another were two basic ways used
in handling the multitemporal data.

Stacking multitemporal data can be used
for estimating the current state and change of
a certain field variable simultaneously. It is
the main updating method via the unsuper-
vised method.

The ML cascade and estimate-modifier are
the two recursive updating methods. The ML
cascade was initially designed for the super-
vised method, it can be also used for the
unsupervised method.

Results

The study area was delineated into 68 com-
partments. The image data was registered by
shifting the image position and checking the
correlations.

By using multitemporal image data, the
estimations of the GLS and TPS for the popu-
lation were conducted for two periods with
different cuttings. The results for five sample
cases were given for a comparison. For es-
timating the current states of field variables,
the method appeared quite effective. For es-
timating forest change, the improvement held
only for large changes such as clear cutting.
The probability transition matrices for the
main species and development classes, using
GLS, were listed.

A spatial filtering window with 3x3 pixels
and a filter composed of the two nearest
pixels were tested. The result indicated that
the gain in the correlation for volume is low.
Higher gains were obtained for the tree
species composition.

Two real image data were used for testing
the time filtering. The gain in the correlation
was higher than that obtained from spatial
filtering.

The transformations made on the basis of
stacked bitemporal image data indicated that
the first principal component or canonical
variable was noticably correlated with the
current states and the second principal com-

ponent or canonical variable with forest
changes.

The effects of using a part of the bands of
multitemporal image data for the transforma-
tion appeared to be the same as or even better
than when using all the spectral bands with
respect to the first three transformed variab-
les for stratification.

For the real data, the canonical transfor-
mation gave better estimates than did the
principal component transformation. .

The results in terms of working steps, using
the unsupervised method for the compart-
mentwise estimation (P.C transformation,
K-mean clustering and MD classifier), were
illustrated by tables and figures. The number
of strata was 34.

The root mean square error and the corre-
lation between the estimates and measure-
ments, as well as the estimation accuracy for
the qualitative variables, were used as the
criteria for checking the effects of the com-
partmentwise estimations.

The comparisons were made for the diffe-
rent estimation methods and statistical opti-
ons in accordance with the three criteria.

According to the test, the effect of using
equal interval classifying is almost the same
as that of using clustering for some important
variables. The experiment also showed that
clustering may produce over-large strata if
the investigated area is homogeneous.

The difference between the MD and ML
classifiers were small when using the unsu-
pervised method. For the supervised method,
however, the ML classifier was better than
the MD, especially for the qualitative vari-
ables.

By using the ML classifier, the estimation
effect when using the supervised method was
similar to effects when using the unsupervised
method together with the regression estima-
tion.

Pre-stratification proved to be necessary.
In particular, the whole area should be parti-
tioned into cut and non-cut sub-areas in or-
der to estimate the net increase. Without this
partition, the net increase in the cut compart-
ments were overestimated.

All the updating methods used in the study
resulted in similar effects. For estimating the
net increase, the ”stacking?’ method appeared
more convenient and better than the others.
In the absence of new measurements, the

key point of updating based on only the fresh
image data and old models is the image nor-
malization.

Efficiency analysis

The formulas derived for the efficiency
analysis were based on the Ware and Cunia’s
way.

The precision analysis was conducted for
estimates in both the population and com-
partments. It was demonstrated that the GLS
and time filtering resulted in consistent ef-
fects. The gain in the correlation when using
the bitemporal image is dependent on the
relevant correlations. Since the sensitivity of
the image data to the change of middle aged
and mature forest are very weak, detecting
thinning remains difficult.

The precision of estimates in the compart-
ments can also be estimated. According to the
analysis, a high precision is not attained when
using the TM image data for the small com-
partments.

The effective range of the weights of the
filters can be estimated by the given formulas.
The range of the filters concerning the time
series is quite wide, but the range might be
narrower for the spatial filter.

Based on experimental data recently obtai-
ned from the national forest inventory toget-
her with some necessary assumptions, the
cost of the permanent sample plots and image
points were calculated. Efficiency analysis in-
dicated that if the image data can be selected
and purchased in terms of image points and
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surrounding areas, the integration of the per-
manent plots and multitemporal image data
can be beneficial for most variables.

The compartmentwise estimation is not ex-
pensive, but the precision, especially for small
compartments, might be low. The applicati-
on of the method to operative management
planning is more difficult and was not studied
here.

Conclusions

As a traditional estimation method for
sampling with the partial replacement, the
generalized least squares estimation used for
both the quantitative and qualitative variab-
les works well in the case of the permanent
sample plots and multitemporal image data.

The image data is effective for estimating
the current state of the field variables and
detecting large change in them. For detecting
small changes, the TM image data seems
unsatisfactory. The partitions of a cut area in
the compartmentwise estimation is, therefore,
necessary.

If the image data are well registered, the
gain in the correlation when using spatial
filtering is likely to be low for some important
variables.

With the unsupervised method, the use of
stacked multitemporal data for the multipa-
rameter inventory appears adaptable and
compatible. It is therefore recommended.
The method can be further enhanced by se-
lecting different statistical transformation
and classification techniques.
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Appendix 1. Parameters and statistics of the simulation models

Model 1 (sub-model 1)

Class score
2 3

Regression
coefficient

Band 1

Solution:
Constant = 49.4117
Site class
Tax. class
G
In (D + 3)
Residual mean squares: 2.1555
R-square : .271

Band 2

Solution:
Constant = 19.7967
Site class
Tax. class
G
In (D + 3)
Residual mean squares: 0.9811
R-square: 0.378

Band 3

Solution:
Constant = 18.0817
Site class
Tax. class
G
In (D + 3)
Residual mean squares: 1.8284
R-square: 0.432

Band 4

Solution:
Contant = 44.1484
Site class
Tax. class
G

In (D + 3)
Residual mean squares: 18.2175
R-square = 0.442

Band 5

Solution:
Constant = 38.9749
Site class

0

0

0

0 -0.023
0.550 0.449

0 -0.262
0.094 0.060

0 -0.170
0.399 0.253

0 —0.497
1.380 —0.149

0 0.351

0.433
0.290

0.101
0.105

0.438
0.174

—0.530
-0.370

2.534

0.669
247

0.046
0.137

0.498
0.098

—1.282
—0.927

2.529

—0.0313
—0.8671

—=0.0229
—0.8039

—0.0287
—1.3387

—0.1431
—4.0957

Appendix 1 cont.

91

2

Class score

3

Regression
coefficient

Tax. class 0
G
In (D + 3)
Residual mean squares: 29.9558
R-square: 0.481

Band 6

Solution:
Constant = 102.3486
Site class
Tax. class 0
G
In (D + 3)
Residual mean squares: 1.8590
R-square: 0.272

Band 7

Solution:
Constant = 12.8333
Site class

Tax. class 0

G
In (D +3)
Residual mean squares: 4.1439
R-square: 0.433

1.746

0
0.230

0
0.455

0.555

0.192
0.164

1.063
0.178

0.418

1.066
0.213

1.872
0.084

1.721
0.574

1.995
0.052

—0.133
—6.0833

—0.0089
—0.5165

—0.0405
-2.0717
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Model 1 (sub-model 2)

Class score Regression
0 1 2 3 4 5 6 7 8 coeficient
Band 1
Solution:
Constant = 49.3878
Stoniness 0 —0.235 —0.657 —0.310 —0.425 -0.379 -0.168 —0.259
Main species 0 —0.920 -1.123 -0.899 -1.321 ~1.375
H —0.0653
D 0.0206
A —0.7693
In (G + 3) 0.00001
P 0.1494
S 0.1101
B 0.1792
Residual mean squares: 2.0698
R-square : 0.302
Band 2
Solution:
Constant = 18.6990
Stoniness 0 —-0.044 -0910 0.031 -0.069 —0.039 —0.127 -0.075
Main species 0 —0.095 -0.240 0.092 -0.072 -1.171
H —0.0688
D 0.0151
A —0.3274
In (G +3) -0.0025
P 0.0548
S 0.0003
B 0.0797
Residual mean squares: 0.8773
R-square : 0.4458
Band 3
Solution:
Constant = 16.9193
Stoniness 0 —0.115 -0.976 —0.176 —0.647 —0.873 —0.162 —0.109
Main species 0 —0.440 -0.676 —0.060 —0.490 —1.932
H -0.0615
D 0.0081
A —0.9364
In (G +3) —0.0010
P 0.1410
S 0.0634
B 0.1794

Residual mean squares: 1.6576
R-square : 0.487
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Appendix 1 cont.
Class score Regression
0 1 2 3 4 5 6 7 8 coefficient
Band 4
Solution:
Constant = 36.0648
Stoniness 0 —0.190 —2.949 -0.374 -0.118 —1.646 —0.080 —0.041
Main species 0 —0858 —2.048 —1.075 —2.286 6.397
H 0.3485
D 0.1019
A —1.2682
In (G + 3) —0.0362
P 0.2856
S 0.3809
B 0.8504
Residual mean squares: 15.6388
R-square : 0.522
—
Solution:
Constant = 37.4390
Stoniness 0 -0.546 —3.925 —0.075 —3.902 —2.657 —0.143 —0.1565
Main species 0 —3.459 -—4.662 —2.662 —4.953 —7.0721
H —0.3848
D 0.1342
A —4.0907
In (G + 3) —0.0053
P 0.3465
S 0.0308
B 0.7721
Residual mean squares: 25.6425
R-square: 0.557
Band 6
Solution:
Constant = 103.4016
Stoniness 0 -0.215 —1.182 -0.178 —0.622 0.067 0.391  0.273
Main species 0 —0.808 —0.957 -0.082 —0.526 -1.072
H —0.0234
D —0.0239
A —0.4329
In (G + 3) 0.0084
P 0.0956
S —0.0194
B —0.0092

Residual mean squares: 1.8545
R-square : 0.275
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Model 2

Constant

Regression coeflicient

In (H+3)

In (V+10)

[In(V+10))?

Band 1

Solution:

Residual mean squares
R-square : 0.275

Band 2

Solution:

Residual mean squares
R-square : 0.391

Band 3

Solution:

Residual mean squares
R-square : 0.437

Band 4

Solution:

Residual mean squares
R-square : 0.460

Band 5

Solution:

Residual mean squares
R-square: 0.500

Band 6

Solution:

: 2.1436

: 0.9622

: 1.8144

1 17.6198

: 28.8866

Residual mean squares: 2.1834

R-square : .143

Band 7

Solution:

Residual mean squares
R-square : 0.458

: 3.9635

52.7813

21.6680

23.8477

39.7227

67.7148

106.9531

27.0273

—0.0051

—0.0502

—0.0253

—0.3994

0.0731

=0.0771

0.0591

—0.4199

—0.3984

—0.8623

0.8770

=715

0.6406

—2.8457

—0.0016

—0.0052

—0.0075

—0.0026

—0.0421

—0.0068

-0.0176

—1.7031

—1.5547

—3.4922

—2.0586

—14.5898

—3.0625

—6.7275

0.1523

0.2275

0.4478

0.1309

2.0737

0.4023

0.9392
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Appendix 2. Inventory results of one compartment based on the image stratification ( An example)
Compartment no. = 0 image points = 24 area = 66966 M*
Mean S.D. C.V (%)
Age (year) 89.93 27.89 31.01
Height (m) 20.32 3.90 19.22
D.B.H (cm) 25.62 6.24 2437
Basal area (m?) 22.81 8.64 37.87
Volume (m?*) 231.48 102.05 44.08
Composition (10 %):
Pine 3.74 3.37  90.06
Spruce 5.43 329 60.66
Broad leaved spesies 0.83 1.41  170.07
Net increase (m*/ha) 10.50  76.04 723.97
Total growth (m*/ha) 32.05 1259  39.30
Total drain (m* ha) 21.54  71.81 333.31
Including:
Cutting (m*/ha) 20.73  71.81 346.48
Mortality (m*/ha) 0.82 1.52 186.34
Class code
0 1 2 ) 4 5 6 7 8 9 Total
Site class 0.00  24.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24.00
Soil class 0.00  19.59 1.88 2.53 0.00 0.00 0.00 0.00 0.00 0.00 24.00
Site class 0.00 0.00 494 1411 2.99 1.96 0.00 0.00 0.00 0.00 24.00
Stoniness 0.00 13.99 3.47 0.36 1.76 0.51 0.03 1.86 2.02 0.00 24.00
Taxation class  0.00 3.07 1127 5.70 3.38 0.57 0.00 0.00 0.00 0.00 24.00
Forest class 0.00  22.05 1.06 0.89 0.00 0.00 0.00 0.00 0.00 0.00 24.00
Main species  0.00 9.53  14.01 0.03 0.35 0.00 0.00 0.08 0.00 0.00 24.00
Dev. class 0.00 0.84 2.64 422 1445 1.84 0.00 0.00 0.00 0.00 24.00
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