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1. INTRODUCTION

The taper curve of a tree is a central con-
cept in forest mensuration. The taper curve
gives a mathematical model of a tree which
can be used as a basis of all the tasks of forest
inventory and mensuration. The form of a
tree may have a simple apparence but the
construction of its mathematical model is a
demanding task. In spite of a long line inter-
est and a large number of publications no
solution has appeared which satisfies all the
relevant conditions.

Lahtinen and Laasasenaho (1979) studied
the determination of the taper curve in the
case where several diameters measured along
the stem were available. They showed that
for such situations one can construct an accu-
rate taper curve by using cubic interpolating
splines.

A standard tree tapers off monotonically
upwards, therefore its taper curve should
have the same property. However, the taper
curve constructed by using cubic interpolat-
ing splines produces a slight oscillation. As a
result this taper curve may be unmonotonic
for a monotonically tapering tree and may
exaggregate the unmonotoniness of a nontap-
ering tree. These phenomena are to be seen
from the taper curve CO15 in Figures 2 and
3. This oscillation is an intrisic property of
the interpolating cubic spline (cf. De Boor

1978) and no way has been found of dispens-
ing with it.

A quadratic spline is able to interpolate
monotonic data monotonically. It can also
match the convexity and concavity of the
data (Schumaker 1983). For this reason we
investigated the suitability of the quadratic
spline for a taper curve.

The necessary concepts are introduced in
section two. After this a mathematical al-
gorithm is presented which produces an in-
terpolating quadratic spline preserving the
monotony of the data. The mathematical re-
sults on which the algorithm is based are
published separately (Lahtinen 1988).

In section three the algorithm is im-
plemented to construct the taper curve. The
criteria are introduced on which we examine
the quality of resulting taper curves by using
sample trees and determine the free parame-
ters of the taper curves. With the results of
determination of parameters we produce
taper curves which are analysed in section
four.

The suitability of an monotony preserving
quadratic spline as a taper curve is affirmed
in section five together with observations of
the number of measurements needed in the
construction.



2. MONOTONY PRESERVING QUADRATIC SPLINES

21. Spline functions

One of the main problems in the approxi-
mation theory is the treatment of a function
for which only incomplete information is av-
ailable. The function may be known e.g. only
at some discrete points or it may be known to
be a solution of an equation which cannot be
solved exactly. In such situations the function
must be replaced by a known function which
agrees with the known facts of the original
function sufficiently well and whose proper-
ties are suitable for operations in question.

Spline functions form a class of approx-
imating functions which can be adapted for
several different purposes. Polynomial splines
are easiest to handle. A polynomial spline of
degree n consists of polynomial pieces of de-
gree at most n which are joined together at so
called breakpoints so that the resulting func-
tion has continuous derivatives up to the
order n-1. A clear exposition on polynomial
splines is to be found in De Boor (1978).
Schumaker (1981) provides more information
about splines in general.

The most common polynomial spline is the
cubic spline. It is a twice continuously dif-
ferentiable function which consists of polyno-
mial pieces of degree at most three. Lahtinen
and Laasasenaho (1979) have given the
necessary algorithms for construction of cubic
splines as well as the most important proper-
ties of them. An interpolating cubic spline has
minimal curvature among twice differenti-
able interpolating functions. It can be uni-
quely determined by two initial values and it
can be evaluated by using numerically stable
algorithms. If a function is continuously dif-
ferentiable then it can be interpolated by a
cubic spline with a prescribed accuracy by
using a sufficient high number of interpolat-
ing points. An interpolating polynomial does
not always have this property (De Boor
1978).

Another common polynomial spline is the
quadratic spline. It is a continuously differen-
tiable function consisting of polynomial
pieces of degree at most two. An interpolating

quadratic spline can be uniquely determined
by using one initial condition if the inter-
polating points coincide with the breakpoints.
It can be evaluated by very simple al-
gorithms, but they are not as stable as the
algorithm for cubical spline (Lahtinen and
Laasasenaho 1979). Mettke et al. (1982) have
shown that a continuously differentiable
function can be interpolated by a quadratic
spline with a prescribed accuracy if the
number of interpolating points is sufficiently
high.

In the construction of a quadratic or cubic
spline the derivatives at breakpoints are free
parameters at first. They are fixed in the
construction so that the spline has the re-
quired degree of smoothness. It remains one
or two degrees of freedom with which the
form of the spline can be affected. The effect
of these degrees of freedom is always global,
that is a change in their values changes the
spline on the whole interval of definition.

22. Monotony preserving splines

In some situations an approximation is
wanted not only to the values of the function
but also to its shape. The values of the func-
tion are known at some discrete set of points
but no precise information about the shape is
available.

A natural method is to use the shape of the
discrete set of function values as an approxi-
mation to the shape of the function. This
means a construction of an approximating
function which interpolates at the known
points and which preserves the essential
shape of the point set. This essential shape of
the point set is in our case piecewise mono-
tony either alone or together with convexity
and concavity. In the former case the approx-
imation is said to preserve the monotony and in
the latter to preserve the shape. The mathemati-
cal formulation of these terms will be given
later on.

The question is how to find an interpolat-
ing function which could be able to preserve
the monotony or the shape. An interpolating
cubic spline does not preserve the monotony
despite its many favorable properties. Passow
(1974) has shown this with a counterexam-
ple. The tests of Lahtinen and Laasasenaho
(1979) show that the disturbing of the mono-
tony is quite common in practice. According
to De Boor (1978) the main reason for the
oscillation is the continuity of the second
derivative.

This observation turns the attention to the
quadratic spline which has only one continu-
ous derivative. McAllister and Roulier (1978)
have shown, however, that the qiadratic
spline is not always able to presc-ve the
monotony and the convexity or concavity. On
the other hand, they established that one can
always transform a quadratic spline to a
shape preserving one by adding new break-
points between interpolating points. On this
basis they have developed an algorithm
which gives a shape preserving quadratic
spline (McAllister and Roulier 1981a). The
algorithm is available also in the form
of a FORTRAN-program (McAllister and
Roulier 1981b). An exposition of its ability to
create a taper curve will be published later
on.

Schumaker (1983) has given another idea
how to construct a shape preserving quadra-
tic spline. This seems to lead to a simpler and
more flexible method than the one of McAl-
lister and Roulier. Therefore we take the idea
of Schumaker as a starting point in the con-
struction of an algorithm for a monotony or
shape preserving spline. The mathematical
results needed for the algorithm are to be
found in Lahtinen (1988). Here we are in-
terested only in the use of the algorithm.

23. Statement of the problem

We start by defining our aim mathemati-
cally. For this purpose we need some con-
cepts.

Let [a,b] be an interval on the real axis and
(x;)} a division of the interval so that

—w<a=x<x<...<x,<x,=b<®
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and let (y;), be a given set of real numbers.
We use the notation

Ax; = x4 — X, Ay = Vi — ¥ i=1,...,n-1

for differences, and for divided differences we
use

The point set D = (x;, y;)1, is called increas-
ing (respectively decreasing) if the set (y;)}, is
increasing (resp. decreasing). The set D is
called convex (resp. concave) if the set of divided
differences is increasing (resp. decreasing.)

For motivation of this terminology we con-
sider the situation where there exists a func-
tion g so that g(x;) =y, i=1,...,n. Ifgis
increasing (resp. decreasing) on the interval,
then also D is increasing (resp. decreasing)
and if g is convex (resp. concave) on [a,b],
then also D has the same property.

Both increasing and decreasing forms are
called monotones. A piecewise monotone function or
set consists of parts each of which is mono-
tone. A point set which consists of convex or
concave parts requires some consideration.
Suppose for example that for the point set D
we have 8, < 8, < 8; > §, > &;. This means
that D is convex on [x), x4] and concave on
[x3, X6]. On the interval [x3, x4] D is thus both
convex and concave. For clarity we exclude
this "interval of inflection” from both convex
and concave sets. According to this conven-
tion we say that D is convex (resp. concave) on a
subinterval [x;, x;] of [a,b], if (8-, ..., &) is
increasing (resp. decreasing).

We say that a function f interpolating at a
point set D (so thats(x;) =y;,i=1,...,n)is
monotony preserving if it is increasing (resp.
decreasing) on the same intervals as D. Ifit is
also convex (resp. concave) on the same in-
tervals as D then it is called shape preserving.
The curvature of the function f is not consi-
dered at intervals of inflection. We are
primarily interested in the monotony. Our
problem can be formulated as follows:

Suppose that a point set D is given on an interval
[a,b]. Construct a quadratic spline s on [a,b] inter-
polating at the set D so that s is monotony preserving.

The solution of this problem is called a
monotony preserving spline. If the solution pre-
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serves also the convexity and concavity then
it is called a shape preserving spline. All splines
in this article are quadratic splines unless
otherwise stated.

24. Spline algorithm

A common interpolating spline has one or
two degrees of freedom. This is not sufficient
for the construction of the monotony preserv-
ing spline we want (McAllister and Roulier
1978). So we must introduce more degrees of
freedom.

A natural way to begin is to leave all the
derivatives at interpolating points as free pa-
rameters. This is not yet sufficient but leads
however to the desired solution in many diffe-
rent ways. The system we used was to intro-
duce additional parameters in the form of
new breakpoints situated between consecu-
tive interpolating points. We can form ex-
plicit conditions under which the spline is
monotony or shape preserving. The method
is iterative, which means that any parameter
can be changed in the process of calculation if
its value is not suitable. The mathematical
background of this method is to be found in
the articles of Schumaker (1983) and Lahti-
nen (1988). We are only interested in the final
form of the algorithm here.

The algorithm:

Initial information:
— the number of interpolating points: n
— the set of interpolating points:
D= ((xi’yi))?! x<...< Xn
— parameters for derivatives:
(@)}, 0<a<o,i=1..,n
— parameters for breakpoints:
(bi)l_l, o< bi < l, 1=l, cen— 1
(The meaning of parameters will be ex-
plained at a later stage of the algorithm.)

Step 1: Compute auxiliary quantities

Ax; = X4y — X;, Ay = yipy — yvwi=1,..,n-1
L= ((Ax)* + (Ay))'2, 8 ; = Ay/Ax,i=1, ..., n—1

li—I 6i—l * li 5i .

_ Li=9,.., 01
A : "

Step 2: Compute derivatives at interpolat-
ing points.

At a point x; the derivative m; of the spline
as function of a; is:

m; =9, +a (8 + uy)

_ ap;, if 88,, >0
™=1o0, e, <01=2% .01

m, =8, + a, 8,1 + u-y).

These derivatives are not final. In some
cases in step 3 it is necessary to change some
derivatives in order to get a monotony pre-
serving spline.

Step 3: The expression of the spline is
formed separately for each interval [x;,x;4,].
There are several alternatives depending on
the derivatives (m;) and divided differences

().

Alternative 31: m; + m;,, = 2 §,.
In this case the spline has in the interval
[x;, xi+1] the expression

si(x) = y; + mi(x—x;) + 5 —— (x—x)".

If this is not the case, then we have

Alternative 32: m; + m;y; # 29,

In this case the spline has on the interval
]xi, xi+1[ a breakpoint & whose location will
be specified within certain limits. For these
limits we introduce three auxiliary points:

_ +A my, — 29;
u =X X; Am,
my; — O
vi = x; + 2Ax 1T
m; — &
w; = Xy + 2Ax Am

Now we can present the different cases
where the breakpoint ; is chosen as a func-
tionof b;, 0 < b; < 1.

Case 321: (mjy; — &;)(m; — &) <0
This leads to a shape preserving spline if

£ = x; + b; (vi—x;), when | mj;; — &1 < I m; — &
' w; + b; (xi5,—w;), when | mj, ;=8 | > | m—§,l.

Notice that in this case always
Imj4;—0;1# | m;j—9;l.

Remark. If the point set D is convex or
concave on the interval [x;, x;4+;] then the
shape is preserved if the derivative parame-
ters a; and a;4, are chosen so that we get this
case 321. This can always be arranged by
choosing a; and a;;, to be suffiently near the
value 1 (cf. Lahtinen 1988). Table 4 contains
limits for a; in a typical situation.

Case 322: (mjy; — &;)(m; — &) =0

In this case the spline has a point - finflec-
tion at the breakpoint &; and cannot be either
convex or concave on the whole interval. The
choice of §; affects the monotony of the spline
as follows:

Case 3221: m; # m;4, and
218> min (I m; I, | m;4l)

The spline is monotone on [x;, x;4+;] if

E = bx;s; + (1 — b))max(x;u;).

Case 3222: m; = m;,, and 218;|=Im;|
The spline is monotone on [x;,x;4+;] if

E = x + b (xis1 — x).

Case 3223: 2 18;I< min(Im;l,imj4 1),
where there is a strict inequality if m; = m;4,.

In this case the spline is unmonotonic on
[xi,x;+1] for all choices of ;. Therefore, if this
is the case, the value of the derivatives has to
be changed in order to obtain monotony. We
replace the value of m;;, by 3/2 §; for simplic-
ity. Because the value of m; is not altered, the
representation of the the spline on the inter-
val [x;-},x;] needs no recalculation. After the
change of derivatives the construction returns
again to the beginning of Step 3.

When the situation of the breakpoint &; is
fixed, then we can form the expression of the
spline on the interval [x;x;4+;] according to
the following formula:

x) = yi + mi(x—x;) + Ci(x—x)?, if x € [x,E]
iy D, + Ei(x—E)+Fi(x—E)% if x € J&,x;41]

The coefficients are

and

D; = y; + mi(E—x;) + Gi(&—x)%,

E|—Xx Xi+ _Ei
E; = 25— Ax, m; — Alxi miy,
F _l m;,,—E;
b2 le"EI

Notice that D; = s(§;) and E; = s’ (§;). Now
the spline is formed for the interval [x;,x;+]
and we can proceed the following intervals
until the whole spline is constructed.

This algorithm gives a local spline. It means
that a change of a parameter doesn’t affect
the spline on the whole interval of definition
but only in some neighbourhood of the point
where the change of parameter was made.
This locality is an essential feature of the
construction which makes it possible to ob-
tain a monotony or shape preserving spline.
It also means that we can make local adjust-
ments to a spline. For example suppose that
the spline models a function which is mono-
tone on an interval [x;,x;+;] but our choice of
derivatives leads to the case 3223 in the al-
gorithm, which means unmonotony. Then we
need only to redefine the derivative m;;; in
order to get monotony without needing to
change the spline on the previous intervals.

The demand that the spline is monotony or
shape preserving does not fix the spline uni-
quely. The derivative parameters (a;) and the
breakpoint parameters (b;) can still be chosen
on certain parameter intervals. This freedom
can be used to get the spline to fulfil (addi-
tional) requirements as well as possible. The
parameters in our investigation will be fixed
with an interactive iteration starting with
values a; = 1 and b; = 0.5 for all values i.
These values produce always a shape pre-
serving spline.
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Table 1. Distribution of sample trees by diameter and height classes.
d Tree height, m Total
cm 1 3 5 7 9 11 13 15 17 19 21 23 25 27 31 33
Number of trees
1 3 2 )
3 31 5 36
5 26 44 5 75
7 57 45 6 108
9 11 57 45 8 1 122
11 4 33 66 42 15 160
13 2 6 48 57 48 5 166
15 5 14 38 53 37 9 156
17 5 29 51 40 24 5 154
19 1 5 17 34 41 36 11 3 148
21 3 22 53 37 25 8 148
23 10 25 43 24 27 5 134
25 6 11 22 30 27 10 106
27 5 6 16 26 23 17 4 97
29 1 15 21 25 17 5 1 85
31 1 2 7 3 16 10 9 1 49
33 1 6 8 12 3 3 34
35 1 4 2 3 7 3 2 22
37 4 4 10 6 26
39 2 4 1 4 12
41 1 4 3 8
43 1 1 1 4
45 1 4
47 1 2
49
51
53 1 2
55
57
59
61 1 1
Total 3 59 123 152 189 194 247 221 214 153 147 89 40 22 1 1 864

3. CONSTRUCTION OF THE TAPER CURVE

31. Background

The construction of a taper curve using
spline functions is not a novel concept, it has
been attempted e.g. by Sloboda (1976).
Lahtinen and Laasasenaho (1979) thorough-
ly investigated the use of cubic splines for a
taper curve. The result was that cubic splines
gave a very good taper curve. Their most
notable defect was a slight oscillation, the
taper curve could be unmonotone even when
the set of interpolating points was monotone.
Consider for example the best taper curve
with 15 interpolating points. In our sample
tree material 24 % of monotone sets of inter-
polating points produced unmonotone parts
to this taper curve (cf. the cubic spline CO15
in Figure 2). This oscillation also exaggerated
the unmonotone parts of an unmonotone set
of interpolating points (cf. the cubic spline
COI15 in Figure 3).

A monotony preserving cubic spline which
could give a taper curve with other good
qualities has not yet been found. Therefore
this study investigated the quality of taper
curves constructed by monotony preserving
quadratic splines. Another possibility to re-
duce the oscillation is to use non-polynomial
splines (e.g. Spath 1983). The polynomial
splines are however more convenient in cal-
culations. Lahtinen and Laasasenaho (1979)
showed that the usual interpolating quadratic
spline was inferior to the interpolating cubic
spline as a taper curve. The difference was
not very great except at the butt where the
quadratic spline could not cope with the
rapid tapering of the stem. A monotony pre-
serving quadratic spline is, however, much
more flexible. Therefore it is possible that it
can give a better taper curve than the inter-
polating cubic spline.

32. Sample tree material

We used the same sample tree material as
Lahtinen and Laasasenaho (1979). All the
material was collected for other purposes by
the Finnish Forest Research Institute bet-
ween 1968 and 1972. Only spruce stems were
used in this study on the assumption that the
resulting methods could be adapted for other
species.

The localities (95) of this material were
chosen from the survey tracts of the Finnish
National Forest Inventory by random sampl-
ing. The material covers the whole Finland.
The distribution of these sample trees into
diameter- and length-classes is presented in
Table 1.

Tree height was recorded to the nearest
dm. Diameters were measured at fourteen
different proportional heights from the
ground, namely 1, 2.5, 5, 7.5, 10, 15, 20, 30,
40, 50, 60, 70, 80 and 90 per cent. Moreover
the diameter at 1.3 m was registered. The
diameters were measured to the nearest mm
by crosswise calipering. The height of the tree
stump was also determined to the nearest cm.
This was always at least 10 cm.

This sample tree material meets the de-
mands of our investigation in relation to the
measuring and selection very well. Its mea-
surements give an adequate description of the
actual taper curve and the material can be
considered to be very representative. So it can
be supposed that the monotony of this set of
measurements gives a good approximation to
the monotony of the tree in question. It can
also be supposed that the convexity and con-
cavity of the set of measurements give a
reasonable approximation to the shape of the
tree.

In addition of these 1864 spruce stems we
also used a so called normal tree. Its height and
diameters at proportional heights were de-
fined as the mean values of the corresponding
quantities in our sample tree material (see
Figure 1).
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Set-up 32.1
Normal tree: height 13.8 m, volume 173.2 dm’

Rel. height: 1 25 5 75 10 15 2

30 40 50 60 70 80 90 100

Diameter: 25.1 21.3 19.2 183 178 172 166 153 139 122 104 83 6.0 3.4 0.4

33. Object of the investigation

We investigated the use of the monotony
preserving quadratic spline as the taper
curve. The investigation was divided into two
parts.

The algorithm described in chapter 24 pro-
duces an interpolating quadratic spline which
always preserves the monotony of the mea-
surements. This spline is in this respect more
suitable to a taper curve than the interpolat-
ing cubic spline which may produce oscilla-
tion. On the other hand the cubic spline is
otherwise very suitable to a taper curve.

The primarily aim of the investigation was
thus to find the extent to which the monotony
preserving quadratic spline has the same
good properties as the usual cubic spline as a
taper curve. In this study the set of inter-
polating points consisted of all 14 measured
diameters and the top diameter which was
taken as 0.4 cm. The properties of the taper
curve constructed by cubic splines are taken
from Lahtinen and Laasasenaho (1979)
which used the same sample tree material.

When the properties of the monotony pre-
serving quadratic spline as a taper curve had
been determined, we then turned to the sec-
ond part of the investigation. This was to
establish how much we could reduce the
number of interpolating points in the mono-

Table 2. Percentage heights used in interpolation.

tony preserving spline without an apparent
weakening of the properties of the taper
curve. The quality of the taper curve depends
on both the number, and placement of the
interpolating points. There is not much
choice in this study as far as placement is
concerned, because we used certain measure-
ments at fixed places. We did, however
choose 8 different sets of interpolating points.
The smallest sets contained only 4 points.
The points in these 8 sets are presented in
Table 2.

For all monotony preserving taper curves
the construction was made by using the al-
gorithm given in chapter 24 in the form of a
FORTRAN-program.

34. Criteria of suitability

When examining the quality of a taper
curve one has at first to decide which criteria
are used. A normal demand is that the errors
are small in all measurable quantities in some
representative sample tree material. In addi-
tion to this one has to somehow estimate
properties which are important but difficult
to measure. One such property is how natural
the shape of the taper curve is. All these
inspections are made with regard to the sam-

Point set The percentage heights of interpolating points

15 1 2.5 9 7.5 10 15 20 30 40 50 60 70 80 90 100
8A 1 5 10 20 40 60 80 100
8B 2.5 7.5 15 30 50 70 90 100
8C 1 2.5 7.5 15 30 50 70 100
5A 1 1.5 20 60 100
5B 1 5 10 100
5C 2.5 25 20 60 100
4A 1 7.5 100
4B 25 10 50 100

ple tree material presented in chapter 32.

In the first part of the investigation taper
curves were compared to the best taper curve
in Lahtinen and Laasasenaho (1979) con-
structed by a cubic spline interpolating at 15
points. This taper curve will subsequently be
called the cubic taper spline and denoted as
COI15. It is often taken in the literature to be
the right form of a tree (e.g. Lappi 1986).

The most important thing is that the taper
curve quite accurately produces the volume
of the stem or any part of it. Volumes are here
always calculated making the assumption
that the tree stem is a solid of revolution. We
considered that a taper curve produced the
right volume if it gave the same volume as the
cubic taper spline CO15 for the whole stem,
and for each of the seven parts into which we
divided the stem. In the cases where COl5
was very unmonotonic some reservations had
to be made. The division of stem and its effect
on the normal tree are presented in Table 3.

From the sample tree material we evalu-
ated the mean relative differences and their
standard deviations by diameter and height
classes. These differences were calculated for
the total volume and for the afore-mentioned
partial volumes.

The second criterion of suitability is the
magnitude of diameter errors. Each taper
curve was tested by evaluating the maximal
diameter difference with regard of the cubic
taper spline CO15 tree by tree. This differ-
ence was taken for the whole tree and for the
subintervals used in volume estimation. The
mean values were tabulated for each diame-
ter class with the standard deviations. In

Table 3. The division of sample trees into parts for tests.

Number of part  Initial and terminal percen-  The volume of the part in
tage heights of the part relation of the total volu-
me (normal tree)

1 STUMP, 5 12 %
2 3, 10 11 %
3 10, 20 18 %
4 20, 40 29 %
5 40, 60 19 %
6 60, 80 9 %
7 80, 100 2%
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addition trees with maximal diameter differ-
ences were tabulated.

Our third criterion of suitability is the form
of the taper curve. This is an essential proper-
ty needed e.g. in lumber assortment. Our
quadratic splines preserve always the mono-
tony of the measurements. Of course all
monotony preserving curves do not give a
natural form to a tree. It is, however difficult
to measure deviation from the “right form”.
Therefore we chose representatives of the
most typical tree forms from the sample trees.
The graph of the taper curve was drawn for
these trees. In addition the graphs of trees
with interesting errors in diameters or vol-
umes were drawn. These figures were a great
help in detecting (hidden) weaknesses in
taper curve models. Some typical graphs are
presented in Figures 1—3.

The best taper curve constructed by a
monotony preserving spline interpolating at
15 points will in the continuation be called
the monotony preserving taper spline and denoted
QOIl5.

In the second part of the investigation we
examined the effect of the reduction of inter-
polating points to a monotony preserving
taper curve. The criteria were the same as in
the first part except that all comparisons were
made with regard to the monotony preserving
taper spline QO15. We also evaluated diame-
ter errors and their standard deviations with
regard to the measured diameters not used in
interpolation. Some typical graphs used in
the considerations of the forms of taper curves
are presented in Figures 4—8.

FORTRAN-programs were created for all
tree tests. We could make use of the programs
of Lahtinen and Laasasenaho (1979) for some
parts of the tests. The figures were drawn
using the DISSPLA-program library.

35. On the choice of parameters

The construction of a monotony preserving
taper curve needs the following information:

Initial data:

— the number of interpolating points, n

— the relative heights (x;)1,

— the diameters at the relative heights, (d;)},
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Figure 1. Taper curves QO15 and CO15 for the normal
tree.
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Figure 3. Taper curves QO15 and CO15 for an unmono-
tone tree.

Parameters:

— the numbers (a;)}, determining derivatives
of the spline at interpolating points

— the numbers (b;), determining the places of
additional breakpoints.

The initial data and the parameters have to
be chosen so that the resulting taper curve

10.0-D1AMETER, CM

QO15 ——

9.0 COl15 - - -
interpolating point —X—

0.0 10.0 20.0 3 0 50 0 0
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Figure 2. Taper curves QO15 and CO15 for a tree where
measured diameters are monotone but CO15 is not.
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Figure 4. Taper curves QO8A and QOI5 for a regular
tree.

fulfils our criteria as well as possible.

There is not much choice in the initial data
because we use real measurements at fixed
places. The number of interpolating points
will be reduced in the second part of the
investigation. De Boor (1978) has shown how
much the placement of interpolating points
may affect the accuracy of the approximation.
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QO15 - - -
interpolating point —X—
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2.0

1.54

0.5

15

15.0-DIAMETER, CM
1 QO5A ——
QOI15 - - -

interpolating point —%—

25.0 A

20.0-

15.0

0.0

+— T T T T T
0.0 10.0 20.0 30.0 40.0 50.0 6.0 70.0 80.0 9.0 100.0
PERCENTAGE HEIGHT,%

Figure 5. Taper curves QO8A and QOI5 for an excep-
tional tree.
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Figure 6. Taper curves QO5A and QOI5 for a regular
tree.
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Figure 7. Taper curves QO5C and QO15 for an excep-
tional tree.

These results have little use in our case.

The parameters cannot be freely chosen.
The algorithm of chapter 24 sets certain limi-
tations. The numbers (a;)} determine the de-
rivatives of the spline at interpolating points
and so the shape of the taper curve. In order
to get a monotone curve we have to take
0 < a; for each i. For the preservation of

0.0 10.0 20.0 0.0 40.0 .0 6.0 700 8.0 .0 100.0
PERCENTAGE HEIGHT,%

Figure 8. Taper curves QO4A and QOIS for the normal
tree.

convexity and concavity we must set more
strict limits (Lahtinen 1988). These limits
depend on the interpolating points and mea-
sured diameters. Table 4 contains limits for
the normal tree and the point set 8A (cf.
Table 2).

In our algorithm a new breakpoint is ad-
ded between two interpolating points
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whenever the derivatives at interpolating
points do not fulfil the condition of alternative
31, m; + my;; = 29;. Our choice of derivatives
is such that nearly every interval gets a new
breakpoint. For example when the point set
8A was used, then over 99 % of intervals got
an additional breakpoint in our sample tree
material.

The taper curve is monotony or shape pre-
serving only if these additional breakpoints
are taken in a certain subinterval, the so
called breakpoint interval or b-interval, between

Table 4. The shape preserving limits of numbers (a;) in
the point set 8A for the normal tree.

i Lower limit of a; Upper limit of a;
1 0 o

2 0.344 1.815

3 0.719 1.563

4 0 0.965

5 0.863 1.137

6 0.890 1.110

7 0.884 1.116

8 0 o

Remark: With these limits the taper curve has exactly one point of inflec-
tion, namely the point x4. In the interval [x1, x4[ the curve is convex and in
the interval ]x4, xg] concave.

interpolating points. The parameter b,
0 < b; < 1, determines the situation of the
breakpoint on this subinterval. Table 5 gives
information on the effect the placement of the
breakpoint has on the volume of the stem. It
appears that the effect is quite small. Thus by
changing the place of breakpoints we can
only obtain small corrections. Table 5 shows
also that the more the taper curve changes
the shorter the b-interval is.

In practice we firstly choose the number
and places of interpolating points. Then the
parameters (a;) and (b;) are determined for
this point set with sufficient accuracy by us-
ing interactive iteration. As starting values
we have a; = | and b; = 0.5 for each i. We
first fix the parameters a; and then make final
adjustments with parameters (b; ). Iteration
is easiest at the end points of the stem where a
change affects only one interval. At all other
points a change affects two intervals. Table 6
shows two examples of this kind of iteration
in the minimization of the mean volume dif-
ference in all sample trees.

Parameters are always chosen so that the
resulting taper curve is monotony preserving.
If the preservation of the shape prevents a
good volume estimate then we usually prefer
the good volume estimate. Thus all taper
curves are not necessarily shape preserving
ones.

Table 5. The effect of the additional breakpoint to the mean volume.

I length Ernax Bt Emin Vinin Vi av

STUMP-5 15 1.0 1.4 1.6 97.97 107.18 9.21
5-10 41 5.4 6.1 6.9 99.70 100.64 0.94
10—-20 72 12.4 13.9 15.9 99.56 100.44 0.88
20—40 73 29.5 30.1 31.6 99.39 100.25 0.86
40-60 73 49.7 50.1 50.6 99.45 100.43 0.98
60—80 74 70.0 71.2 72.0 99.18 100.91 1.74
80—-100 77 86.6 92.3 97.4 98.43 102.52 4.09

The interval of the stem
The percentage length of breakpoint interval in I
The place of additional breakpoint giving

The place of additional breakpoint giving minimal mean volume in the interval

Minimal volume (volume of CO15 = 100) in the interval
Maximal volume (volume of CO15 = 100) in the interval.
The difference of maximal and minimal volumes.

1

length

Emax mean volume in the interval
Eopt The place of additional breakpoint giving the mean volume of CO15 in the interval
Emin

Vinin

Vinax

dv

Remarks:

21.7 % of b-intervals were equal to the whole
interval. Jx;, x4

48.2 % of b-intervals had the point x; but not
Xi+1 as end point

31.3 % of b-intervals had the point x;4+ but
not x; as and point
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Table 6. Iteration of some parameters in the minimization of the mean volume difference (compared with CO15).

Point set 5A, interval [stump, 5]

Standard
Step a) ag by by dv deviation
1 1 1 0.5 0.5 3.53 5.39
2 3 1 0.5 0.5 2.63 5.10
3 3 0.9 0.5 0.5 1.81 4.96
4 3 0.9 0.6 0.5 1.09 481
5 3 0.9 0.7 0.5 0.36 4.67
dV = per cent mean volume difference on [stump, 5]
Point set 8A, interval [10,40]
Step a3 ay as by by bs dvi St.dev. dv2 St. dev.
1 1 1 1 0.5 0.5 0.5 —0.07 211 -0.40 232
2 1 0.9 1 0.5 0.5 0.5 —0.02 2.10 =0.17 2.32
3 1 0.9 1 0.4 0.5 0.5 +0.02 2.07 =0.17 2.32
4 1 085 1 0.4 0.5 0.5 —0.04 2.09 —0.04 2.36

dvi
dv2

per cent mean volume difference in [10,20]

per cent mean volume difference in [20,40]



4. RESULTS

41. Monotony preserving quadratic
spline as a taper curve

In the first part of the investigation we used
all the measured diameters in the interpola-
tion. In addition of these we used the fixed
diameter 0.4 cm at the top. So we had 15
interpolating points at our disposal. Our aim
was to examine if the taper curve constructed
with a monotony preserving quadratic spline
had the same good properties as the cubic
taper spline COl5 (Lahtinen and Laa-
sasenaho 1979).

We started with the volume of the stem. A
monotony preserving quadratic spline was
formed for each sample tree by using 15
interpolating points. The derivative parame-
ters (a;) and the breakpoint parameters (b;)
were determined so that the monotony pre-
serving spline gave the same mean total vol-
ume for our sample trees as the cubic taper
spline CO15. By interactive iteration we got
the values of Set-up 41.1 for the parameters.

The taper curve obtained with these values
is called the monotony preserving taper
spline and denoted by QO15. It preserves the
monotony for each sample tree and also the
shape for most trees. The mean percentual
volume differences of taper splines QO15 and
COIl5 in our sample tree material are to be
found in Table 7. It shows that the monotony
preserving taper spline QO15 really gives the
same mean total volume as the cubic taper
spline CO15. There is, however, a slight dif-
ference in partial volumes. This is at least

partly due to the different monotony proper-
ties of taper splines (cf. Figures 1, 2 and 3). In
our sample tree material the cubic taper
spline CO15 was unmonotonic for 42.6 % of
sample trees but monotony preserving taper
spline QO15 was unmonotonic only for trees
with an unmonotone set of measurements
which consisted 24.7 % of sample trees
(Lahtinen and Laasasenaho 1979). Also, as
we said earlier, the monotony preserving
spline and cubic spline have different be-
haviour in trees with an unmonotone set of
measurements. The standard deviations of
partial volume differences are, however, quite
small.

There is in Table 7 also a taper spline
QST15 which is formed by using the shape
preserving quadratic spline with parameter
values a; = 1 and b; = 0.5 for each i. A
comparison of the taper splines QO15 and
QST15 shows that our initial values gave
quite good volume estimates except at the
butt and top where there is a significant
difference.

Table 8 shows the mean percentual total
volume differences of the taper splines QO15
and COI15 in different diameter and height
classes. The corresponding standard devia-
tions are in Table 9. The differences are small
and there is no apparent tendency so that the
volume estimates of QO15 seem to be quite
compatible with the ones of CO15.

Set-up 41.2 confirms that the monotony
preserving taper spline QO15 gives practical-
ly the same total volumes as the cubic taper

Set-up 41.1

i 1 2 3 4 5 6 7 8 9 0112 13 s 15
X; 1 2.5 5 7.5 10 15 20 30 40 5 60 70 80 90 100
a; 1.77 088 1 0.75 14 1 1 0.95 1 1 1 1 1 1.09 0.05
b; 0.74 0.5 05 05 05 05 05 05 05 05 05 05 05 05

Remark. Each parameter b; determines a breakpoint on the breakpoint interval situated on the interval Jx;x;,[.

19

Table 7. Mean total and partial volume differences and their standard deviations expressed as percentages.

Mean volume differences
Compared
taper splines stump-100 swmp-5 510 10-20 2040 4060  60-80

Standard deviations

QO15-CO15 0.00 0.00 0.13 0.03 -0.01 -0.02 -0.03
QSTI5-COI15 0.07 037 013 0.0 0.00 -0.02 -0.03

QO8A-QOI5 -0.01 036 003 -0.06 003 004 0.08
QO8B-QO15 0.00 006 034 0.05 -0.03 -0.05 -0.20
QO8C-QOI5 -0.02 048 048 002 -0.01 0.0 0.00

QO5A-QOI15 -0.02 169 055 002 0.01 -0.03 —0.19
QO5B-QO15 -1.00 0.07 -0.17 026 -1.80 -1.34 0.30
QO5C-QOI15 -0.21 0.00 0.17 -0.03 0.01 -0.03 -0.19

QO4A-QOI15 -0.57 -0.23 021 -0.23 -0.40 -0.06 0.81
QO4B-QOI15 -0.74 0.06 0.10 -0.51 0.34 -0.25 —4.31

80-100 stump-100 stump-5  5-10  10-20 2040 4060  60-80 80-100
-0.06 0.14 060 0.18 030 0.33 021 030 1.02
1.00 0.13 063 021 029 032 021 030 135
0.24 1.17 467 2.07 206 231 259 4.01 1143
-0.93 1.35 6.53 1.50 1.57 1.64 1.90 294 731
0.90 1.21 211 1.54 1.57 164 1.89 3.07 23.93
0.24 214 703 166 274 381 445 7.16 28.44
-0.44 3.33 463 207 4.08 645 500 7.27 2847
0.24 204 217 152 274 381 445 7.16 28.44
3.38 340 6.73 1.64 541 3.8¢4 554 18.28 39.44
5.18 320 498 3.26 3.80 558 2.30 15.78 42.32

spline CO15. The absolute values of per cent
volume differences in the sample tree mate-
rial were less than 0.2 % for 88.36 % of trees
and the greatest volume difference was only
1.4 %. In fact the volume difference was over
1 % for only two trees.

Set-up 41.2
The distribution of absolute values of per cent total
volume differences (QO15 -CO15).

dV (%) 0.2 0.4 0.6 0.8 1.0 1.2 1.4

trees (%)  88.36 98.55 99.62 99.84 99.89 99.95 100

trees (%) = per cent amount of sample trees having
absolute value of per cent total volume difference less
than dV.

In addition to volume differences diameter
differences were also calculated. Table 10
shows mean maximal diameter differences in
centimeters between the monotony preserv-
ing taper spline QO15 and the cubic taper
spline CO15. The differences are tabulated
by diameter classes for the whole tree and for
the partial intervals.

The differences are in general small and at
least partly due to the different monotony
properties of the curves (see Figures 1, 2 and
3). The oscillation of the cubic taper spline
takes place in most cases on the interval

[5, 40]. On the stable part of the stem which

is from 40 % to 80 % there is very little
unmonotony. The mean maximum diameter
difference in this part is therefore only 0.4
mm (Table 10).

At the butt one source of differences is the
height of the tree stump. Especially for tall
trees the height of the stump is less than the
lowest interpolating point which is 1 % of the
total height. The taper curve is used in the
interval from the stump to the top. This
means that the taper curve is evaluated under
the 1 % height by extrapolation. The deriva-
tive at the height of 1 % is usually very steep
and this may produce quite large diameter
values in extrapolation. In fact, in the inter-
val [stump, 1] the greatest diameter differ-
ence is 28.4 cm but in the interval [1, 2.5]
only 2.6 cm (see Table 13).

Figures 1, 2 and 3 give an impression of
how naturally the monotony preserving taper
spline QO15 behaves. Figure 1 shows the
normal tree as calculated by the monotony
preserving taper spline and by the cubic taper
spline CO15. There is no visible difference
between these two curves. Figure 2 shows a
situation where the interpolating point set is
monotone, but cubic taper spline is not. The
monotony preserving taper spline behaves
naturally here as is to be expected. Figure 3 is
an example of how different monotony pre-
serving taper spline QO15 and cubic taper
spline CO15 may be for an unmonotone tree.
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Table 8. Mean per cent total volume differences of QO15 and CO15 by diameter and height classes.

height (m) mean

diameter value
(cm) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

1 0.07 -0.18 -0.03

3 0.12 0.03 0.11

5 0.11 0.07 0.07 0.08

7 0.04 0.02 0.01 0.03

9 0.06 0.06 0.00-0.06 0.10 0.03
11 -0.05 0.00 0.00-0.03-0.01 -0.01
13 0.19 0.00-0.01 0.00-0.01-0.07 -0.01
15 0.00 0.00-0.01 0.00-0.01-0.01 -0.01
17 0.02 0.05-0.01 0.00 0.00-0.02 0.00
19 -0.11-0.04 0.01-0.03 0.00-0.02-0.05 0.28 -0.01
21 0.16 -0.05 0.01 -0.01 -0.04 -0.04 -0.01
23 -0.03 0.01-0.02-0.02 -0.02 —0.02 -0.02
25 -0.01 0.01-0.03-0.03 -0.05-0.05 -0.03
27 0.02 0.02-0.01 0.02-0.02-0.02-0.03 0.00
29 -0.05-0.04-0.02 -0.01 -0.10-0.01 0.53 -0.03
31 -0.01 0.01 0.06 0.05-0.04-0.04-0.04 0.04 -0.02
33 0.00 0.07-0.07 0.02-0.09-0.01-0.13 -0.01
35 -0.04 0.00-0.04 0.02 0.02-0.09-0.07 -0.02
37 0.16 0.00-0.07-0.07 0.29 0.00
39 -0.08 0.02 0.29-0.06 —0.05 0.00
41 0.05 -0.11 0.02 -0.04
43 0.14-0.14 0.13 0.16 0.08
45 -0.06 0.00-0.02 -0.02
47 -0.12 -0.20 -0.16
49
51
53 0.00 -0.27 -0.13
55
57
59
61 0.01 0.01
Mean

value  0.07 0.11 0.05 0.03 0.00 0.00-0.02 0.00-0.02-0.02-0.02-0.03-0.05 0.00 0.01-0.020.01 0.00

The monotony preserving spline is clearly
more stable in the unmonotone parts than the
cubic spline, which concentrates on the
minimization of curvature.

Theoretically a drawback in the monotony
preserving quadratic spline is that it may
behave too “angularly” at the butt. One
reason is that the quadratic spline has only
one continuous derivative. Another fact is
that the parabolas of a quadratic spline can
only for a short interval follow the fast taper-

ing on the butt which is logarithmic in na-
ture. The cubic spline is better in this context.
In practice this difference is not to be seen in
the case of 15 interpolating points.

The taper spline QO15 preserves always
the monotony of the measurements and in
most cases also the shape. The preference of
the volume estimation induces sometimes
such values to the derivative parameters that
the resulting spline does not preserve the
shape for every tree.
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Table 9. Standard deviations of per cent total volume differences (QO15—CO15) by diameter and height classes.

height (m)
diameter mean
(cm) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 value
1 0.15 0.04 0.18
3 0.27 0.26 0.27
5 0.21 0.20 0.19 0.20
7 0.15 0.26 0.12 0.20
9 0.16 0.14 0.11 0.12 0.00 0.13
11 0.21 0.16 0.14 0.10 0.12 0.14
13 0.30 0.16 0.12 0.15 0.10 0.20 0.13
15 0.30 0.13 0.15 0.11 0.10 0.07 0.13
17 0.16 0.17 0.12 0.09 0.10 0.09 0.12
19 0.00 0.13 0.17 0.13 0.10 0.10 0.09 0.61 0.14
21 0.28 0.18 0.11 0.11 0.11 0.05 0.13
23 0.16 0.12 0.12 0.09 0.11 0.08 0.11
25 0.12 0.16 0.12 0.07 0.10 0.05 0.10
27 0.11 0.05 0.09 0.09 0.14 0.11 0.15 0.11
29 0.00 0.08 0.09 0.11 0.07 0.09 0.00 0.11
31 0.00 0.04 0.27 0.15 0.10 0.08 0.11 0.00 0.13
33 0.00 0.13 0.09 0.11 0.13 0.03 0.00 0.11
35 0.00 0.19 0.01 0.11 0.15 0.15 0.01 0.13
37 0.12 0.16 0.08 0.07 0.34 0.16
39 0.00 0.13 0.00 0.09 0.00 0.13
41 0.00 0.09 0.12 0.11
43 0.00 0.00 0.00 0.00 0.14
45 0.00 0.10 0.00 0.06
47 0.00 0.00 0.05
49
51
53 0.00 0.00 0.19
55
57
59
61 0.00 0.00
Mean

value 0.15 0.25 0.18 0.19 0.13 0.15 0.12 0.11

The treatment of the top forms an excep-
tion. There the derivative values producing
the best volume estimate often produces an
extra point of inflection to the interval
[90, 100]. As this part contains only 2% of
the total volume we prefer to have a good
shape rather than an optimal volume esti-
mate.

In this connection we may mention that
our initial choice of derivatives was so natural
that the algorithm had to change the deriva-

0.11 0.10 0.14 0.11 0.11 0.14 0.23 0.00 0.00 0.14

tive (alternative 32, case 3223) only in 1.75 %
of all cases ( Table 11).

In conclusion we can say that the mono-
tony preserving quadratic spline gives a very
good taper curve. It preserves the monotony
of the measurements and behaves very natu-
rally. It gives reliable volume and diameter
estimates. The monotony preserving taper
spline QO15 is quite compatible with the
cubic taper spline CO15 and surpasses it in
aspects concerning the monotony properties.
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Table 10. Mean maximal diameter differences (cm) of QO15 and CO15 by diameter classes in different parts of the

stem.
diameter Intervals of the stem
(cm) stump—100 stump—5 5-10 10-20 20-40 40-60 60—80 80—100
1 0.06 0.02 0.03 0.05 0.03 0.02 0.01 0.02
3 0.08 0.04 0.02 0.04 0.04 0.03 0.02 0.02
5 0.09 0.06 0.03 0.05 0.05 0.02 0.02 0.03
7 0.13 0.11 0.03 0.06 0.05 0.02 0.02 0.03
9 0.19 0.18 0.04 0.05 0.05 0.02 0.02 0.03
11 0.24 0.24 0.04 0.06 0.05 0.03 0.03 0.03
13 0.32 0.31 0.05 0.08 0.07 0.03 0.03 0.04
15 0.40 0.39 0.05 0.07 0.07 0.03 0.03 0.05
17 0.48 0.47 0.06 0.09 0.07 0.04 0.04 0.05
19 0.81 0.81 0.06 0.09 0.08 0.04 0.04 0.05
21 0.54 0.53 0.07 0.10 0.09 0.05 0.05 0.06
23 0.80 0.79 0.06 0.09 0.09 0.04 0.05 0.05
25 0.58 0.58 0.08 0.10 0.09 0.05 0.05 0.07
27 0.86 0.86 0.09 0.11 0.09 0.06 0.06 0.09
29 0.88 0.87 0.09 0.12 0.11 0.06 0.05 0.06
31 0.76 0.75 0.11 0.13 0.11 0.06 0.08 0.08
33 0.83 0.81 0.10 0.15 0.14 0.06 0.07 0.09
35 1.08 1.07 0.11 0.16 0.15 0.07 0.05 0.08
37 1.96 1.95 0.13 0.15 0.16 0.07 0.06 0.08
39 1.79 1.79 0.11 0.19 0.14 0.07 0.07 0.07
41 0.85 0.85 0.17 0.18 0.15 0.08 0.12 0.12
43 1.03 1.03 0.21 0.18 0.26 0.07 0.07 0.10
45 1.96 1.93 0.18 0.15 0.08 0.08 0.09 0.08
47 1.04 1.04 0.15 0.19 0.14 0.07 0.04 0.15
49
51
53 1.61 1.61 0.23 0.17 0.14 0.05 0.01 0.12
55
57
59
61 0.78 0.78 0.31 0.07 0.10 0.11 0.18 0.20
Mean 0.53 0.52 0.06 0.09 0.08 0.04 0.04 0.05

42. Taper curve through seven measured

investigation. Our method is to form mono-
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Table 11. The derivatives changed by the algorithm (case 3223) in order to preserve monotony.

Interpolating point x; 1 25 5 7.5 10 15

Number of changed
derivatives at x; for 0 7 23 64 99 103
point set 15

Number of changed
derivatives at x; for 0 1 40
point set 8A

Number of changed
derivatives at x; for 0 5
point set 5C

20 30 40 50 60 70 80 90100 O @ O

119 3016 7 2 2 4 13 0 489 450 1.75

68 0 0 0 0 109 109 0.73

41 0 0 46 46 049

@ Total number of changed derivatives
@ Number of trees with changed derivatives
@ Per cent number of derivative changes

ter. Monotony preserving quadratic splines
were construted by using diameters at the
chosen points. The derivative parameters (a;)
and breakpoint parameters (b;) were deter-
mined by interactive iteration so that the
resulting taper curve was as good an approxi-
mation to QOI15 as possible. The iteration
was interrupted when the parameter changes
improved the taper curve only marginally.
The resulting taper curves were called again
monolony preserving taper splines and denoted by
QO8A, QO8B and QO8C. Set-up 42.1 shows
the values of their parameters. The deriva-
tives were again so natural that the algorithm
had to change them very seldom in order to
guarantee the monotony (Table 11).

Set-up 42.1
Taper spline QO8A

index i 1 2 3 4 5 6 7 8

rel.height x; I 5 10 20 40 60 80 100

der.param.a; 3.0 0.9 1 0.83 1.01 1.03 1.05 0.19

diameters

We have shown that when 14 measured
diameters are used then the monotony pre-
serving quadratic spline gives a taper curve
with all the necessary qualities. After this it is
natural to ask can we construct essentially as
good a monotony preserving taper curve us-
ing fewer measured diameters. The study of
this question forms the second part of the

tony preserving quadratic splines interpolat-
ing in a set containing less than 15 points and
to examine how well these splines can ap-
proximate the monotony preserving taper
spline QO15.

We started the investigation with eight in-
terpolating points. Three different combina-
tions, called 8A, 8B and 8C were chosen as
Table 2 shows. Each of them contained 7
measured diameters and the fixed top diame-

b-point pm. b; 0.7 0.5

0.350.5 0.5 0.350.5

Taper spline QO8B

3 4 5 6 7 8

index i 1 2
rel.height x; 25 7.5
der.param.a; 1 0.9

b-point pm. b; 0.53 0.5

15 30 50 70 90 100
I 1 1.2 1.3 1 08
05 05 05 05 05

Taper spline QO8C

index i 1 2 3 4 5 6 7 8

rel.height x; 1 25 75 15 30 50 70 100
der.param. a; 2.2 1.8 1 I 0951 1.2 0.09
b-point pm. b; 0.950.5 0.5 0.5 0.5 0.5 0.2

We first considered the volume errors of
these three taper splines. The mean total
volume in our sample tree material can be
adjusted to be practically the same as the one
of QO15 by choosing derivative parameters
(a;) accordingly. However, the mean partial
volume errors remain away from zero as
Table 7 shows.

The monotony preserving taper spline
QOB8A does not express the butt (from stump
to 5 % height) quite naturally but otherwise
volume errors are small. In the point set 8B
the lowest height is 2.5 %. This effects that
the corresponding taper spline QO8B has a
very small mean volume error on the butt.
Unfortunately the mean volume error on the
next interval, [5, 10], is respectively higher.
Point set 8C attempts to eliminate problem
with the butt by having an additional inter-
polating point there. This results in clear
failure. The corresponding taper spline
QOB8C has greater volume errors on the butt
than the other two alternatives.

Figure 9 shows the distribution of the abso-
lute values of per cent total volume errors of
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Table 12. Mean maximum diameter differences (cm).

25

Table 13. Maximal diameter differences in all the sample tree material (cm).

Interval of the stem

Taper spline Stump—5 5-10 10-20 20-40 40-60 60-80 80—100
QOI15 28.84 (2.64) 0.51 0.71 0.72 0.28 1.02 0.74
QOB8A 26.15 (6.54) 2.61 2.59 2.65 1.70 1.99 493
QO8B 84.59 (2.27) 2.34 2.63 2.64 1.74 4.85 5.00
QO8C 59.37 (2.54) 2.57 2.62 2.63 1.77 3.68 4.44
QO5A 26.95 (8.80) 3.67 2.77 2.75 2.81 4.09 4.48
QO5B 26.17 (6.27) 2.80 4.38 3.98 3.26 4.17 4.54
QO5C 24.94 (2.24) 2.34 2.68 2.75 2.81 4.09 448
QO4A 26.98 (7.62) 2.98 461 3.77 3.07 5.83 5.86
QO4B 34.80 (4.21) 4.42 3.82 3.81 2.50 6.08 6.11
Remark:

The quantities in brackets show the maximum diameter difference from the lowest interpolating point to the 5 % of total height.

Taper splines Interval
Stump —100  Stump —5 5-10 10-20 20—-40 40-60 60—80 80-100
QO15-COl15 0.53 0.52 0.06 0.09 0.08 0.04 0.04 0.05
QST15—-CO15 0.46 0.39 0.07 0.08 0.08 0.04 0.04 0.24
QO8A-QOI5 0.88 0.79 0.25 0.22 0.23 0.21 0.23 0.32
QO8B—QOI15 1.34 1.28 0.40 0.33 0.32 0.32 0.39 0.35
QO8C—-QOI15 0.90 0.70 0.42 0.33 0.32 0.30 0.40 0.49
QO5A-QO015 1.14 1.00 0.51 0.35 0.38 0.37 0.47 0.55
QO5B—-QO15 1.06 0.81 0.25 0.44 0.59 0.45 0.48 0.57
QO5C—-QO015 137 1.23 0.40 0.35 0.38 0.37 0.47 0.55
QO4A-QO15 1.26 1.01 0.47 0.54 0.47 0.50 0.74 0.70
QO4B—-QO15 1.69 1.52 0.46 0.44 0.57 0.54 0.83 0.77
Per ceat amount four trees had total volume error exceeding 5
SE BewpLe Frans % . The other two 8-point monotony preserv-
= S ing taper splines have essentially the same
5 wn _— distributions as QOB8A.
al ’ e The mean maximal diameter differences
g e between 8-point taper splines and QO15 for
s ik the whole sample tree material are shown in
- Table 12, the extreme cases are in Table 13.
#1 . The greatest differences occur again on the
2 ! butt. From the height 5 % upwards the mean
maximal diameter differences are small: 0.3
e cm for QO8A, 0.4 cm for QO8B and 0.5 cm
< for QO8C.
. On the whole we can say that the diameter
8 differences between 8-point taper splines and
2] taper spline QO15 are relatively small. This
A is also true for comparisions with measured
7. 7, 1. ., diameters (see Tables 14 and 15). On the

volume difference (%)

Figure 9. Per cent amount of sample trees with absolute
values of per cent total volume differences less than a
given number. (Taper curves are compared with
QOl5.)

the taper spline QO8A into magnitude clas-
ses. Although the mean total volume error is
zero, only 16 % of sample trees have the
absolute per cent total volume error less than
0.2 %. However, two thirds of sample trees
had total volume errors less than 1 % when
the taper spline QO8A was used and only

butt the taper spline QO8B behaves worse
than the other two alternatives. This is again
due to the fact that QO8B extrapolates from
height 2.5 % downwards. The taper spline
QOB8A has the smallest diameter differences.

These 8-point taper splines preserve al-
ways the monotony of measurements and
mostly also the shape. Among these three
taper splines the alternative QO8A seems to
have the most natural shape although the
other two possibilities are also quite accept-
able. In fact, for the normal tree there is
practically no visible difference between
QOB8A and QO15. For trees with a regular
shape the situation is almost the same (Figure

Table 14. The mean diameter error with regard to the measured diameters (cm).

Taper spline Relative height (%)
1 2% 5 7" 10 15 20 30 40 50 60 70 80 %

QO8A 0.09 0.04 0.00 -0.01 0.00 0.00 -0.04
QO8B -0.61 0.11 0.02 -0.02 0.01 0.02 -0.18

QO8C 0.17 0.01 -0.03 -0.02 0.05 -0.13 -0.11
QO5A 0.12  0.26 0.00 0.00 0.00 -0.02 0.01 -0.04 -0.14 -0.18
QO5B 0.04 0.00 0.03 -0.05 -0.19 -0.18 -0.07 -0.01 -0.14 -0.20
QO5C -0.35 0.07 -0.01 0.00 0.00 -0.02 0.0l -0.04 -0.14 -0.18
QO4A -0.12  0.07 0.05 -0.06 -0.12 -0.03 -0.03 -0.08 -0.12 -0.17 -0.19
QO4B 0.68 -0.05 0.03 -0.05 -0.12 001 0.19 -0.36 -0.32 -0.24 -0.12

Table 15. Standard deviations of diameter errors with regard to the measured diameters.

Taper spline Relative height (%)

2.5 5 7.5 10 15 20 30 40 50 60 70 80 90
QO8A 0.86 0.33 0.31 0.31 0.28 0.30 0.42
QOs5A 1.03 0.56 035 0.33 038 040 0.34 0.30 053 0.57
QO4A 1.02  0.53 0.40 053 0.53 0.53 0.41 058 072 0.77 0.66

4). Figure 5 shows how well the monotony
preserving taper spline QO8A can reproduce
a quite unmonotone tree.

In conclusion we may say that all these
three monotony preserving taper splines ap-
proximate QO15 quite well and are thus
acceptable taper curves. Alternative QO8A is
the best of these three taper splines.

This study of 8-point taper splines pro-
vided evidence of the fact that the monotony
preserving quadratic spline can produce a
better taper curve than the usual cubic spline.
Table 16 measures with mean volume differ-
ences how well an 8-point taper spline can
reproduce a 15-point taper spline. It appears
that the monotony preserving taper spline
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QOB8A approximates the monotony preserv-
ing taper spline QO15 better than the corres-
ponding 8-point cubic taper spline CO8A
approximates the cubic taper spline C015. In
the former case the mean total volume differ-
ence is -0.01 % and in the latter 0.15 %.

43. Taper curve through four measured
diameters

In the previous section we saw that the
monotony preserving taper spline with seven
measured diameters had essentially the same
qualities as that with 14 measured diameters.
This encouraged us to reduce the number of
measured diameters further. The taper
splines were again constructed to approxi-
mate the monotony preserving taper spline
QOl15.

We chose three different five point combi-
nations, namely the point sets 5A, 5B and 5C
defined in the Table 2. Each of them con-
tained 4 measured diameters and the fixed
top diameter. Monotony preserving quadra-
tic splines were constructed by using diame-
ters at the chosen points. Values for parame-
ters (a;) and (b;) were determined by interac-
tive iteration which was continued as long as
there was a clear improvement in the taper
spline. The final parameter values deter-
mined monotony preserving taper splines
QO5A, QO5B and QO5C and are presented
in Set-up 43.1 (see also Table 11 about the
naturality of derivatives).

Set-up 43.1
Taper spline QO5A

index i 1 2 3 4 5

rel. height x; 1 7.5 20 60 100
der. param.a; 3.5 065 0.72 1 0.105
b-point pm. b; 05 05 05 0.5

Taper spline QO5B

index i 1 2 3 4 5
rel. height x; 1 5 10 40 100
der. param. a; 3 0.9 0.8 1 0.095

b-point pm. b, 074 03 02 05

Taper spline QO5C

index i 1 2 3 4 5
rel. height x; 2.5 7.5 20 60 100
der. param. a; .15 1 072 1 0.105

b-point pm. b; 0.5 0.5 0.5 05

We again start with volume errors which
are presented in Table 7. For the monotony
preserving taper spline QO5A the mean per-
centual total volume is practically the same
as for the taper spline QOI15. The mean
percentual partial volume errors remained,
however, quite large at the butt. The small
number of interpolating points apparently
prevents better results. The taper spline
QOSA gives quite good volume estimates on
the interval from 20 % height to 60 % height.

The point set 5B is more concentrated to
the butt than the previous set. The mean
volume error of the monotony preserving
taper spline QO5B is also much smaller at
the butt than the one of the taper spline
QObSA. On the other hand the mean volume
error in the interval [20,40] is much bigger
than before. On the whole the taper spline
QO5B is weaker in volume predictions than
the taper spline QO5A. This can also be seen
in standard deviations. Thus we cannot re-
commend the use of the alternative QO5B.

Lifting the lowest interpolating point in
point set 5A to the height of 2.5 % produces
the monotony preserving taper spline QO5C.
It gives clearly better volume estimates for
the butt than the taper spline QO5A without
any evident negative effect to other parts. The
mean total volume error is, however, slightly
greater for QO5C than QOS5A even if the
standard deviations are smaller.

Figure 9 shows that the absolute values of
relative total volume errors of the taper spline
QO5A do not have as good a distribution in
the magnitude classes as the taper spline
QOB8A. Now 40% of sample trees had abso-
lute total volume error less than 1%. The
taper splines QO5B and QO5C have approx-
imately similar distributions as QO5A.

The mean maximal diameter differences
for all the sample tree material are shown in
Table 12 and the extreme cases in Table 13.
At first sight it appears that the mean maxi-
mal diameter differences are only little higher

27
Table 16. Mean per cent volume differences due to the reduction of interpolating points for cubic and quadratic taper
splines.

Interval Mean per cent volume difference Standard deviation

COBA— QOBA- QO5A~ CO8A- QO8A— QO5A-

COl5 QO15 QO15 CO15 QO15 QO15
STUMP, 100 0.15 -0.01 -0.02 1.10 1.17 2.14
STUMP, 5 -1.9 0.4 1.7 2.0 4.7 7.0
5, 10 0.4 0.0 0.5 2.3 2, 1.7
10, 20 0.3 -0.1 0.0 2.8 2.1 2.7
20, 40 0.3 0.0 0.0 3.1 23 3.8
40, 60 0.2 0.0 0.0 3.0 2.6 44
60, 80 0.1 0.1 -0.2 4.5 4.0 7.2
80, 100 -0.3 0.2 0.2 2.3 11.4 28.4

than for 8-point splines. In practice this tells
us only the situation at the butt because the
maximal diameter difference nearly always
occurs at the butt. On examining the mean
maximal diameter differences at other parts
of the stem it is obvious that they are larger
than in the case of 8 points. However, from
the height 5 % upwards the mean maximal
diameter differences are for all three taper
splines less than 0.6 cm. The mean errors
with regard to measured diameters are still
small (mostly under 0.1 cm) for all 5-point
taper splines i.e. QO5A, QO5B and QO5C
(Tables 14 and 15).

These 5-point taper splines preserve al-
ways the monotony of the measurements and
mostly also the shape. On examining the
shape of the graphs of these taper splines it is
obvious that alternative QO5B is the worst
one even on this respect. Taper splines
QO5A and QOS5C behave in much the same
manner. This is not surprising as they have
four common interpolating points. For the
normal tree the taper curves QO5A and
QO15 are almost identical and the differ-
ences are still small for trees with a regular
shape (Figure 6). If the stem is somehow
exceptional then the 5-point spline may differ
quite a lot from the taper spline QO15 even
though it may have a nice shape (Figure 7).

In conclusion we can say that in most cases
the monotony preserving taper splines QO5A
and QO5C generate satisfactory approxima-
tions to the taper spline QO15 and are thus
satisfactory taper curves.

Table 16 provides more evidence of the fact

that the monotony preserving taper spline
suffers less than the cubic spline of the reduc-
tion of the number of interpolating points. It
measures volume differences and shows that
the five point monotony preserving taper
spline QO5A gives a better approximation to
the monotony preserving taper spline QO15
(mean total volume error -0.02 %) than the
8-point cubic taper spline CO8A gives to the
cubic taper spline CO15 (mean total volume
error 0.15 %). The standard deviations are
greater in the 5-point case, however.

44. Taper curve through three measured
diameters

Finally we made some experiments with four
interpolating points. These were the sets 4A
and 4B in Table 2. Both contained three
measured diameters and the fixed top diame-
ter. The corresponding monotony preserving
taper splines QO4A and QO4B were deter-
mined as approximations to the taper spline
QO15 using the same principles as those used
with previous approximations. Interactive it-
erations were carried on, however, only some
steps. The resulting taper splines are there-
fore not necessarily the best approximations
of QO15. They were none the less able to
expose the general quality of taper splines
with four interpolating points. The parame-
ters of taper splines QO4A and QO4B are in
Set-up 44.1.
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Set-up 44.1
Taper spline QO4A

index i 1 2 3 4
rel. height x; 1 7,5 40 100
der.param. a; 3.7 0.65 082 0.18
b-point pm. b; 0.5 05 05

Taper spline QO4B

index i 1 2 3 4
rel.height x; 2.5 10 50 100
der.param. a; 2.5 0.8 1.2 0.2
b-point pm. b; 0.57 047 03

Table 7 shows that the mean total volume
error is for both four point taper splines clear-
ly larger than the errors for the five point
taper splines QO5A and QO5C. The error is
not very large at the butt, especially in the
case of taper spline QO4B. In the middle
parts of the stem the results are undoubtly
inferior to the monotony preserving taper
splines with more interpolating points. The
standard deviations are also slightly larger.

Figure 9 shows the same tendency in the
distribution of the absolute total volume er-
rors into magnitude classes. The four point

taper spline QO4A is weaker than others.
Only 25 % of sample trees have absolute total
volume error less than 1%. The taper spline
QO4B behaves essentially in the same way as
QO4A.

Table 12 shows the mean maximal diame-
ter differences in sample trees. They are
larger for four point taper splines than for five
point taper curves but are from the height
5 % upwards less than 0.9 cm. The maximal
diameter differences are a little higher than
for five point taper splines (Table 13). The
differences to the measured diameters are
also greater than the ones of five point taper
splines, but are mostly less than 0.2 cm
(Tables 14 and 15).

Also the 4-point taper splines preserve al-
ways the monotony of the measurements.
Figure 8 shows that although taper spline
QO4A gives a satisfactory approximation to
the taper spline QO15 for normal tree, there
is already systematic error in the graph. If the
tree is irregular then the four point taper
spline does not have much chance of model-
ling it.

In conclusion we may say that the mono-
tony preserving quadratic spline produces an
agreable shape to the four point taper spline,
but the measurable qualities are clearly
weaker than in the case of five points.

5. CONCLUSIONS

51. Monotony preserving quadratic spline
as a taper curve

When there are several measured diame-
ters (and the height) available for a tree, the
perhaps best taper curve has been con-
structed to date using a cubic spline. The
cubic spline has, however, a weakness, this
being a slight oscillation which may result in
an unmonotone taper curve for a monotone
tree. This oscillation is due to intrisic proper-
ties of the cubic spline and cannot therefore
be totally removed.

A quadratic spline can be constructed so
that it preserves the monotony of a given set
of interpolating points. The algorithm for the
construction of such a spline contains several
parameters which have to be chosen within
certain limits. The freedom in the choice of
parameters can be used to get the spline to
fulfil additional restrictions. The algorithm
needs no matrix inversions. It has essentially
the same degree of complexity and requires a
similar number of calculations as the al-
gorithms used in the construction of a cubic
spline. The algorithm can be run in a compu-
ter of PC-type.

In the first part of our investigation we
examined how suitable the monotony pre-
serving quadratic spline is for a taper curve
when several measured diameters and the
height are available. For this purpose we used
comparisions with the cubic taper spline
CO15 which was the best taper curve in
Lahtinen and Laasasenaho (1979).

The preservation of monotony is an advan-
tage of the quadratic spline over the cubic
spline. The results of chapter 41 show that in
other respects the monotony preserving
quadratic spline has as a taper curve similar
good qualities as the cubic spline. The taper
spline QOI15 gives as reliable volume esti-
mates as the best cubic taper spline COI15.
The diameter estimates of the taper spline
QO15 are even more reliable than the ones of
CO15 because of the monotony.

At the butt the monotony preserving quad-
ratic spline is in theory a little stiffer than the

cubic spline. This arises from the smaller
degree of the polynomial pieces. The greater
number of breakpoints of the monotony pre-
serving spline tends to compensate this stiff-
ness. In case of 15 interpolating points this
compensation is sufficient, but with a dis-
tinctly lesser amount of interpolating points
there may be differences.

Another theoretical difference is that the
monotony preserving quadratic spline may
sometimes have a more angular shape than
the usual cubic spline. The reason for this is
that the quadratic spline has only one con-
tinuous derivative while the cubic spline has
two. On the other hand the oscillation of the
cubic spline is very much due to the continui-
ty of the second derivative. In practice this
angularity is not to be seen in the case of 14
measured diameters. With less than 8 mea-
sured diameters it may exist but only slightly.

The greatest difference in favour of the
taper spline QO15 is that it preserves always
the monotony of the measurements and mos-
tly also the shape. This makes the monotony
preserving taper spline more reliable e.g. in
lumber assortment and in growth studies.

If a tree has a regular shape then the
monotony preserving taper spline QO15 and
the cubic taper spline CO15 give similar re-
sults and are in this sense equal. For other
trees there are differences in favour of the
monotony preserving taper spline. Especially
it is to be noticed that it is difficult to know
beforehand when the cubic taper spline will
oscillate whereas the monotony properties of
the quadratic taper spline are always known.

The monotony preserving taper spline is a
local spline. This means that it has many
parameters each of which affects the spline
only locally. Here lies the strength of this
spline and also its weakness. Many local pa-
rameters mean that we can take much infor-
mation into account in the construction of the
taper spline. For instance if it is known that
the tree is unmonotone at a certain height,
then the taper curve can be constructed to be
similarly unmonotone even if this unmono-
tony is not to be seen in the measurements.



30

The weakness of the local spline is that the
many parameters has to be determined even
if there is very little information available.
This means some kind of estimation of para-
meters. Our algorithm gives limits for these
parameters as well as certain initial values.
These initial values are quite good estimates
except on the butt and top.

The choice of parameters of the monotony
preserving taper spline QO15 was made by
using a very representative sample tree mate-
rial. This means that QO15 is reliable for the
treatment of any tree with diameter measure-
ments on the appropriate heights.

In conclusion we can say that with a mono-
tony preserving quadratic spline it is possible
to get a better taper curve than with a cubic
spline.

52. The number of measured diameters
in the taper spline

The first part of investigation showed that
the monotony preserving quadratic spline
gives an accurate taper curve when 14 mea-
sured diameters are used. After this it was
natural to examine whether we could con-
struct an essentially as good taper curve with
a monotony preserving quadratic spline with
fewer measured diameters. For this purpose
we investigated how well we could approxi-
mate the monotony preserving taper spline
QO15 with a monotony preserving quadratic
spline interpolating in a smaller set.

When seven measured diameters were used
then the monotony preserving taper spline
QOB8A was quite good approximation to the
taper spline QO15. They have in our sample
tree material the same mean total volumes
and there are in partial volumes differences
only at the butt. Also the differences in

diameter and shape are small. The differ-
ences on the butt are mostly due to the stiff-
ness and angularity mentioned in the chapter
51. At other parts of the taper curve these
phenomena are not to be seen (cf. Figure 4).
On the whole the eight point monotony pre-
serving taper spline is still a good taper curve.

The monotony preserving taper splines
QO5A and QO5C with four measured
diameters still offer satisfactory approxima-
tions to the taper spline QO15. The mean
total volume is in our sample tree material
practically the same as for the taper spline
QOI15 but there are differences in the mean
partial volumes. The diameter differences
were greatest on the butt due to the
aforementioned stiffness. Outside the butt the
diameter differences are still reasonable
small. The shape was good for regular trees,
less good for others. It must be bourne in
mind that a taper spline with four measured
diameters cannot give a true shape to a singu-
lar tree.

A monotony preserving quadratic spline
with three measured diameters can be recom-
mended to a taper curve only for trees of
regular shape. Also in this case there exist
systematic errors. The four point taper spline
still gives reasonable total volumes. Therefore
it can be used in volume estimation also for
arbitrary trees.

Our study showed that a reduction of the
number of measured diameters had a smaller
effect on the monotony preserving quadratic
spline than on the usual cubic spline. This is
due to its structure which keeps the quadratic
spline adher to its correct shape without oscil-
lating. Therefore we can say that the fewer
the number of measured diameters used the
more we can recommend the use of the mono-
tony preserving quadratic spline instead of
the usual cubic spline.
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SELOSTE

Monotonisuuden siilyttavien runkokiyrien muodostamisesta

Tydssa tutkittiin runkokdyran muodostamista neliolli-
sen splini-funktion avulla siten, etta runkokayrd kuvaa
mahdollisimman hyvin rungon kapenemisen. Perusedel-
lytykseni oli, ettd rungosta oli kiytettavissi pituuden
lisdksi useita mitattuja lipimittoja. Lapimittojen oletet-
tiin antavan kisityksen rungon kapenemisesta.

Tehtivanasettelu

Kun puusta on mitattu useita lapimittoja, voidaan
sille muodostaa hyva runkokdyra kidyttien kuutiollisia
splini-funktioita (Lahtinen ja Laasasenaho 1979). Tillai-
sen runkokdyran suurimpana puutteena on splini-funkti-
on lieva heilahtelu. Heilahtelun johdosta monotonisesti
kapenevan puun runkokayrain saattaa tulla pullistumia.
Ilmi6 on melko yleinen. Se johtuu paaasiassa kuutiollisen
splinin perusominaisuuksista, lahinna kaarevuuden mi-
nimoinnista. Niin ollen ilmi6ta ei pystytd estimaan.

McAllister ja Roulier (1981a) seka Schumaker (1983)
ovat osoittaneet, etta on olemassa neli6llinen splini-funk-
tio, joka sailyttaa approksimoitavan funktion monotoni-
suuden tietyin edellytyksin. Télta pohjalta lihtien ryhdy-
taan luomaan mahdollisimman hyvaa algoritmia mono-
tonisuuden siilyttavin nelidllisen splini-funktion muo-
dostamiseksi. Taman jéilkeen tutkitaan algoritmilla saa-
dun splini-funktion kaytt6a runkokayrini ja runkokay-
rdn riippuvuutta mittaustietojen lukumaarasta.

Monotonisuuden siilyttiva splini-funktio

Splini-funktiolla tarkoitetaan tassa neliollistd tai kuu-
tiollista polynomisplinia. Niiden ominaisuuksia ovat ka-
sitelleet esimerkiksi Lahtinen ja Laasasenaho (1979).
Muunlaisista splini-funktioista antaa tietoa esimerkiksi
Schumaker (1981).

Olkoon (x;)} valilla [a,b] annettu pistejoukko ja (y;)}
annettu reaalilukujoukko. Pistejoukon D = ((x;, y;))}
sanotaan olevan kasvava (vast. vahenevi), jos (y;)] on
kasvava (vast. vaheneva). Vastaavasti sanotaan, etta D
on konveksi (vast. konkaavi) jos lukujono (§)' =
((yis1 — yi)/ (%41 — %))77" on kasvava (vast. vihenevi).

Pistejoukko D on paloittain monotoninen, jos se voidaan
jakaa osiin, joista jokainen on joko kasvava tai viheneva.
Vastaavasti D on paloittain kupera, jos se voidaan jakaa
osiin, joista jokainen on konveksi tai konkaavi.
Ongelmamme on nyt seuraava: Funktion arvot tunne-
taan ainoastaan pistejoukossa D. On loydettiva neliolli-
nen splini-funktio, joka interpoloi funktiota joukossa D,
ja joka on paloittain monotoninen samalla tavalla kuin
D. Sanomme, etta tallainen splini-funktio sailyttaa mo-
notonisuuden. Jos se on lisdksi paloittain kupera samalla
tavalla kuin D, sanomme, etta se sdilyttaa muodon.

Algoritmi

Monotonisuuden sailyttavan nelillisen splini-funkti-
on muodostuksen matemaattiset perustelut l6ytyvat ar-
tikkeleista Schumaker (1983) ja Lahtinen (1988). Itse
algoritmi on esitetty timin artikkelin kohdassa 24. Ker-
taamme tdssd vain perusidean.

Algoritmin lahtotiedoiksi tarvitaan interpolaatiopistei-
den lukumaira n, pisteet (x;)7}, niissd mitatut arvot (y;)}
sekd arvot (m;)] splinin derivaatoille interpolaatiopisteis-
sa. Niita derivaattoja ei voi valita vapaasti, vaan niiden
on toteutettava tietyt ehdot. Monotonisuuden siilyttava
neli6llinen splini konstruoidaan kullekin vilille [x;, x;,]
erikseen. Mikili derivaatat m; ja m;,, eivit toteuta tiet-
tyéd ehtoa, joudutaan vilille ]x;, x;;,[ lisdidmaan ylimaa-
riinen murtopiste &, jonka on sijaittava tietylli osavilil-
la. Kasittelyn helpottamiseksi parametrisoidaan deri-
vaattojen (m;) ja ylimaaraisten solmupisteiden (&) valin-
ta. Valitsemalla derivaattaparametri a; tietylta valilta A;
sekd murtopisteparametri b; tietylta valilta B; saadaan
aina vilille [x;, x;;;] monotonisuuden siilyttiva nelilli-
nen splininpala. Parametrit voidaan valita myds niin,
etta splini-funktio siilyttda muodon, jolloin valinta on
tehtiva pienemmalta valilta.

Monotonisuuden siilyttivian splinin sopivuus
runkokayraksi

Tutkimuksen koepuuaineistona kaytettiin samoja 1864
kuusen runkoa kuin Lahtinen ja Laasasenaho (1979).

Kustakin puusta oli mitattu pituus sekd lipimitat 14
suhteelliselta korkeudelta. Naiden lapimittojen kautta
kulkevaa Lahtisen ja Laasasenahon (1979) parasta kuu-
tiollisella splinilld muodostettua runkokiyraa CO15 kay-
tettiin perusrunkokiyrini, joihin monotonisuuden sii-
lyttivan splinin avulla muodostettuja runkokayria ver-
rattiin niiden ominaisuuksien selvittimiseksi.

Kaikkien mitattujen lapimittojen kautta kulkevan mo-
notonisuuden siilyttivin nelidllisen splinin parametrit
saidettiin niin, ettid saatu runkokdyra QOI15 antoi koe-
puuaineiston puille keskimaaraisesti saman kokonaistila-
vuuden kuin CO15 (taulukko 8). Tilloin myds osatila-
vuudet olivat keskimaarin samat (taulukko 7). Suurin
ero, 0,13%, oli korkeudella 5-10 %. Tama ero johtuu
ainakin osittain siitd, etta QO15 sailyttia monotonisuu-
den jokaiselle puulle, mutta CO15 ei sita aina tee. Run-
kokiyra QO15 siilyttaa myos muodon useimmille puille.
Joissain tapauksissa on tilavuusarvion parantamiseksi
luovuttu muodon sailymisesta.

Runkokiyrien QO15 ja COI15 erojen selvittamiseksi
laskettiin myds niiden erotuksen keskimaarainen maksi-
miarvo koko rungolle ja sen osille (taulukko 10). Keski-
mairdinen maksimiero oli 0,5 cm, miki sijaitsi ldhes
poikkeuksetta tyvelld. Ylempiana keskimaardinen maksi-
miero oli alle 0,1 cm.

Paremman kasityksen saamiseksi tarkasteltiin myds

runkokdyrien graafisia esityksii. Jos CO15 oli monotoni-
nen, kulkivat runkokayrat aivan paallekkiin lukuunotta-
matta tyved, jossa oli vahaista eroa. Jos runkokayrassa
COIl5 oli pullistumia tai muita epamonotonisuuksia,
syntyi luonnollisesti eroja niihin kohtiin, koska QO15
sailytti monotonisuuden (Kuvat 1,2 ja 3).

Tutkimuksista kavi selvasti ilmi, etta paras monotoni-
suuden sdilyttavin splinin avulla muodostettu runkokay-
ri QOI5 toistaa rungon muodon hyvin ja antaa samat
kokonais- ja osatilavuudet kuin kuutiollisen splinin avul-
la muodostettu paras runkokayra CO15. Rungon aptee-
rauksessa on QO15 selvasti parempi, koska se sailyttaa
monotonisuuden. Niin ollen monotonisuuden sailyttava
nelidllinen splini antaa useaa mitattua lapimittaa kaytet-
tiessi hyvan runkokdyrin, joka on kiyttokelpoisempi
kuin tavallisen kuutiollisen splinin antama runkokayra
ainakin silloin kun on kysymys rungon muotoon liittyvis-
ta asioista.

Seitsemédn mitatun lipimitan kiytto

Tutkimuksen toisessa osassa selvitettiin monotonisuu-
den siilyttivin splinin avulla saadun runkokayrén laa-
tua kun kiytettivien mittausten lukumairaa vahennet-
tiin. Vertailurunkokayriana kaytettiin parasta edella loy-
dettyd monotonisuuden siilyttavaa runkokayraa QOI5.
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Ensimmiiseksi puolitettiin mittauspisteiden lukumai-
ra, ts. kaytettiin 7 mitattua lapimittaa. Useiden kokeilu-
jen jalkeen parhaaksi tavaksi osoittautui joka toisen mi-
tatun ldpimitan kaytto. Niiden kautta pystyttiin veta-
main monotonisuuden sdilyttivi nelidllinen splini niin,
ettd saatu runkokiayra QOB8A antoi koepuuaineiston
puille saman keskimairaisen kokonaistilavuuden kuin
QOI5. Osatilavuuksia ei enda pystytty saamaan samoik-
si (taulukko 7). Eroa oli lahinni tyvella (0,36%), muual-
la erot olivat merkityksettomia.

Runkokiyrien QO8A ja QO15 keskimaaraiseksi mak-
simieroksi tuli 0,9 cm, mika ero sijaitsi lahes aina tyvelld.
Ylempini rungolla keskiméarainen maksimiero oli alle
0,3 cm (taulukko 12). Tasta nikyy, etti QO8A ei pysty
kuvaamaan tyvei yhta hyvin kuin QO15, mutta muualla
ne kulkevat lihes samalla tavalla. Runkokayrien graafi-
nen tarkastelu vahvisti tita kasitysta (kuvat 4 ja 5).

Yhteenvetona voidaan sanoa, etta 7 mitatun lapimitan
kaytté antaa lihes yhta hyvin tuloksen kuin 14 mitatun
lapimitan kiyttd. Tyvella syntyy hieman eroa. Taulukos-
ta 16 kiy lisaksi ilmi, ettd vastaavuus on parempi kaytet-
tiessd monotonisuuden sdilyttavaa splinia kuin kaytetta-
essa kuutiollista splinia.

Neljan mitatun lipimitan kiytto

Seuraavaksi kokeiltiin 4 mitatun lapimitan kaytt6a.
Vertailurunkokiyrina oli edelleen QO15. Talla kertaa
syntyi selvempia eroa vertailurunkokiyrain kuten tau-
lukoista 7 ja 12 kdy ilmi. Keskimaaraista kokonaistila-
vuutta ja tyvelld olevaa osatilavuutta ei saatu yhtaikaa
hyviksi, kumpikin erikseen kyllikin. Runkokayran keski-
mairiinen maksimipoikkeama vertailukayrasta oli jo yli
1,0 cm ja tyven ulkopuolellakin 0,5 cm luokkaa. Keski-
midraiset erot konstruktiossa kayttamattomiin mittaus-
tuloksiin pysyivit kylla edelleen pienina (taulukot 14 ja
15). Runkokiyrien graafinen tarkastelu osoitti, etti tulos
on hyvi sainnéllisille puille, mutta epasaannallista puu-
ta kuvattaessa ei tarkkaa vastaavuutta saada (kuvat 6 ja
7). Runkokayrit sailyttivit kylla aina monotonisuuden,
mutta nelji lipimittaa ei vélttimattd anna riittavasti
tietoa rungon muodosta.

Yhteenvetona voidaan todeta etta muodon sdilyttava
splini antaa vield neljan mittauspisteen tapauksessa tyy-
dyttavan runkokdyrdn. Itse asiassa runkokdyrd antaa
yhti hyvia tilavuusarvioita kuin 7 mittauspisteen kautta
kulkeva kuutiollisen splini-funktion avulla muodostettu
runkokayra.



34
Kolmen mitatun lipimitan kiytto

Lopuksi suoritettiin vield muutamia kokeita 3 mitatun
lapimitan kayttamisestid. Naiden kautta kulkeva monoto-
nisuuden sailyttava splini antaa runkokiyrin, joka on
vield tyydyttava saannélliselle puulle (kuva 8). Jos puu
on vihinkin epasiinnéllinen, ei 3 mitattua lipimittaa
anna riittavasti informaatiota hyvin monotonisuuden
sdilyttavan runkokiyrin muodostamiseen.

Yhteenveto

Tutkimuksesta kiy ilmi, etti monotonisuuden siilytta-
vén neli6llisen splinin avulla saadaan puulle runkokayri,
joka on ainakin yhta hyva kuin kuutiollisen splinin avulla
muodostettu. Runkokidyrin muotoon liittyvissd asioissa
on monotonisuuden siilyttavin splinin antama runko-
kiyrad parempi. Ero on sitid suurempi, mitd pienempii
mittaustulosmaaraa kiytetaan.

180
18

182

183

184

185

186
18

~

188

189

190

19

192
193

194

195

196
197
198
199
200

20

202
203

204

ACTA FORESTALIA FENNICA

Simula, M. 1983. Productivity differentials in the Finnish forest industry. Seloste: Tuottavuu-
den vaihtelu Suomen metsiteollisuudessa.

Pohtila, E. & Pohjola, T. 1983. Lehvistoruiskutuksen ajoitus kasvukauden aikana. Summary:
The timing of foliage spraying during the growing season.

Kilkki, P. 1983. Sample trees in timber volume estimation. Seloste: Koepuut puuston
tilavuuden estimoinnissa.

Mikkonen, E. 1983. Erdiden matemaattisen ohjelmoinnin menetelmien kaytté puunkorjuun ja
kuljetuksen seka tehdaskisittelyn menetelmivalinnan apuvilineeni. Abstract: The usefulness
of some techniques of the mathematical programming as a tool for the choice of timber
harvesting system.

Westman, C. J. 1983. Taimitarhamaiden fysikaalisia ja kemiallisia ominaisuuksia seké niiden
suhde orgaanisen aineen maaraan. Summary: Physical and physico-chemical properties of
forest tree nursery soils and their relation to the amount of organic matter.

Kauppi, P. 1984. Stress, strain, and injury: Scots pine transplants from lifting to acclimation
on the planting site. Tiivistelma: Metsanviljelytaimien vaurioituminen noston ja istutuksen
valilla.

Henttonen, H. 1984. The dependence of annual ring indices on some climatic factors. Seloste:
Vuosilustoindeksien riippuvuus ilmastotekijoista.

Smolander, H. 1984. Measurement of fluctuating irradiance in field studies of photosynthesis.
Seloste: Sateilyn vaihtelun mittaaminen fotosynteesin maastotutkimuksissa.

Pulkki, R. 1984. A spatial database — heuristic programming system for aiding decisionmaking
in long-distance transport of wood. Seloste: Sijaintitietokanta — heuristinen ohjelmointijarjes-
telma puutavaran kaukokuljetuksen paatoksenteossa.

Heliovaara, K. & Viisianen, R. 1984. Effects of modern forestry on northwestern European
forest invertebrates: a synthesis. Seloste: Nykyaikaisen metsankasittelyn vaikutukset luoteis-
eurooppalaisen metsan selkiarangattomiin: synteesi.

Suomen Metsitieteellinen Seura 75 vuotta. The Society of Forestry in Finland — 75 years.
1984.

Silvola, J., Vilijoki, J. & Aaltonen, H. 1985. Effect of draining and fertilization on soil
respiration at three ameliorated peatland sites. Seloste: Ojituksen ja lannoituksen vaikutus
maahengitykseen kolmella suomuuttumalla.

Kuusipalo, J. 1985. An ecological study of upland forest site classification in southern Finland.
Seloste: Ekologinen tutkimus Etela-Suomen kangasmetsien kasvupaikkaluokituksesta.
Keltikangas, M., Laine, J., Puttonen, P. & Seppala, K. 1986. Vuosina 1930—1978 metsaojite-
tut suot: Ojitusalueiden inventoinnin tuloksia. Summary: Peatlands drained for forestry in
1930—1978: Results from field surveys of drained areas.

Vehkamaki, S. 1986. The economic basis of forest policy. A study on the goals and means of
forest policy. Seloste: Metsipolitiikan taloudelliset perusteet. Tutkimus metsapolitiikan ta-
voitteista ja keinoista.

Huhta, V., Hyvonen R., Koskenniemi A., Vilkamaa P., Kaasalainen P. & Sulander M. 1986.
Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Seloste:
Lannoituksen ja pH-muutoksen vaikutus kangasmetsin maaperaeldimisto6n.

Luomajoki, A. 1986. Timing of microsporogenesis in trees with reference to climatic adapta-
tion. A review. Seloste: Mikrosporogeneesin ajoitus ja puulajien ilmastollinen sopeutuminen.
Oker-Blom, P. 1986. Photosynthetic radiation regime and canopy structure in modeled forest
stands. Tiivistelma: Metsikon valoilmasto ja latvuston rakenne.

Westman, C. J. 1987. Site classification in estimation of fertilization effects on drained mires.
Seloste: Kasvupaikkojen luokitus lannoitusvaikutuksen arvioinnissa ojitetuilla rameilla.
Leikola, M. 1987. Suomalaiset metsaticteelliset viitoskirjat ja niiden laatijat. Summary:
Academic dissertations and doctors in forestry sciences in Finland.

Peng Shikui. 1987. On the combination of multitemporal satellite and field data for forest
inventories. Tiivistelma: Moniaikaisen satelliitti- ja maastoaineiston yhteiskdytté metsien
inventoinnissa.

Nygren, M. 1987. Germination characteristics of autumn collected Pinus sylvestris seeds.
Seloste: Midnnyn siementen itamistunnukset syyskerayksissa.

Korpilahti, E. 1988. Photosynthetic production of Scots pine in the natural environment.
Seloste: Mannyn yhteyttamistuotos luontaisessa kasvuymparistossa.

Lahtinen, A. 1988. On the construction of monotony preserving taper curves. Seloste:
Monotonisuuden sailyttavien runkokayrien muodostamisesta.

Omwami, Raymond K. 1988. An economic model underlying the choice of capital intensity in
timber production. Tiivistelmd: Puuntuotannon paiomaintensiteetin valinnan perustana
oleva taloudellinen malli.



Kannattajajasenet — Supporting members

CENTRALSKOGSNAMNDEN SKOGSKULTUR

SUOMEN METSATEOLLISUUDEN KESKUSLIITTO

OSUUSKUNTA METSALIITTO
KESKUSOSUUSLITKE HANKKIJA

OY WILH. SCHAUMAN AB

KEMIRA OY

METSA-SERLA OY

KYMMENE OY
KESKUSMETSALAUTAKUNTA TAPIO
KOIVUKESKUS

A. AHLSTROM OSAKEYHTIO
TEOLLISUUDEN PUUYHDISTYS

OY TAMPELLA AB

KAJAANI OY
MAATALOUSTUOTTAJAIN KESKUSLIITTO
VAKUUTUSOSAKEYHTIO POHJOLA
VEITSILUOTO OSAKEYHTIO
OSUUSPANKKIEN KESKUSPANKKI OY

SUOMEN SAHANOMISTAJAYHDISTYS
OY HACKMAN AB

YHTYNEET PAPERITEHTAAT OSAKEYHTIO
RAUMA REPOLA OY

JAAKKO POYRY OY
KANSALLIS-OSAKE-PANKKI

SOTKA OY

THOMESTO OY

SAASTAMOINEN OY

OY KESKUSLABORATORIO
METSANJALOSTUSSAATIO

SUOMEN METSANHOITAJALIITTO
SUOMEN 4H-LIITTO

SUOMEN PUULEVYTEOLLISUUSLIITTO R.Y.

METSAMIESTEN SAATIO
SAASTOPANKKIEN KESKUS-OSAKE-PANKKI
ENSO-GUTZEIT OY

ISBN 951-651-081-7

ISSN 0001-5636

Karisto Oy:n kirjapaino

Hameenlinna 1988



