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Diameter and volume increment as well as change in
stem form of Scots pine (Pinus sylvestris L.) were ana-
lysed to predict tree increment variables. A stem curve set
model is presented, based on prediction of the diameters
at fixed angles in a polar coordinate system. This model
consists of three elementary stem curves: 1) with bark, 2)
without bark and 3) without bark five years earlier. The
differences between the elementary stem curves are the
bark curve and the increment curve. The error variances
at each fixed angles and covariances between the fixed
angles are divided into between-stand and within-stand
components. Using principal components the between-
stand and within-stand covariance matrices are condensed
separately for stem curve with bark, bark curve and incre-
ment curve. The two first principal components of the
bark curve describe the vertical change in Scots pine bark
type and the first principal component of the increment
curve describes the increment rate. The elementary stem
curves, bark curve and increment curve as well as the
corresponding stem volumes, bark volume and volume
increment can be predicted for all trees in the stand with
free choice of sample tree measurements. When only a
few sample trees are measured, the stem curve set model
gives significantly more accurate predictions of bark vol-
ume and volume increment for tally trees than does the
volume method, which is based on the differences be-
tween two independent predictions of volume. The vol-
ume increment of tally trees can be predicted as reliably
with as without measurement of sample tree height incre-
ment.

Miinnyn (Pinus sylvestris L.) lipimitan ja tilavuuden kas-
vua sekd muodon muutosta analysoidaan puun ja koealan
menneen kauden kasvun ennustamisen kannalta. Tyossi
esitetddn runkokayrastomalli, jolla ennustetaan napakoor-
dinaatiston kiinteitd kulmia vastaavat rungon lipimitat.
Malli kisittaa kolme yhtiaikaisesti madritelty4 perusrun-
kokdyrai: runkokayrat kuorineen ja kuoretta mittaushet-
kelld ja kuoretta viisi vuotta aikaisemmin. Perusrunko-
kdyrien erotuksina saadaan kuorikdyri ja kasvukiyri.
Kiinteiden kulmien jadnnosvarianssit ja kulmien viliset
kovarianssit jactaan metsikoiden viliseen ja sisiiseen kom-
ponenttiin. Metsikoiden viliset ja sisdiset kovarianssi-
matriisit tiivistetdén tirkeimpiin vaihtelusuuntiinsa paa-
komponenttien avulla erikseen kuorelliselle runkokiyril-
le, kuorikayrille ja kasvukiyrille. Kuorikéyrin kaksi en-
simmdistéd padkomponettia kuvaavat ménnyn kuorityy-
pin muuttumista puun tyvelti latvaan ja kasvukiyrin
ensimmainen paakomponentti kuvaa puun kasvunopeut-
ta. Mallilla voidaan ennustaa metsikon puiden runko-
kéyrit ja niistd johdetut tilavuudet, kuoren tilavuus seki
menneen viisivuotiskauden tilavuuskasvu seki koepuille
ettd lukupuille vapaasti valittavalla koepuiden mittausta-
valla. Lukupuiden kuoren tilavuuden ja tilavuuskasvun
ennusteiden luotettavuus on huomattavasti parempi kuin
erotusmenetelmiassid. Koepuiden pituuskasvun mittauk-
sesta luopuminen ei huononna lukupuiden tilavuuskas-
vuennusteen luotettavuutta.
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1 Introduction

1.1 Generalization of the sample tree data

The prediction of variables for a set of trees is
normally divided into two stages. First, the dis-
tribution of diameter at breast height is measured
or estimated for each tree species. Some trees,
however are measured more accurately. Trees
measured to determine the diameter distribution
are called tally trees and the more accurately
measured trees, sample trees. In the second phase,
the values of the sample tree variables are pre-
dicted for the tally trees. It is called “generaliza-
tion of the sample tree data”.

Forest inventory, or determination of values
for variables describing a set of trees of a sample
plot, stand or forest area, can be improved by
developing measurement techniques, sampling
methods and models used for calculating the
results (Pdivinen 1987). Those components are
mutually connected so that improvement in one
can lead to changes in the others. To find effec-
tive use of sample trees, information on the ef-
fects of different measurement strategies of the
sample trees is needed. The measurable varia-
bles, measurement errors and costs are related to
the measurement techniques. The measurement
error in the independent variable of a model can
lead to increasing random errors and in many
cases also to bias of the prediction. The main
questions about utilization of the sample tree are
how many sample trees should be measured,
how they should be divided among the sample
plots and which dimension of the sample trees
shall be measured.

Regression models are often used for generali-
zation of the sample tree data to the tally trees.
Another method of generalization is the grid
method (Holm et al. 1979). In the grid method,
tally and sample trees are sorted into classes of
stand variables and tree variables common for
both tree types. Then, to derive values for the
sample tree variables, a sample tree located in
the same class is allotted for each tally tree.

The interesting tree variables, such as volume,
value and their increments, are not directly meas-
urable from standing trees. Tree models, as vol-
ume functions or stem curve models, are used to
predict these variables as a function of sample
tree variables. For tally trees these predictions
can be made based on information generalized
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from measurements of sample trees. Values of
the interesting variables can also be predicted for
the tally trees directly from the corresponding
predictions for the sample trees using methods
for generalization of sample tree data. The stand-
ard error of the predictions can be decreased by
increasing the number of sample trees or by
including more independent variables in the tree
models.

In normal practice, generalization of sample
tree data and prediction of the values of interest-
ing tree variables are done separately. The gen-
eralization phase does not use any a priori infor-
mation from the statistical point of view, and
prediction of the interesting tree variables is based
purely on the a priori information in the form of
the fixed part of tree models for the interesting
variables as function of the measured sample
tree variables. Fog and Jensen showed already in
1953 that a priori information about the between-
and within-stand variation can be used to im-
prove the reliability of the predictions of tally
tree and stand volumes by calibration of the
volume equation.

Later, a priori information on random varia-
tion has been used in different modelling prob-
lems in forestry. Burk & Ek (1982) and Green &
Strawderman (1985) used empirical Bayes esti-
mation to increase the reliability in small strata
by using informative prior distribution of the
slope coefficient of different models. Gertner
(1984) showed the efficiency of the sequential
Bayes estimation in calibrating a regional growth
model on a local level. Pekkonen (1983) used
between-stand and within-stand variances to
weight sampling information and prior informa-
tion to estimate stand volume. A variance com-
ponent model, which is a mixed linear model
with random classification variable, was first used
in forestry by Andersen (1982) to predict tree
and stand volumes using tree models. Lappi
(1990) gives a more general view of the use of
mixed linear models with random parameters for
stand level in forest mensuration.

A mixed linear model gives effective calibra-
tion of a tree model on the stand level, with
respect to the measurements made in a particular
stand. Stand-wise calibration also gives more
reliable results on the regional level than does
estimation without calibration. Mixed linear mod-



els can also be calibrated to a stand with only one
measured sample tree. On the other hand, the
predictions of methods using a priori informa-
tion are shrunk to the sample mean of the data set
used for model estimation. A variance compo-
nent model with random stand effects gives bi-
ased prediction for a particular stand but unbi-
ased prediction for the whole population of the
stands.

1.2 Increment prediction

A tree is depicted quantitatively using tree varia-
bles. Increment is the difference between values
of a variable at two different points in time. The
direct and most accurate way to study the past
development of the tree stem in the form of tree
dimension increments is stem analysis (e.g. Spurr
1952, p. 226-239, Prodan 1965, p. 197 and Loet-
sch et al. 1973, p. 244), which produces the
without bark stem curves of a tree at fixed years.
The stem curves are determined using measured
diameters at fixed intervals on the vertical axis
of the stem. The diameters in given years are
measured from cores made with an increment
borer or from cross section cuttings of felled
trees. Diameters at given years can also be meas-
ured from standing trees with repeated measure-
ment. This method of measurement produces
increments with bark. It is not normally used
because time interval between the measurements
is usually 1-10 years and the shorter the time
interval between the measurements the relatively
less accurate are the measures of diameter incre-
ment.

Diameters between the measured points can be
interpolated to obtain continuous stem curves.
The accuracy of the interpolated stem curve de-
pends on the number of diameters measured,
their distribution on the stem and the method of
interpolation when the effects of noncircularity
of the cross-section of the stem and measure-
ment errors are excluded (Lahtinen & Laasa-
senaho 1979 and Lahtinen 1988). The volume
can also be determined directly as the sum of the
volumes of stem sections determined with the
measured diameters and their distances. Formu-
las for stem section volumes are normally based
on conic sections (Prodan 1965, p. 53-58 and
Loetsch et al. 1973, p. 146).

Indirect methods for determination of stem
volume increment using tree models without stem
analysis can be classified into four groups (groups
24 according to Svensson 1988): 1) the deriva-

tive method, 2) the component method, 3) the
volume method (also called the difference meth-
od), and 4) the increment method. The three first
methods are based on indirect determination of
volume increment.

The derivative method uses partial derivatives
of a volume function. The simplest example is
the tariff-difference method (Loetsch et al. 1973,
p- 250). Volume increment is the product of
diameter increment and the first derivative of the
volume function based only on diameter, the so-
called tariff function. If the diameter increment
is small and the model is based on a sample of a
stable population, the derivative method is near-
ly unbiased. On the other hand, the predictions
of the derivative method are only rough esti-
mates, since the method assumes that each tree
follows the regression line based on a cross-
section of the population. The effects of changes
in the surroundings of the tree cannot be taken
into account.

The component method is based on the multi-
plicative components of tree volume: basal area
at breast height, tree height and form factor of
the tree. It can be showed that the relative vol-
ume increment can be approximated very well
by the sum of relative basal area, height and form
factor increments (Prodan 1965, p. 450-453).
The height and the form factor can also be linked
together to form height. In the application of the
component model, the form height increment or
the form factor increment are not measurable
variables and they have to be predicted by auxil-
iary models as a function of some measurable
tree or stand variables. Earlier the component
method was widely used in Scandinavia: In Fin-
land, Ilvessalo’s (1947) tables for calculation
volume increment based on basal area increment
at breast height, height increment and form fac-
tor increment, in Sweden the tables of Jonsson
(1928) and in Norway the functions of Strand
(1968) based on basal area increment at breast
height and form height increment.

In the volume method the increment is calcu-
lated as the difference between present and past
volumes. These volumes are usually predicted
by standard volume equations or stem curve mod-
els. Usually volume models are used where the
independent variables are diameter at breast
height and tree height. The values of the inde-
pendent variables of the used volume equation
have to be known at the beginning and at the end
of the increment period. They can be measured
or predicted with auxiliary models. The predic-
tion errors of the auxiliary models have to be

Ojansuu, R.

taken into account, when the values of the inde-
pendent variables of tree models are predicted
using them (Kilkki 1979). The measurement er-
ror of height increment also has an effect on the
accuracy of the volume method, because its var-
iance is large and systematic errors occur (Pdivin-
en et al. 1992).

In the increment method, the volume incre-
ment is predicted by a regression model directly
as a function of the measurements without direct
association with the volume prediction. The fre-
quently used independent variables are diameter
at breast height and tree height at the end of the
increment period and measured past increment
in basal area at breast height (Svensson 1988 and
Strand & Li 1990). The height increment, meas-
ured or predicted with an auxiliary model, can be
omitted as an independent variable. The regres-
sion model can also be formulated without basal
area increment as an independent variable. Reli-
ability of the model can be increased by includ-
ing tree, site and competition variables into the
independent variables.

Increment with bark is often of interest in for-
estry. Normally, stem analysis gives information
from stem curves and increments without bark.
Only the stem curve at the time of measurement
can be determined with bark. The bark volume
can be determined using the difference between
the stem curves with and without bark. To calcu-
late increment with bark, the bark increment is
needed. Because the bark increment is an un-
measurable variable on temporal sample plots,
indirect approximations for it are used. Most of
the approximation methods are based on the as-
sumption that the ratio of a particular tree varia-
ble with and without bark is constant or con-
ditional on some tree and stand variables. As an
example (e.g. Loetsch et al. 1973, p. 116), we
assume that in a population there exists a bark
equation B = b, + b,D, where B is double bark
thickness, D diameter with bark, and b, and b,
are parameters. The bark diameter increment can
then be approximated with the first derivative of
the bark equation, b,. The diameter increment
with bark is [1 / (1 = b,)]ip,, Where ip, is the diam-
eter increment without bark and [1/(1-b,)]is
the bark increment coefficient.

For volume increment, more complicated meth-
ods are used. In the Swedish National Forest
Inventory, the bark volume increment is deter-
mined using the formula (Jacobson 1978):

Ly = LYV -V, (12.1)

B
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where Iy = prediction of bark volume increment
V= prediction of bark volume as a function of
diameter at breast height without bark
Vgs = prediction of bark volume five years be-
fore the measurement as a function of di-
ameter at breast height without bark at the
same point in time
prediction of volume with bark as a func-
tion of sample tree and stand variables
V, = prediction of volume without bark as a
function of sample tree stand variables

v

"

The term V — V, is the predicted bark volume as
a function of sample tree and stand variables.
Because of some systematic errors in bark pre-
dictions, Svensson (1988) predicted the bark vol-
ume directly with a regression model as a func-
tion of sample tree variables without bark and
stand variables as independent variables.

In the Finnish National Forest Inventory esti-
mations of the bark increment and the change in
stem form are aggregated using a modification
of form height defined as the ratio of volume
with bark and basal area at breast height without
bark (Kujala 1980). This ratio is assumed to
follow a regression line conditional to tree height.

In studies dealing with changes in stem form,
the main emphasis has been placed on the effect
of one particular factor at a time. In his broad
review Larson (1963) gives empirical results of
the effects of crown size and exogenous factors
on stem form and changes in it, as well as re-
views the most important theories of stem form.

Graphical description has often been used in
analyzing changes in stem form (e.g. Nyyssonen
1952, Vuokila 1960a and Assmann 1970). For
analyzing changes in stem form by mathematical
or statistical methods, the difference method has
been most common. The form measure used has
been form factor (e.g. Saramaki 1980) or form
quotient (e.g. Hagberg 1966).

Sloboda (1977a) used curvlinear coordinate
systems to describe the development of stem
form. The stem is a result of the accumulation of
diameter growth at different heights. On that
basis Kilkki & Varmola (1981) illustrated changes
in stem form by the partial derivative matrix of
diameters at relative heights. In their modifica-
tion of the derivative method, the diameter incre-
ments at relative heights were predicted as a
function of one known diameter increment.



1.3 Purpose of the study

Volume increment is often the most interesting
variable when tree stem increment is analyzed in
order to predict single tree and sample plot vari-
ables. Increment of tree dimensions can also be
of interest in finding changes in timber assort-
ment volumes and timber value. For an individu-
al tree, stem analysis produces the information
needed to calculate interesting increment and
bark variables, but it demands very accurate and
expensive measurements.

Most of the indirect methods for prediction of
volume increment give no information on stem
form or the change in stem form. When a stem
curve model is used, only the volume method
gives stem form at the beginning and at the end
of the increment period. When the volume meth-
od is used, the same stem dimensions have to be
known at the beginning and at the end of the
increment period. In many cases not all the avail-
able information on stem form can be used. For
example, in the Finnish National Forest Invento-
ry, the measured dimensions of sample trees are
diameter with bark, double bark thickness and
diameter increment in the past five years at breast
height, diameter with bark at six meters height,
tree height and height increment in the past five
years. When the volume method is used, only
information on breast height diameter and stem
height can be utilized for increment prediction.

One of the main arguments for using the incre-
ment method is that the unreliable measurement
of height increment can be omitted (Svensson
1988 and Strand & Li 1990). Information on the
upper diameter with bark can also be used as an
independent variable. In other words, the incre-
ment method is flexible, because it allows free
choice of independent variables. The disadvan-
tage of the increment method is that it predicts
only volume increment without any information
on changes in stem form.

Tree models have usually been examined sep-
arately, and their relevance for prediction is stud-
ied in terms of total residual sum of squares. It is
often possible to formulate different statistical
models with the same independent variables,
which gives the same accuracy to the predic-
tions. An example of this is the volume predic-
tion models by Laasasenaho (1982), which are
based on direct volume prediction with volume
equations and volume determination using pre-
dicted stem curves. Because in many cases a new
formulation of the fixed part of the model cannot
significantly reduce the total residual sum of

squares, the choice of independent variables has
great importance for the relevance of a model.

When stand variables are predicted using tree
models, it is important to find independent varia-
bles which can explain the between-stand varia-
tion in order to improve the prediction (Kilkki

1983). A variance component model with ran-
dom stand effect separates the between-stand
and within-stand variation and gives a practical
tool for analyzing the effects of different inde-
pendent variables on the between-stand varia-
tion. It also correctly describes a data set con-
sisting of sample plots with mutually correlated
trees.

The purpose of this study is to analyze Scots
pine (Pinus sylvestris L.) stem increment using a
statistical model with special emphasis on incre-
ment prediction. A model, called the stem curve
set model, is presented, which consists of three
elementary stem curves: stem curves with and
without bark in year t and the stem curve without
bark in year t-5. The difference between the
stem curves with and without bark in year t is
called the bark curve, and the difference between
the stem curves without bark in the years t and
=5 is called the increment curve. The model is
used to study the effects of different strategies of
sample tree measurements on both bark and in-
crement predictions on the tree and stand level.
The effects of measurement errors of the stand-
ard measurement methods are also studied. The
bark curve should be predictable as a function of
diameters with or without bark in order to deter-
mine the increments with bark. For this purpose
the stem curve set model should fulfil the fol-
lowing three main requirements: 1) free choice
of sample tree measurements, 2) ability to take
into account possible measurement errors and 3)
efficiency of calibration at the stand level.

The free choice of measurements means that
the stem curve set can be predicted if any dimen-
sions of the elementary stem curves are meas-
ured. Firstly, with this kind of model it is easy to
study the effect of different measurements on the
prediction errors. Secondly, it is possible to pre-
dict the stem curve with bark as a function of the
tree dimensions without bark.

If the model is able to take into account meas-
urement errors, the elementary stem curve devi-
ates from the measurement point depending on
the measurement error variance. If no measure-
ment error occurs, the elementary stem curves
pass through the measurement points.

The efficient calibration means that the gener-
al model can be calibrated efficiently for a stand
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with only one measured sample tree. This re-
quirement leads to a choice of methods using a
priori information, which is unbiased only over
all stands in the population, but is biased for a
particular stand. If a priori information is not
used to obtain reliable results for generalization
of the sample tree information to tally trees, the
number of sample trees needed for each plot is
2040 (e.g. Vuokila 1965).

1.4 Choice of the modelling approach

The existing stem curve models are a natural
base for developing of the stem curve set model.
Here, stem curve models are reviewed only as
needed to understand the background of the
choice of the modelling approach used. Sterba’s
(1980) more comprehensive review of the stem
curve models covers stem curve studies made
before 1980.

The most natural way to describe the stem
curve is as a continuous function. Stem curves
expressed as continuous functions are often based
on the form quotient (the proportion of two di-
ameters measured at different heights) with base
diameter at breast height (e.g. Hojer 1903, Ko-
zak et al. 1969 and Max & Burkhard 1976).
Some of these functions are derived from vol-
ume functions to obtain compatible systems of
taper and volume functions (e.g. Demaerschalk
1972 and Clutter 1980). Volume functions have
also been derived from stem curves (Byrne &
Reed 1986). Common for all those models is that
diameter at breast height and tree height are the
only independent variables. Roiko-Jokela (1976)
presented a stem curve model based on broken
conic sections as a function of two fixed diame-
ters (D, ; and D) and tree height.

Stem curve models based on the form quotient
give the same shape for all trees with the same
diameter at breast height and height. Laasasena-
ho (1982) developed a polynomial continuous
stem curve model based on the natural form
quotient with base diameter D, where the tree
shape can vary as a function of tree height and
additional diameters. The base model can be
used if tree height and one diameter at any given
height, D,, are known. The base diameter can be
derived from the measured diameter using the
base model predictor f, of the diameter at the
corresponding relative height H, as follows:

Doy =Dy /fy(H). (1.4.1)
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The base model can be adjusted to greater accu-
racy with a correction polynomial. The correc-
tion polynomial can be calculated for a single
tree if three diameters at different heights and
tree height are known. It can also be determined
using auxiliary functions with diameters at fixed
heights as independent variables. These func-
tions should be fitted for every measurement
combination from the same data set that was
used to estimate the base model. Laasasenaho
gives auxiliary functions for cases where the
measured variables are D, ; and H, or D, 5, D¢ and
H.

If an adequate number of diameters are availa-
ble, the stem curve can be described as a continu-
ous function by interpolation (Sloboda 1977b).
According to Lahtinen & Laasasenaho (1979), if
the height and seven correctly positioned diame-
ters are known, it is possible to obtain a reliable
description of a stem curve using cubic spline
functions. The correct positioning of the meas-
urement heights of diameters is most important
at the base of the stem. In the method of Lahtinen
& Laasasenaho (1979), the additional conditions
needed at the terminal points of the stem curve
are derived from each stem, using its own meas-
urements. The cubic spline function can give a
nonmonotonic stem curve even if the measure-
ments are monotonic. However, it is always pos-
sible to obtain a monotonic stem curve from
monotonic measurements with a quadratic spline
function (Lahtinen 1988).

Prediction of a continuous stem curve can be
divided into two phases (Kilkki et al. 1978):
prediction of some fixed points of the stem and
interpolation between the points. Determination
of fixed points is closely related to the concept of
measurement function used in allometry,which
is the study of the relationship between the size
and shape of an organism (Sprent 1972). The
concepts of measurement function, standard size
variable and shape vector are used to describe an
object in an operational way (Mosimann 1970).
The measurement function is formed from linear
distance measurements made between homolo-
gous points, here the fixed points on the stem
curve. The shape vector is obtained by dividing
the measurement function by the standard size,
which is derived from the measurement func-
tion, e.g. as the weighted mean of the measure-
ment function. Two individuals have the same
shape if their measurement functions are propor-
tional.

The description of a tree stem by the measure-
ment function, standard size and shape vector



requires that the biologically homologous points
can be determined exactly. The birth point and
the terminal bud of a tree are genuine homolo-
gous points. Determination of other homologous
points is, however, theoretically problematic. The
exact measurement function for a tree stem can
be derived by replacing biologically homolo-
gous points with geometrically analogous points.
Two common ways of determining analogous
points of a tree stem are the diameters at relative
heights (e.g. Cajanus 1911 and Laasasenaho
1982) and the ray lengths or corresponding di-
ameters at constant angles in a polar coordinate
system (e.g. Sloboda 1977a ).

Kuusela (1965) expressed a measurement func-
tion using a natural form quotient, which was
predicted as a function of the natural form factor.
For practical applications this method demands
regression models for the form factor as a func-
tion of the available measurements. Kilkki et al.
(1978) predicted the measurement function us-
ing a multidimensional model based on simulta-
neous equations for diameters at relative heights.
In the equations each element is regressed to all
other elements of the measurement function. Ex-
ogenous variables, e.g. crown height, can also be
added to the equations, which can be linear or
nonlinear (Kilkki & Varmola 1979). A multidi-
mensional model also gives estimates of the var-
iances of the measurement function elements.
Diameters and variances between measurement
function elements can be estimated by interpola-
tion. To predict basal area and volume without
bias, estimates of the variances of the predicted
diameters are needed.

Cajanus (1911) stated that, to separate stem
size and stem form, a genuine variable for tree
form should be independent of the absolute meas-
ures of the tree. Fries & Matérn (1966) and also
Liu & Keister (1978) used principal component
analysis to define the size and the form of a tree
stem statistically independently. The first princi-
pal component of the stem measurement func-
tion describes the variation in stem size and the
other principal components describe variation in
stem form. Stem size described by the first prin-
cipal component is uncorrelated with the shape
of the individual. This places restrictions on stud-
ies dealing with the relationship between tree
size and shape (Mosimann 1970).

Lappi (1986) developed a multidimensional
stem curve model in which the logarithmic meas-
urement vector is regressed on tree size deter-
mined as the first principal component of loga-
rithmic measurement function. The measurement
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function is determined with diameters correspond-
ing to fixed angles in a polar coordinate system.
Lappi (1986) used variance components to sepa-
rate between-stand and within-stand variation,
and the model can be calibrated to a plot with
only one sample tree. He also showed, how
knowledge of measurement errors can be taken
into account with the help of the measurement
error variances and the within stand variances.

The model of Lappi (1986) was taken as the
starting point for development of the new model,
since it fulfills the requirements of free choice of
measurements, ability to take into account possi-
ble measurement errors and efficiency at stand
level calibration. Lappi’s model still has two
advantages. Firstly, the polar coordinates used
are suitable for analysis of form changes (Slobo-
da 1977a). All analogous points and changes in
their locations can be derived independently of
each other since the tree height is the length of
the ray at an angle of 90°. Secondly, the variance
component structure of Lappi’s (1986) model
corresponds to the structure of the data used,
where measured trees are concentrated on sam-
ple plots. When we are interested in the proper-
ties of the phenomenon, not only the prediction
errors for a single tree, it is necessary to take into
account the structure of the data set.

1.5 Computational aspects and notation

The programming language was FORTRAN-77.
IMSL subroutines (IMSL...1982) were used for
the matrix operations and interpolations. The
spline interpolations of the stem curves were
made by spline-subroutines based on the study
of Lahtinen & Laasasenaho (1979).

In the terminology of mixed models, the fixed
variables are estimated and the random parame-
ters are estimated or predicted. Here the term
“estimate” is used for both. The term “predic-
tion” is used only to denote the determination of
stem dimensions and volumes using models. For
tree variables, capital letters denote arithmetic
scale and lower case letters logarithmic scale. A
list of the general symbols is given in Appendix
E.

The concepts stem curve and taper curve have
both been used for the continuous description of
tree diameter as a function of its position on the
vertical axis of the stem. The concept stem curve
is preferred here because it is more informative
and since it includes no assumption about the
monotony of the stem form. The concepts stand
and sample plot are used synonymously.
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2 Data

2.1 Primary data

The data of Vuokila & Viliaho (1980), which
were collected for stand-growth models, are used
for analysis and modelling (primary data). The
primary data were collected during the years
1970-1974 and consist of subjectively placed
temporary sample plots that fulfilled the follow-
ing conditions:

— Basal area of Scots pines over 90 % of the total basal
area

— Homogeneous site and growing stock on the com-
partment

— No openings in the growing stock

— Stand established by sowing or planting

— No understorey

— Dominant height over 7m

— Atleast 3 years since the last thinning

—  Treated only with thinnings from below

— No hold-overs

—  Good health

The geographical distribution of the primary data
set covers nearly the whole of Finland (Fig. 2.1).

The sample plots were delineated to consist of
at least 100 trees, with the exception of the young-
est stands, which included at least 200 trees. The
plot area was between 0.10-0.25 ha. Diameters
at breast height were measured from two direc-
tions at right angles to each other from all trees
with a diameter over 5 cm. The base height for
all measurements was ground level.

For increment analysis, eight sample trees were
measured from each plot. These trees were se-
lected in two phases. First, 30 sample tree candi-
dates were chosen from healthy unforked pines.
Then every third tree of the sample tree candi-
dates was selected. After that, the basal area
distribution of the selected trees was compared
with the basal area distribution of the whole plot.
If necessary, the sample trees were changed to
get an approximately even covering over the
whole basal area distribution. Selection of
neighboring trees was avoided.

The sample trees for increment analysis were
measured as standing trees by climbing them.
The diameters over bark, double bark thickness
and also annual diameter increments at 1.3 and 6
m heights and at 9 relative heights, 1, 2, 6, 10,
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20, 30, 50, 70 and 85 %, were measured. The
highest measurement was omitted if it was im-
possible to climb to that height. The diameters,
bark thickens and annual radial increments were
measured from two directions at right angles to
each other. The bark thickness was measured
with a Swedish bark gauge and the annual radial
increments by boring radial increment cores. Tree
height, height of the living crown and height
increment in five-years periods to the last thin-
ning were also measured. Separate living branches
under the living crown were not included in the
crown if there were two or more death whorls
between them.

Only sample trees with complete measures from

Fig. 2.1. Locations of the sample plots in the data sets:
primary data (e) and test data (o).
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Table 2.1. Diameter height distribution of the primary data.

Height, m

D, cm 5 6 78 910 11 12 13 14 15 16 17 18 19 20 21 22 23 34 25 26 27 28 Total

Number of trees

5 2
6 21 3
7 1 1 2 1 5
8 1 24 5 7 19
9 6 6 2 1 15
10 2 2 6 9 8 27
11 31 4 511 3 1 1 29
12 1 2 3 4 3 3 8 4 1 29
13 1 5 6 7 110 7 2 39
14 4 9 3 3 7 6 2 3 3
15 1 5 2 3 61312 5 3 50
16 5 3 41812 5 1 48
17 21 1 2111515 6 6 1 60
18 31 3 512 810 8 1 1 52
19 1 21 8§ 810 8 5 5 1 49
20 1 1 817 7 5 5 1 45
21 11 1 3 5 5 9 2 1 28
22 35 111 7 4 1 2 34
23 21 6 5 4 1 1 2 22
24 I 26 1 6 1 1 19
25 1 1 1 3 4 4 3 11 1 21
26 1 11 3 4 1 12
27 1 I 3 2 1 2 2 1 1 14
28 1 1 3 1 3 1 11
29 1 2 11 6
30 1 2 1 2 1 8
31 2 31 1 7
32 1 1 2 1 5
33 1 1
34 1 11 B
35 0
36 1 1 1 3
37 0
38 0
39 1 1
40 1 1
41 0
42 1 1
Total 2 2 7 918 4550 42 24 76104 84 76 58 42 12 8 913 7 8 6 3 1 706

1,2, 6, 10, 20, 30, 50 and 70 % relative heights
and tree height were included in the primary
data. The minimum accepted increment period
was five years. The original data set consisted of
223 plots. Of these, 82 plots were rejected due to
insufficient increment measurements and 12 due
to the short measurement period. The final data
set consisted of 129 plots and 706 Scots pines.
The diameter height distribution of the primary
data set is presented in Table 2.1.

12

The stem curve expressed with diameters at
the fixed angles in the polar coordinate system
was interpolated from the diameters at relative
heights by cubic spline functions. Some statistics
on the reliability of the transformation of the
coordinate system are presented in Table 2.2.
These were calculated at the above-mentioned
relative heights from the differences between the
original measurements and diameters interpolat-
ed from the diameters at the knot angles. All
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Table 2.2. Reliability of the transformation from diameters (cm) at relative heights to
the corresponding diameters interpolated from the diameters at knot angles. mean

= bias and s, = standard deviation.

Diameters

Measurement With bark Without bark ~ Without bark Bark Increment

height, % in yeart in year t in year t-5

mean S mean  § mean S mean S mean

1 -01 .01 -01 .01 -.00 .01 -00 .01 -00 .01
2 01 .01 .01 .01 .00 .01 00 .01 .00 .01
6 -04 .10 .04 .10 -02 06 -01 .11 -.00 .07
10 02 .06 01 .06 01 .06 01 .08 .00 .06
20 -02 07 -02 .08 -02 .08 -01 .10 -00 .07
30 .01 .05 .00 .05 .01 .04 .01 .07 -00 .05
50 -00 .01 -00 .01 .00 .01 =00 .02 -00 .01
70 .00 .01 -00 .00 -01 .02 .00 .02 .00 .02

stem curves and also the differences between
them, the bark curve and the increment curve,
are nearly unbiased. The standard deviations are
usually less than 0.5 mm.

2.2 Test data

As independent test material, tree analysis data
collected by the Department of Forest Resources
of the Finnish Forest Research Institute were
used (Korhonen & Maltamo 1990). This is a
subsample from the sample plots of the 8th
National Forest Inventory sample plots with
a potential mean annual increment of over
0.1 m¥/ha/a. The sample plots measured in 1988
and 1989 in southernmost Finland were availa-
ble for this study (Fig. 2.1).

Five felled sample trees were selected systemat-

ically from each angle-count sample plot. Diame-
ters over- and under bark at heights of 1.3 and 6 m
and at 16 relative heights were measured from
cross-sectional cuttings in two directions at right
angles to each other. Diameter increments were
measured from two directions at right angles to
each other at the following eight relative heights:
2.5, 7.5, 15, 30, 50, 70, 85 and 95 %. Scots pines
that had reached a height of more than 1.3 m five
years before measurement were accepted for the
test data set. The final data set consisted of 30
sample plots and 103 Scots pines. In the test data,
stem form and its change are known accurately.
Although the data set is small, it can be used to
illustrate how the stem curve set model can be
used in an independent data set. The diameter
height distribution of the test data set is presented
in Table 2.3.

3 Stem curve set model

3.1 Delineation of the stem curve set model

The stem curve set model consists of three ele-
mentary stem curves determined in a polar coor-
dinate system: the stem curves with bark and
without bark in year t and the stem curve without
bark in year t-5. The elementary stem curve
model for stem curve with bark is identical with
the stem curve model of Lappi (1986). In the
stem curve set model, each of the elementary

Acta Forestalia Fennica 239

stem curves is expressed by a measurement func-
tion consisting of either rays R(u) or diameters
D(u) corresponding to fixed angles u in a polar
coordinate system (Fig. 3.1). Diameters are giv-
en in centimeters and heights in meters. The ray
corresponding to the 90° angle is tree height.
Fixed angles 1-13 are called “knot angles™. The
knot angles used are 0.25°,0.7°, 1.5°, 3°, 5°, 8°,
14°,21°,31°,41°,56°, 72° and 90°, which are the
same as those used by Lappi (1986). A continu-
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Table 2.3. Diameter height distribution of the test data.

Tree height, m

D, cm 5.6 78 91011 12 13 14 15 16 17 18 19 20 21 22 23 34 25 26 27 28  Total

Number of trees

—
(=]
—
5]
BB = = 12 W
o

=)}
8]

Total 2 5 155 3 5 5 5 1 5 7

B = —
:—‘—'IJ:'—'IJ—IJ'&—IQIJ\IO—IJW“IJJ‘A——Q‘IJ\J&'\II'\J!\IfJ'»II’vJ"I\I\J

9 7 2 4 3 5 2 1 1 1 1 1 103

ous elementary stem curve is interpolated be-
tween the elements of the measurement function.
Crown height is included in the model as an
exogenous variable.

The stem curve set is determined using the
logarithmic delineation vector d. The elements
of the delineation vector are called delineation
variables. Denote the logarithmic delineation var-
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iables by d,(u), where u is the knot angle in polar
coordinates and g indicates the stem curve: g = 1
for the stem curve including bark in yeart, g = 2
for the stem curve without bark in year t and g =
3 for the stem curve without bark in year t—5.
The corresponding delineation vector d consists
of the measurement vector of the stem curve
including bark in the year t [d,(1), ..., d,(13)] and
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H, m
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u
Ed I ¥ T L 1
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D,cm

Fig. 3.1. Polar coordinate system where the stem dimen-
sion for angle u is either ray R(u) or diameter D(u)
(Lappi 1986).

the diameters at the same knot angles of stem
curves without bark in the years t [dy(1), ... ,
d,(13)] and t=5 [dy(1), ... , d5(13)] and the crown
height in the year t (h.):

d =[di(1), ... ,dy(13),do(1), ... ,dx(13),d5(1), ..,
dy(13), he]. (B.1.1)

The delineation variables at angle u are illustrat-
ed in Fig. 3.2. The difference between the stem
curves with and without bark in year t is the bark
curve (g=B), and the difference between the
stem curves without bark in years t and t-5 is the
increment curve (g = I).

The expected elementary stem curves are ex-
amined as a function of tree size s and the aver-
age tree size S in the stand. The tree size is
defined in logarithmic scale as a weighted aver-
age of the elements of the logarithmic measure-
ment function of the stem curve with bark:

s= 5 w(u)d, (v). (3.12)
u=l
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H, m
201

5 10 15 20 25
D, cm

Fig. 3.2. The stem curve set in the polar coordinate sys-
tem. 1 = stem curve with bark in the year t, 2 = stem
curve without bark in the year t and 3 = stem curve
without bark in the year t-5. The diameters at angle u
are D,(u), Dy(u) and D;(u), respectively.

The weight vector [w(1),...,w(13)] is the first
eigenvector of the logarithmic sample covari-
ance matrix for the measurement function of
stem curve with bark scaled so that the sum of
the elements is one. The logarithmic diameter of
elementary stem curve g at angle u for tree i in
stand k is

dg(u)w =ag(u)+ay(u)sy +ag(u)sy 3.13)

+a(u)(su -5 )+ ve(u) +eg (W)
where ay, a,, a5, and ay are fixed parameters.
The random variation is divided into random
stand and tree effects; vy (u); is the random effect
of stand k and ey(u)y; is the random effect of tree
i in stand k. It is further assumed that cov(v,e) =
0.

The term (Sx —Sx) in Equation 3.1.3 is the
relative size of tree i in stand k. The effect of
relative size (Sx —Sk) can also be divided into
the effects of tree size and the average tree size,
and the model can be written
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dg (Wi = ago(u) +[ag (u) +ag () u +a, (u)sh
—ag3(0)S; + Vg (u) +eg(0)y (3.1.4)

Lappi (1986) pointed out the problem of the low
reliability of the relative size determination when
small sample plots are used to describe the stand.
Effects of the average size and the individual
tree size can also be mixed in the fixed part of the
model,since the correlation coefficient between
them is as high as 0.79. Therefore the following
model without average size was also studied:

dg(u)w =ag(u)+ag(u)sy +ag(u)sy 3.15)
+Vg(u) +eg(u)y

Replacement of the squared logarithmic tree size
s? by the arithmetic tree size S = exp(s) was also
studied. The logarithmic variances at knot angles
were similar to those of model 3.1.3. The predic-
tions in arithmetic scale were biased because of
the inaccuracy of the Taylor expansion of S used
to linearize the nonlinear constraint between s
and S when the model is applied (Equation 4.1.2).
The models with average size (3.1.3) and with-

out average size (3.1.5) are examined in greater
detail.

3.2 The stem curve set model as a mixed
linear model

The standard linear model technique is used to

estimate parameter values for the stem curve

model. The general linear model is

y=Xa+Zb+e, 3.2.1)

and the normal equations are

XTRIX  XTRZ @] _[XTRY] (55,
ZR-X ZTR-'Z+D~'] b|=|zRy | G22

where the matrices are the following:

y = vector of the dependent variables

X = matrix of the fixed independent variables

a = vector of the fixed parameters

Z = matrix of the random independent variables

b = vector of the random parameters

e = vector of random errors

R = covariance matrix of the random errors, var(e)

D = covariance matrix of the random parameters, var(b)
16

Lappi (1986) showed how model 3.1.3 with both
ordinary fixed parameters (a’s) and random stand
effects (v’s) as random parameters can be ex-
pressed as a variance component model in the
case of the stem curve model. Here the parame-
ter values for each element of the delineation
vector d were estimated separately. The matrices
for parameter estimation of the stem curve set
model are the following:

y = elements of the delineation vector for the stem curve
g at the angle u, dy(u)y;, Nx1, where N is the total
number of trees.

X = matrix of the fixed independent variables [1, sy;, s%;

and s,], Nxq, q = 4.

= vector of the fixed parameters, gx1.

incidence matrix of the stands, NxK, where K is the

number of stands.

= random stand effects v, Kx1, cov(v, v’) = 0.

vector of random errors e, Nx1, cov(b,e) = 0

= covariance matrix of the random errors, var(e), NxN

covariance matrix of the random stand effects,

var(b), KxK. (3.2.3)

N &
n

[}

]

cre T
I

The matrices used in the normal equations are
given in more detail in Appendix Al.

The stem curve set model is also a multivariate
model, which consists of the elements of the
measurement vector. The fixed part of the model
describes the dependence of the stem form, bark
thickness and diameter increment on tree size
and relative size. The regularities of stem form,
bark thickness and diameter increment devia-
tions from the fixed part of the model are de-
scribed with the covariance matrices between
knot angles of the random stand effects (b) and
the random tree effects (e). Those matrices sepa-
rate and describe the variations between and with-
in stands. The variances and covariances of the
random parameters (random stand effects) and
the random errors (random tree effects) are esti-
mated using the fitting constant method (Hend-
erson’s method 3; see Searle 1971). Pairwise
sums of the knot angles and the covariance for-
mula for the sum of two variables were used to
calculate the covariances of the random effects
between knot angles u and u': cov(uu')=
0.5[var(u — u') — var(u) — var(u')].

3.3 Fixed part of the stem curve set model
The weight vector w for the logarithmic size

(Formula 3.1.2) was estimated from the primary
data using the measurement vector of the stem
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curve with bark. The estimated weights for the
13 knot angles are 0.0829, 0.0812, 0.0798, 0.0794,
0.0788, 0.0793, 0.0794, 0.0784, 0.0770, 0.0750,
0.0718, 0.0693, 0.0677. Volume and size are
closely related in the primary data set, and the
following allometric equation exists between
them

V =0.074016 S2%. (33.1)

The relative standard error of the volume predic-
tion is 3.2 %.

The average size used in the analysis was cal-
culated from the sample trees. The estimates of
the fixed parameters of models with average size
(3.1.3) and without average size (3.1.5) are pre-
sented in Table 3.1. The effect of tree size on the
stem form, bark thickness and diameter incre-
ment is presented in Fig. 3.3 according to the

Table 3.1. Estimates of the fixed parameters for models 3.1.3 and 3.1.5. g is the index of the elementary

stem curve and u is the knot angle.

Model with average size (3.1.3)

Model without average size (3.1.5)

10 -0.8121 13914  -0.0709
11 -1.3365 1.5582 —0.1052
12 -1.9661 1.6092 —0.1170

—0.2028 —-0.2651 1.1594  -0.0591
-0.3374 —0.4403 1.1895  -0.0920
—0.4138 -0.8704 1.1534  -0.1007

g u ag ar a a3 ag ay a

1 1 0.9782 0.5775 0.0861 0.2145 0.4292 0.8675 0.0596
1 2 0.7941 0.6744 0.0645 0.1871 0.3295 0.9083 0.0473
1 3 0.6418 0.7438 0.0481 0.1870 0.1859 0.9707 0.0321
1 4 0.4800 0.8273 0.0317 0.1833 0.0348 1.0387 0.0204
1 5 0.4373 0.8207 0.0337 0.1441 0.0933 0.9852 0.0255
1 6 0.4722 0.7421 0.0512 0.1464 0.1241 0.9085 0.0429
1 7 0.2911 0.8228 0.0379 0.1037 0.0531 0.9401 0.0329
1 8 0.0584 0.9427 0.0147 0.0313 -0.0012 0.9838 0.0109
1 9 —0.3460 0.9999 -0.0263 0.0781 -0.1215 1.0465 -0.0146
1

1

1

1 13 —0.7538 1.6539 -0.1267
2 1 0.7801 0.5386 0.1078
2 2 0.6062 0.6503 0.0820
2 3 0.4554 0.7344 0.0620
2 4 0.2998 0.8186 0.0455
2 5 0.1182 0.9436 0.0209
2 6 0.1447 0.9025 0.0283
2 7 0.1877 0.8331 0.0409
2 8 —0.0235 0.9493 0.0174
2 9 —0.4428 1.1875 -0.0295
2 10 —0.8864 14141 -0.0732
2 11 -1.4030 1.5857 -0.1089
2 12 -1.9956 1.6201 -0.1183
2 13 —0.7538 1.6536 —0.1267
3 1 0.5067 0.6017 0.1109
3 2 0.4278 0.6516 0.0958
3 3 0.3435 0.6987 0.0808
3 4 0.2428 0.7409 0.0719
3 5 0.0126 0.8982 0.0423
3 6 0.0143 0.8737 0.0467
3 7 0.0288 0.8173 0.0580
3 8 —0.1155 0.8743 0.0468
3 9 -0.5532 1.1078 0.0039
3 10 -1.0691 1.3805 —0.0473
3 11 -1.7091 1.6432 -0.1002
3 12 -2.3453 1.7034 -0.1142
3 13 -1.1494 1.7589  -0.1254
h, -2.4925 1.9526 -0.1032

—0.4619 0.4759 1.1347  -0.1060
0.1994 0.2841 0.7910 0.0884
0.1787 0.1707 0.8607 0.0700
0.1708 0.0446 0.9364 0.0493

0.1749 -0.1224 1.0213 0.0344
0.1488 -0.2374 1.1142 0.0124
0.1403 -0.1876 1.0643 0.0195
0.1168 -0.0841 0.9652 0.0346
0.0480 -0.1229 1.0086 0.0131
-0.0615 -0.2607 1.1011  -0.0204
-0.1828 —0.3887 1.1999 0.0609
—-0.3256 -0.5392 1.2282  -0.9572
—0.4099 -0.9093 1.1682  -0.1020

—0.4619 0.4759 1.1347  -0.1060
0.1306 0.1946 0.7725 0.0953
0.1151 0.1614 0.7915 0.0855
0.1101 0.0917 0.8330 0.0703

0.1177 —0.0278 0.8826 0.0615
0.0947 -0.2022 1.0126 0.0341
0.0769 —0.1552 0.9672 0.0398
0.0496 -0.0720 0.8776 0.0537
-0.0269 -0.0176 0.8410 0.0491
-0.1509 -0.1225 0.0925 0.0143
-0.2735 -0.3213 1.0734  -0.0357
-0.4129 —0.6097 1.1977  -0.0877

—0.4931 -1.0408 11712 -0.0999
—0.5385 0.2800 1.1645  -0.1049
-1.2689 0.8541 0.5506  -0.0563
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Fig. 3.3. Effect of tree size (s = 1.75, 2.70, 3.22) on the expected value of the stem curve set. A = stem curve with bark,

B = bark curve, C = diameter increment curve and D

= basal area increment (I) curve. Horizontal lines indicate

crown height. Heights are divided by the arithmetic tree size S = exp(s), as are also the diameters in subfigure A.

The model with average size (3.1.3) is used.

model (3.1.3). The average size has been as-
sumed to be equal to the tree size. The sizes 1.75
and 3.22 correspond to the minimum and maxi-
mum values in the primary data, and the size
2.70 is near the mean value. Trees of average
size are less thick than small and large trees. The
crown height of small trees is relatively lower
than that of larger trees. Thickness of the bark
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increases with increasing tree size. The diameter
increment increases slowly below the crown
height from low to high, except in the area where
butt swellings are formed. Above the crown
height, the diameter increment increases rapidly
to the top. The absolute diameter increment is
greatest in average sized trees. In extremely large
trees, the bark and the increment curves fluctuate

Ojansuu, R.
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Fig. 3.4. Effect of relative size on the expected value of the stem curve set. The average size is 2.7 and the size is 2.0, 2.7
or 3.4. A = stem curve with bark, B = bark curve, C = diameter increment curve and D = basal area increment (I;)
curve. The horizontal lines indicate crown height. The model with average size (3.1.3) is used.

irregularly. This is easy to understand, because
each point of those curves is a difference be-
tween predictions of two independently estimat-
ed polynomial regression models of the second
order.

The prediction of basal area increment is con-
sistent with the pipe model theory (Shinozaki et
al. 1964), excluding the butt swelling area and
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the irregular fluctuations of extreme large trees
(Fig 3.3.D). According to the theory, the foliar
dry matter of a tree is proportional to the cross-
sectional area of the active pipes, the water con-
duction tissue. Over a longer period the vertical
distribution of the formation of new pipes should
be balanced with the formation of the new dry
matter of the leaves. This theory presumes con-
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Fig. 3.5. Increment predictions of models 3.1.3 and 3.1.5 at the knot angles for different tree sizes in logarithmic scale
determined as 1) the expectation of the increment curve and 2) the first derivative of the model with respect to size.
The predictions are scaled so that the sum of squared increments at different knot angles is 1.

stant basal area growth below crown height.
Growth in the basal area should increase from
top to bottom in proportion to the formation of
new leaf biomass.

Fig. 3.4 illustrates trees with different relative
sizes in the same stand. Big trees are relatively
thicker than small ones. The crown height is
nearly constant for all trees; it is lower only for
very small trees. The diameter and basal area
increments increase as relative size increases.

Because of the structure of the stem curve set
model, it is possible to check the consistency of
the model with regard to the change in stem
form. The change in stem form can be predicted
independently in two ways from the fixed part of
the stem curve set model as function of tree size:
1) as the expectation of the increment curve (the
expectation method), and 2) as the first deriva-
tive of the stem curve without bark with respect
to the size, multiplied by the size increment (the
derivative method). The first derivatives for both
models with average size (3.1.3) and without
average size (3.1.5) have the same form:

% =a, +2a,5, (3.3.2)

when it is assumed that § = s for the model with
average size.
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If the stem curve set model is consistent, the
predictions made by the expectation and the de-
rivative methods are identical for stem form
change. The consistency of the model with aver-
age size is sufficient for trees with a size equal to
the average size (2.7) in the primary data (Fig.
3.5). For small trees, the derivative method gives
a larger height increment in relation to diameter
increment than the expectation method does, and
for big trees the opposite is true.

The model without average size is inconsist-
ent. Compared to the expectation method, the
derivative method leads to radical underprediction
of height increment. This is caused by the differ-
ent stem forms of the big and small trees in a
stand. The big trees are relatively shorter than
the small trees. The relative size of the biggest
trees in the data set used for parameter estima-
tion is always big and relative size of the small-
est trees is always small. In other words, tree size
and the average tree size are highly correlated (R
=.79). For this reason the model without average
size has a built in property, that small trees are
always assumed also to be relatively small and
big trees relatively big. The regression line of the
model without average size does not follow a
particular tree but moves from a relatively small
tree to relatively big tree when the tree size is
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Table 3.2. Estimated between-stand and within-stand standard deviations and correlations for the model 3.1.3. On the
diagonal are the standard deviations*100. Only three knot angles are shown. g is index of the elementary stem

curve and u is the knot angle.

Between stands

g u With bark (t) Without bark (t) Without bark (1—5)0
3° 31 90° 3 310 90° 3° 31° 90 h.

1 3 3.109

31° -.829 1.349

90° -943 645 7.181
2 3° 755 =705 -764 4.205

31° -.623 -800 421 -409 1.655

90° -.943 645 1.000 -.764 421 7.181
3 3 695 -.628 -.707 812 =229 -707 4.097

31° -430 548 336 -.565  .687 .336 —-.048 3.869

90° -874 644 916 -858 457 916 -624 606 8.635

h. -694 610 772 -869 406 772 -.666  .566 .831 27.54

Within stands
g u With bark (t) Without bark (t) Without bark (t—S)o
3° 31° 90° 3° 31° 90° 3° 31° 90 h,

1 3 3.249

31° -.534 2.583

90° -729 332 5.615
2 3° 816 -385 -.596 3.902

31° -474 -957 271 =313  2.750

90° =729 -332 1.000 -.596 271 5.615
3 3° 732 -402 -539 896 -339 -.539 4.924

31° =355 702 212 =216 772 212 -066 3.108

90° -697 308 951 -552 248 951 476 250 2574

h, =365 220 463 -294 196 463 -185 290 933 16.47

increasing. This does not happen with the expec-
tation method, because the relative tree size is
the same at the beginning and end of the incre-
ment period.

The small above-mentioned inconsistency of
the model with average size for small and big
trees is also associated with the relative size of a
tree in a stand. The model with average size
assumes that the effect of the relative size is
independent of the average size of the stand. The
inconsistency indicates that relative size has a
different effect in stand, where the average size
is small than in the stand where the average size
is big.
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3.4 Random part of the stem curve set
model

Because of the stability of the tree stem form,
diameters near each other involve mainly paral-
lel information about tree form. When the dis-
tance between two diameters increases, the par-
allelism decreses. The fixed part of the model
eliminates the tree size dependent variation of
the diameters. The random stand effects (v) as
well as the random tree effects (e) are still mutu-
ally highly correlated, but after adjusting for the
size effect, the highest absolute correlations oc-
cur for diameters at opposite parts of the stem
(Table 3.2).
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In the application of the stem curve set model,
the covariance matrix of stand effects cov(v) has
to be inverted (equation 3.2.2, matrix D). Be-
cause of the high dimension of the stem curve set
model (40x40) and the strongly correlated ele-
ments, the inverse of cov(v) is algorithmically
not positive definite when subroutines of the
IMSL library are used. If the covariance matrix
of stand effects is organized suitably, it is possi-
ble to decrease dimensions of the matrix using
principal components and also interpret the re-
sult with regard to the stem form (Lappi 1986)
and the stem form changes.

Denote the covariance matrices of the random
stand effects at the knot angles by B and the
covariance matrices of the random tree effects
by W. They are partitioned into the submatrices
according to the elementary stem curves:

Bll BIZ BIJ
B- BZl B22 BZJ
BSI BSZ BJJ
(3.4.1)
wll wlZ wll
w = le wZZ w23
w31 wJZ w33
where:
B,;,W,, = covariance matrices of the stem curve with

bark in the year t

B,,,W,, = covariance matrices of the stem curve with-
out bark in the year t

Bs;, W33 = covariance matrices of the stem curve with-
out bark in the year t-5

By, Wy, = covariance matrices between elementary stem
curves g and g, g = 1,2,3, g' = 1,2,3, when
g=g.

The submatrices B,, and W,,, g = 1, 2, 3, are
symmetrical with diagonals var(v,) and var(e,).
The principal components of each submatrix
are not correlated and they can be interpreted as
in the case of the stem curve model (Lappi 1986).
The principal components of the different sub-
matrices are, however, highly mutually correlat-
ed (Table 3.3). Since the principal components
of each submatrix describe only one particular
elementary stem curve, it is difficult to find any
interpretation for the bark and the increment
curves. To simplify the model for interpretation
and to obtain more accurate inversion of the
stand effect matrix, owing to lower correlations
between the principal components, the stand and
tree effects were expressed by the stem curve
with bark v,, the bark curve vg = (v,-v,) and the
increment curve v, = (v,—v;) instead of the ele-
mentary stem curves. The stem curve set model,
where stand effects are expressed using bark and
increment curves, is called the difference curve

Table 3.3. Estimated variances*100 of the principal components (k) of the stand effects (on diagonal) and correlations
between the principal components of the elementary stem curves (g =1, 2 and 3) for model 3.1.3.

Elementary stem curve (g)
2

g k 1 3
Principal component (k)
1 2 3 4 1 2 3 4 1 2 3 4 h,
1 1 1.77
2 0.09
3 0.04
4 0.02
2 1 90 -26 03 -25 174
2 40 37 21 51 0.20
3 -.01 55 .08 -53 0.10
4 12 21 -82 -16 0.05
3 1 93 -22 -06 -22 98 A2 03 -01 261
2 =07 .14 14 -03 -12 21 42 =20 0.84
3 -23 .04 18 =71 .06 -.60 68 =20 0.16
4 -08 -43 .82 A7 .02 07 -33 -84 0.06
h, -.81 27 .04 31 -92 02 -06 -03 -90 03 -13 .02 7.58
22
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Table 3.4. Estimates of the eigenvectors and the variances of the principal components for the stem curve with bark, the
bark curve and the increment curve for models 3.1.3 and 3.1.5. u = the knot angle, s? = the variance estimate of a
principal component*100, ¥ = cumulative percentages of the total variance absorbed by the principal components.

u Stem curve with bark
1 2 3
1 0.200 0.543 -0.235
2 0.170 0.354 0.080
3 0.189 0.354 0.334
4 0.226 0.132 0.289
5 0.208 -0.175 0.196
6 0.229 -0.388 0.144
7 0.176 —0.417 -0.086
8 0.087 -0.325 -0.290
9 -0.074 -0.110 -0.376
10 -0.226 0.064 -0.382
11 -0383 0.126 -0.211
12 -0.474 0.052 0.098
13 -0.531 -0.122 0.509
s? 1.774  0.090 0.041
> 0916 0.963 0.984
u Stem curve with bark
1
1 0.226 0.521 -0.253
2 0.197 0.361 0.073
3 0209 0.236 0.327
4 0.227 0.112 0.275
5 0.196 —0.189 0.195
6 0.208 -0.389 0.124
7 0.156 —0.423 —0.071
8 0.067 -0.336 -0.278
9  -0.080 -0.110 -0.369
10 -0.226 0.063 —-0.382
11 -0.383 0.130 -0.217
12 -0.472 0.075 0.098
13 —0.527 -0.068 0.522
s? 3.182 0.100 0.041
b 0.949 0.978 0.991

4

—0.632
0.015
0.452
0.205
0.071

-0.103

-0.189

-0.052
0.109
0.265
0.259

—0.001

—0.388

0.024
0.997

4

-0.630
0.015
0.453
0.211
0.075

-0.103

-0.193

-0.056
0.103
0.262
0.260

—0.001

—0.388

0.024
0.998

Between stands, model 3.1.3

1

0.578
0.501
0.426
0.357
0.249
0.156
0.108
0.075
0.044
0.021
-0.008
—0.013

0.572
0.895

Bark curve Increment curve
2 3 4 | 2 3 4
0.239 0.551 0.148 -0.258 0.400 0333 0.326
0.137 0.180 —0.089 -0.234 0342 0220 0.213
0.034 -0.370 —0.140 -0.226 0.262 0.065 0.059
—0.029 -0.579 —0.363 -0.248 0.232 -0.027 0.038
-0.182 -0.195 0.225 -0.238 0.209 -0.025 -0.066
—0.372 -0.268 0.715 -0.252 0.177 -0.097 -0.239
-0.458 0.062 0.057 -0.264 0.097 -0.101 -0.149
—0.492 0.227 -0.287 -0.281 0.067 -0.106 —0.205
-0.397 0.172 -0.168 -0.301-0.047 -0.204 —-0.408
-0.306 0.169 -0.212 —0.309-0.124 —0.353 -0.216
—0.195 0.057 -0.191 -0.316-0.297 -0.352 0.471
-0.101 0.009 -0.078 —0.329-0.415 -0.022 0.449
—0.321-0.484 0.717 -0.284
0.053 0.009 0.003 0.968 0.079 0.013 0.004
0979 0.993 0.998 0.907 0.981 0.993 0.997

Between stands, model 3.1.5

1

0.579
0.501
0.427
0.357
0.248
0.156
0.106
0.072
0.041
0.019
-0.009
-0.014

0.572
0.891

Bark curve Increment curve
2 3 4 1 2 3 4
0.230 0.542 0.187 -0.258 0.400 0331 0.324
0.126 0.197 -0.101 -0.235 0.342 0218 0.214
0.040 -0.366 -0.116 -0.227 0.262  0.064 0.062
—-0.026 -0.557 -0.400 -0.245 0.233 -0.023 0.040
-0.183 -0.191 0.116 -0.234 0.210 -0.022 -0.067
—0.350 -0.260 0.755 -0.250 0.178 -0.097 -0.240
—0.458 0.047 0.101 -0.263 0.097 -0.100 —0.150
-0.497 0.221 -0.196 -0.281 0.067 -0.106 —0.206
-0.397 0.177 -0.154 —0.303-0.047 -0.205 -0.408
-0.305 0.181 -0.258 -0.311-0.123 -0.354 -0.217
-0.205 0.068 -0.228 -0.318-0.297 -0.352 0.470
—0.100 0.008 —0.085 -0.329-0.414 -0.021 0.450
-0.321-0.483 0.718 -0.283
0.055 0.009 0.003 1.076 0.079 0.013 0.004
0978 0.992 0.998 0916 0.983 0.994 0.997

Continued on page 24.

set model. Denote the covariance matrices of
random stand and tree effects for the difference

curve set model by

" B, By By,
B=|Bs B By
By Bp By

wll wlB wll
wll wlB w[l

\;V- [WBI wBB wBl
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(342)

where

B,;, W;; = covariance matrices of the stem curve with
bark

Bgs, W = covariance matrices of the bark curve

B,;, W,; = covariance matrices of the increment curve

B, W, = covariance matrices between elementary

stem curves g and g', g = 1,BJI, g'= 1,B,1,
when g =g'.

The submatrices By, and Wy, g = 1, B, I, are
symmetrical with diagonals var(v,) and var(e,).
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Table 3.4 continued.

Within stands, models 3.1.3 and 3.1.5

u Stem curve with bark Bark curve Increment curve
1 2 3 4 1 2 3 4 1 2 3 4

1 0.294 0.691 -0.427 -0.189 0.602  0.649 —0.166 —0.121 —0.384-0.300 0.715 0.054
2 0275 0.323 0.145 0.217 0.518 0.111 0.270 0.175 —0.339-0.234  0.269 0.048
3 0.283 -0.023 0.546 0.437 0.412 -0.431 0.539 0.206 —0.298-0.154 -0.249 0.048
4 0.243 -0.133 0.225 0.023 0.313 -0.492 —0.071 —0.487 —0.299-0.108 -0.437 0.074
5 0.180 -0.190 0.080 —0.389 0.248 -0.256 —0.564 —0.319 -0.298-0.130 -0.139 0.137
6 0.157 -0.306 0.021 —0.443 0.171 -0.245 —0.343 0.422 -0.299-0.089 -0.187 0.081
7 0.067 -0.295 -0.195 —0.130 0.090 -0.084 —0.298 0.345 -0.306-0.061 -0.228 0.092
8  -0.022 -0.267 -0.295 0.084 0.047 —0.060 —0.197 0.344 -0.280 0.027 -0.118 -0.028
9 -0.147 -0.179 -0.334 0.319 0.022 -0.051 —0.140 0.313 -0.262 0.196 -0.076 —0.302

10 -0.252 -0.064 -0.232 0.339 0.015 -0.021
11 -0.366 0.082 0.000 0.135 0.002 -0.002
12 0434 0.164 0.183 -0.088 -0.003  0.002
13 0477 0.205 0.343 -0.335

s? 1.161 0338 0.151 0.074 0.244 0.074
> 0.631 0.815 0.897 0.937 0.597 0.778

-0.122  0.220 -0.242 0.339  0.021 -0.429
-0.060 0.104 -0.218 0.450 0.128 —0.300
0.024 —0.036 -0.166 0.481 0.135 0.158

-0.084 0.451 0.065 0.749

0.034 0.021 0.393 0.067 0.044 0.031
0.862 0.913 0.648 0.759  0.831 0.882

The estimated eigenvectors and principal com-
ponent variances of covariance matrices of ran-
dom stand and tree effects for the stem curve
with bark, the bark curve and the increment curve
are shown in Table 3.4 for models with average
size (3.1.3) and without average size (3.1.5).
Model 3.1.5 obviously has higher between-stand
variation than model 3.1.3. Most of this variation
is in the direction of the first principal compo-
nent of the stand effects for the stem curve with
bark. The average size has only a small effect on
the bark and increment curves. The first four
principal components explain 99.7 % of the total
variation of stand effects at each elementary
curve. The estimated eigenvectors and the vari-
ances of the principal components of the tree
effects are identical for both models. The pro-
portions of variance explained by the first four
principal components for tree effects are 93.7 %,
91.3 % and 88.2 % for the stem curve with bark,
the bark curve and the increment curve, respec-
tively.

The first principal component of the covari-
ance matrix of the stand effects for the stem
curve with bark describes the slenderness of a
tree (Fig. 3.6) and explains over 90 % of the
between-stand variation in stem form. The crown
height of a thick tree is lower than that of a thin
tree. The eigenvectors of the tree effects are
similar to those of stand effects. These results are
well in line with those of Lappi (1986).

The first principal component of the covari-
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ance matrix of the stand effects for the bark
curve contains the variation in bark thickness at
the lower part of the stem, explaining nearly
90 % of the total between-stand variation. This
would be typical for Scots pine, because the type
of bark differs along the stem (Ostlin 1963). Up
to a certain stem height the bark is very rough,
then changes rather abruptly into the relatively
fine “mirror bark”. The first principal compo-
nents explain relatively more of the between-
stand variation than the within-stand variation of
bark thickness.

The first principal component of the covari-
ance matrix of the random stand effects for the
increment curve explains 90 % of the between-
stand variation and the corresponding principal
component of the tree effects explains 65 % of
the within-stand variation. The first eigenvectors
of stand and tree effects can both be called the
“increment rate” component, because all elements
of the eigenvectors have the same sign. Still, the
eigenvectors have different shapes (Fig 3.7). The
height increment variation within stands is rela-
tively smaller than between stands. This is a
consequence of the competition for light in a
stand. Trees compete by height growth, which
leads to greater relative variation in tree diame-
ters than in tree heights (e.g. Lonnroth 1925).
The height increment varies between stands par-
allel to the diameter increment in relation of the
growth potential of the stands. The second ei-
genvectors of the increment curve for both stand
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1st stand component 2nd stand component 3rd stand component

H, m  Stem curve with bark

5 10 15 20 25 80 5 10 15 20 25 30 5 10 15 20 25 30
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Fig. 3.6. Variation in stem form, bark and increment in the directions of the three first principal components of the

covariance matrix for stand effects. The effects of each principal component are described using elementary stem

curves conditional to tree size and average tree size 2.7 and =two times the standard deviation of the principal

component. In the subfigures for the first principal components, the expected stem curve is also shown (broken
line). The horizontal lines indicate the crown height. The model with average size (3.1.3) is used.

Acta Forestalia Fennica 239 25



Table 3.5. Estimated variances*100 of the between-stand and within-stand principal components (on diagonal) and
correlations between the principal components of the stem curve with bark, bark curve and increment curve (g=1,

B, I) for models 3.1.3 and 3.1.5.

Between stands

Stem curve with bark Bark curve Increment curve h.
Principal component, k
g k 1 2 3 4 1 2 3 4 1 2 3 4
Model 3.1.3
1 1 1.77
2 0.09
3 0.04
4 0.02
B 1 -20 .61 .05 52 057
2 .03 .02 -03 25 0.05
3 =21 -.05 41 A3 0.01
4 32 A1 07 .04 0.0
I 1 -.24 27 =10 31 .50 36 -15 .01 097
2 -24 34 =23 27 32 -09 -06 -13 0.08
3 -12 -01 -14 .05 .07 24 27 =02 0.01
4 -12 04 -01 -10 .06 A5 -14 =26 0.00
h, -.81 27 .04 31 =57 .09 15 =20 .46 26 .25 27 758
Model 3.1.5
1 1 3.18
2 0.10
3 0.04
4 0.02
B 1 -.10 .64 .03 52 057
2 17 05 -03 23 0.05
3 -30 -03 40 .14 0.01
4 49 .09 11 .03 0.0
I 1 -.38 22 =11 30 45 28 -06 18 1.07
2 -19 36 =23 27 31 -10 -04 -14 0.08
3 -11 -03 -13 .04 .06 22 28 01 0.01
4 -.08 00 -00 -11 .07 A5 -12 =27 0.00
h, -.86 26 .03 27 -46 04 24 -39 .54 24 23 24 10.18

and tree effects have the same form as the first
eigenvectors of the stem curve with bark. The
second principal component of the increment
curve can be called the “slenderness change”
component.

The principal components of each elementary
curve are not mutually correlated, but there is a
correlation between the elementary curves (Ta-
ble 3.5). The estimation of the covariance matrix
between the principal components of elementary
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curves of the difference curve set model is pre-
sented in Appendix A2. Although the average
size clearly reduces the between-stand variation,
the correlations between the elementary curves
are quite similar both with and without average
size as an independent variable. The correlations
between the principal components of the ele-
mentary curves of tree effects are quite low.

Later, the term stem curve set model will be
used for the difference curve set model.

Ojansuu, R.

Table 3.5 continued.

Within stands

Stem curve with bark Bark curve Increment curve h.
Principal component, k
g k 1 2 3 4 1 2 3 4 1 2 3 4
Models 3.1.3 and 3.1.5
1 1 1.16
2 34
3 15
4 .07
B 1 -1 -14 =21 =21 24
2 .00 A5 -14  -13 .07
3 07 -07 .04 .05 .03
4 -04 -08 18 15 .02
| 1 17 =02 12 -8 .05 -.02 A1 =07 39
2 A1 -03 -04 -13 .05 13 01 .02 .07
3 .04 -08 18 21 =07 -19 -12 07 .04
4 12 03 -05 -04 -01 .05 06 -12 .03
h, —-.46 .10 .07 03 01 -02 -01 .02 16 -14 .01 -04 214
Increment
0.40 4
0.35 A

0.30 1

0.25

0.20 1

0.10 4 —— Expectation of the increment curve

Fig. 3.7. The first eigenvectors of the estimated tree and
stand effect covariance matrices and the expectation ~ 0-05
of increment curve in logarithmic scale for size 2.7.
The predicted increment curve is scaled so that the

---- First eigenvector between stands
First eigenvector within stands

sum of squared increments at different knot angles is
1. The model with average size (3.1.3) is used. 2
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4 Application of the stem curve set model

4.1 Parameter estimation in the application

The fixed part of the stem curve set model (3.1.3)
predicts the average logarithmic elementary stem
curves as a function of the fixed regressors s
and S. The difference between the average stem
curves of a stand and the population is described
using random stand effects v. For tally trees, the
average stem curve of the stand is used as such.
For sample trees, the stand stem curve is correct-
ed to pass through the measured points if it is
assumed that there are no measurement errors.
The stem curve set can be predicted for all trees
in the stand for any combination of diameter and
height measurements. Prediction with the stem
curve set model can be divided into two phases:
parameter estimation for a stand and stem curve
set prediction for single trees in the stand.

Fixed sizes of the sample trees and the stand
effects are estimated in the application phase.
All measurements of one stand are used simulta-
neously. Estimates of the fixed parameters (ag,
a1, 8, and a,;) of the elementary stem curves at
knot angles and the covariance matrices of stand
effects var(v) and tree effects var(e) are also
known. One-dimensional cubic splines can be
used for the fixed parameters and two-dimen-
sional cubic splines for the covariances to pre-
dict the values at any angle between the knot
angles.

Let d,(u;) denote the j:th measured dimension
of elementary stem curve g at angle u for tree i.
According to equation (3.1.3), the prediction for
measurement ij is

&g(u.,)= ag(ug)+ag(uy)s; +ae(uy)s? @11

+a(uy)(si - 5) + v, (uy)

The unknown fixed parameters are the tree size s
for every sample tree i and the average size of the
stand S, and the unknown random parameters
are the stand effects v,(u;).

There exists a nonlinear constraint for the un-
known size parameters s; and s;%. Because coeffi-
cient a,, of s is small, the constraint is nearly
linear. The linearity has been approximated by
the first order Taylor series (Lappi 1986). The
variance component model for a auxiliary varia-
ble y,(u;) can be written
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Ye(ui) = ay(uy)s; + ve(uy) + e (uy), (4.1.2)

where the fixed sizes s and random stand effects
v are unknown and

Ye(ui)=dg(uj)—am(uy)+agp(u;)s?
—ag(u)(s - %)

a,(u;;) =[2a, (u;)$ +a,(uy)]

and $ is the preliminary estimate of tree size.
The unknown parameters are estimated using
the mixed linear model technique. Denote the
sample tree index by i, the number of sample
trees by n, the measurement index by j and the
total number of measurements in the stand by M.
The matrices of the normal equations (3.2.2) are

y = vector of the measured dimensions, expressed as
the auxiliary variable y,(u;), Mx1

matrix of the fixed parameters a (u;) interpolated to
the measured angles u;, Mxn

vector of the sizes s, nx1.

incidence matrix of the random effects v, (u), Mx40.
vector of the random effects v (u), 40x1

= covariance matrix of the stand effects v at the knot
angles: cov(v), 40x40

covariance matrix of the tree effects e,(u,) interpo-
lated to the measured angles u;, MxM

X

n

DT NS
1

=
n

(4.1.3)

The models are written in terms of diameters, but
the interpolations of parameter a,(u;) and ran-
dom stand and tree effects are based on the cor-
responding ray lengths. Solution of the normal
equations gives estimates for the size vector of
sample trees a' =(5,...,$,) and the stand ef-
fects at the knot angles b' = (¥, (1),...,%(h,)).

In the application phase the dimension of the
random part was reduced by replacing the stand
effects with the first p principal components of
each stem curve of the covariance matrix D. The
first four principal components explained over
99 % of the between-stand variance of the stem
curve with bark, the bark curve and the incre-
ment curve. The stem curve set model can be
considered to consist of three different elementa-
ry stem curve models and the crown height mod-
el. The stand effects v of the elementary stem
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curves for tree i at angle uj; are estimated for each
elementary stem curve as follows:

P
vi(uy) = z(hk(uu )Cik
=

p
va(uy) = Eka(Uu)Clk = ZQM(UU )Cai
=) - (4.1.4)

Vw(U.l) - EQn(U»,)Cu = EQB\(U-,)CBk
-l =l

‘EQu(U.y)Clk

The value of p may differ for different elementa-
ry curves. Here equal values of p have been used
for all curves. The prediction equations for the
elementary stem curves are:

p

1(uj) =a,(uj)si + w(ug)e

yi(uy)=a;(uy) 2‘1\ i )Cix
P

2(uj ) =ax(uy)s; + w(ug)e,

ya(uy) =ax(uy)s zq §)Cu

P
_2qhk(uu)cl§h (4.1.5)

p

s(uj) = as(u)s; u;;)c
ya(uy) =az(u;)s +EQH( i )Ck
‘EQH\(UU)CBk-ﬁq“(u.,)clk
-l -1

Denote stand effects at the knot angles by v," =
[ve(1),...vo(13)], where g = 1,2,3. The vectors of
the principal components for the stem curve with
bark, the bark curve and the increment curve are
¢,” = (cy(1), ..., c,(13)), where g = 1,B,1, and the
corresponding matrices for eigenvectors are Q,.
The row k of Q, is the k:th eigenvector qu =
[qu(1),....qu(13)]. Let ¢ = [¢}, ¢, ¢]"and v = [v,,
vy, vi|". According to the definitions of the bark
and increment curves, ¢ = Qs (vi-v>)and e =Q
(v, — v3). Since ¢ = Qv, the matrix Q can be writ-
ten

. Q, 0 0
Q={Qs -Qs 0 |. (4.1.6)
0 Q -Q

where the submatrices Q, are orthogonal. Now

c=Qv 4.1.7)
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and
y=0 & (4.1.8)

The orthogonality of the submatrices can be used
to calculate Q':

. [Q 0 01" [Qr o 0
Q =(Qs -Qs 0 | =(Qf -Qf 0 |.
0 Q -Q Qf -Qi -Qf
(4.1.9)

In the present application of the stem curve set
model the matrices of the normal equations for
the mixed linear model of the form (3.2.2) are
the following:

y = vector of the measured dimension, expressed as the
auxiliary variables y,(u;), Mx1

X = matrix of the fixed parameters a(u;) interpolated to

the measured angles u;, Mxn

vector of the sizes s;, nx1

Z = interpolated values of the eigenvectors gy at meas-
urement angles u;, g=1, B, I, k=1,...,p, and the
crown height, Mx(3p+1) matrix.

b = vector of the principal components ¢y, g =1, B, I,
k = 1....,p, and the crown height, (3p+1)x1

D = covariance matrix of the principal components of
the stand effects and the crown height for the ele-
mentary stem curves, var(c), (3p+1)x(3p+1).

R = covariance matrix of the random tree effects e (u;),
MxM

(4.1.10)

A more detailed description of the matrices is
given in Appendix B.1.

If there are any measurements from some of
the elementary stem curves, the stand effect ma-
trix can be partitioned into measured and un-
measured parts. Denote the principal components
of the stand effects of the measured elementary
stem curves by ¢, and those of the unmeasured
elementary stem curves by ¢,. Now B is parti-
tioned as follows:

.B p [Bll BIZ ]

B. Bo (4.1.11)

where B, = var(c,), B,, = var(e,) and B, =
cov(c,, ¢,). Let

B - [g': g'] @.1.12)
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Then the normal equations can be written by
partitioning the random part in the measured and
the unmeasured elements as follows:

X'R'X  X'R-Z, 01[a] [X'Ry
ZIR'X ZIR'Z,+B" B"||¢,|=|ZIRy
0 B B> || ¢, 0

(4.1.13)

The zero matrices in equation 4.1.13 result from
the zero Z, matrices. The simultaneous estima-
tion according equation 4.1.13 is simpler to carry
out in practical applications than the separate
estimation of measured and unmeasured random
effects (Lappi 1991), because it is not necessary
to partition the random part for each measure-
ment combination of sample trees (Appendix
B.2).

4.2 Prediction of the stem curve set and
volume

When the parameters §;,i = 1,...,n and Co, Where
g=123andk = 1,...,p have been estimated, the
stem curve set is predicted in two phases: 1) The
values for the auxiliary variable y at the knot
angles are predicted and 2) the diameters at knot
angles are calculated and diameters between the
knot angles are interpolated.

The estimate of y (Equation 4.1.2) consists of
three additive components: 1) the conditional
population mean, 2) the stand effect expressed
by the principal components of the stand effect
covariance matrix and 3) the tree effects. The
estimated population mean at the angle u for tree
iis

a,(u)s, (4.2.1)
The estimates of stand effects of elementary stem
curves vy(u) are linear combinations of the prin-

cipal component estimates ¢, and eigenvectors
3
gy

Vl(uu)" 2qlk(uu)élk
=l
V;(u,,)= 2‘]1&(“.,)61\ = EQM(U-, )Cai

. (4.2.2)
VJ(UU) = ﬁ‘hk(uu, )i = ZQm(Uu )Ca

_quk(uu)élk
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The predictor for the auxiliary variable y for tree
iatangle u of elementary stem curve g is

Ye(u)=Sa,(u)+v,(u)+ wIW;'F, (4.2.3)

The last term is the estimated tree effect where
w, is the covariances of the tree effects between
the measured angles and the knot angle u, and W,
is the tree effect covariance matrix of the meas-
ured angles. w, and W, are interpolated with
cubic splines from the tree effect covariance ma-
trix. ¥; is the vector of the residual estimates

ri=y -Sa -Z¢, (4.2.4)

where y; is a vector of the measurements of tree i,
a;, is a vector of the values of variable a,(u;)
defined for Equation (4.1.2) corresponding to
the measurement angles and Z, is the matrix of
the interpolated values of the eigenvectors g, at
measurement angles for tree i.

For each tally tree the size estimator is

So=ag (o) [ye(uy)=vy(u)] (4.2.5)

and the predictor for the auxiliary variable y at
angle u is

Ye(ug) =a,(u)s, +V,(u) (4.2.6)

The unbiased transformation from the logarith-
mic scale to the arithmetic scale is based on the
assumption of normality in the error term (Lappi
1986, p. 26). The continuous stem curve in the
arithmetic scale is interpolated from the diame-
ters at knot angles in height coordinates. Diame-
ter predictions are unbiased at all angles but are
biased at a given height, e.g. breast height. How-
ever, this bias is small and has been omitted here.

The variance of the estimate of the logarithmic
volume can be approximated using the close
statistical relationship between tree size and vol-
ume with bark (Lappi 1986). The approximated
variance of the volume predictor is estimated
with the first order Taylor series:

var[In(V) = In(V)] = var[(V = V) / E(V)] = b° var(3).
4.2.7)

where the estimate for coefficient b is from the
regression V = aS", where S = exp(s). In the case
of volume with bark R* is 0.999. Due to the very
low correlations between the size and the bark
volume or the volume increment (R* = (.226 or
R? = 0.156 ), this method is not used for bark
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Fig. 4.1. Tally tree predictions as a function of the number of identical sample trees, when tree height (H), (i‘oqbllie ba.r:
thickness (B, ;) and diameter increment (1, 5) are mcasured'from the sample trees. Dlame.ter. at breast height wnl
bark is 17.8 cm for all tally and sample trees. Solid lines with n = 0 are the tally tree predictions, when no sample
trees are measured on the plot. Broken lines are the san_lple tree prefhctlons fqr trees wlgere H, B, and I, ; are
population means plus two times their standard deviations, respectively. Solid lines with n > 0 are tally (:ieel
predictions with 1 or 5 identical sample trees on the plot. The horizontal lines indicate the crown height. The mode!

with average size (3.1.3) is used.

H, m Stem curve with bark

Bark curve

Increment curve

5 10 15 20 25 1 2

D, cm

3 4 5 1 2 3 4 5
B, cm Ip, cm

i ictions when the values of the measured sample tree variables change. Diameter at breast
e t::izéh??;f,t:el);;ieig rle7d.8 cm for all trees. The values of the sample tree var'iat?les are for stem curve prediction l;;
(11.0,15.2 0or 19.4 m), B, 3 = 1.5 cm and I, 3 = 1.3 cm, for bark curve prediction H =152 m, B3 = (0.5,51.5 or_n;
cm)and I, 5 = 1.3 cm and for increment curve prediction H = 15.2 m, B3= 1_.5 cm andI,;=(0.5,1.50r2. clm). The
solid lines indicate one sample tree on the plot and the broken lines five identical sample trees on the plot. The
horizontal lines indicate the crown height. The model with average size (3.1.3) is used.

volume and volume increment. The method is
also unsatisfactory for volumes without bark since
size with bark is not very closely related to vol-
ume without bark in the years t (R* = 0.996) or
t=5 (R? = 0.985). )

The variance of the volume prediction can be
estimated using diameter and height predictions
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and their estimated covariances (Kilkki & Var-
mola 1981). The volume variance estimation is,
however, not included in this study.

Predictions of the stem curve set are illustrated
here using a basic tree with variations in the
sample tree measurements. The basic tree is de-
termined using the means of some sample tree
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variables in the primary data. The mean diameter
at breast height with bark is 17.8 cm. The means
of tree height (H), double bark thickness at breast
height (B, ;) and diameter increment at breast
height (I, ;) and their standard deviations in the
diameter class 16.8-18.8 cm are as follows: H =
152m (2.1 m),B;;=15cm (0.5cm)and I, ; =
1.3 cm (0.5 cm). In all examinations, D,; is
assumed to be constant, but H has been varied
for stem curve with bark, B, 5 for bark curve and
I, 5 for increment curve prediction + two times
the standard deviation.

Stand level calibration of the stem curve set is
examined first (Fig. 4.1). The stem curve set of a
tally tree predicted without any sample trees on
the plot is based only on the a priori information
about stem form, bark and increment. The meas-
ured sample trees give stand level information
which is combined with the a priori information.
When the number of measured sample trees in-

creases, the sample tree information becomes
more accurate and carries more weight in the
prediction. The effect of the first sample tree on
the plot is the strongest, and five identical sam-
ple trees gives a stem curve set for the stand,
which nears the measured points of the sample
trees. Stem, bark and increment curves are stable
and do not have noticeably more fluctuations
than the corresponding curves of the basic tree.

Sample tree prediction is examined with one
or five identical sample trees on the plot (Fig.
4.2). Variation in tree height also causes a stable
change in stem form for extreme tree heights.
When only one sample tree is measured on the
plot, the bark and the increment curve predic-
tions for extreme values of bark thickness and
diameter increment give curves with a bend at
the breast height measured. When the number of
sample trees increases, the more accurate stand
information diminishes the bend.

5 Prediction results

5.1 Test criteria

Variance components of the diameters predicted
by the stem curve set model can be derived
analytically, assuming that the model formula-
tion is correct. In the model application the inde-
pendent and the measured variables are not the
same. Tree size is a fixed independent variable in
the model. The model is unbiased in relation to
size, if the fixed part of the model is assumed to
be correct. In the practical applications, the di-
ameters and heights are known instead of the
size. As the size is used as a fixed variable, the
diameter estimates are biased for the measure-
ments. In addition to the statistical properties of
the stem curve set model, there also exist errors
caused by the interpolation of the parameter vec-
tors, eigenvectors and covariance matrices of the
random effects. Empirical tests are needed to
determine whether these sources of error signifi-
cantly influence the reliability of the stem curve
set model.

The prediction error y; - §; is decomposed
into bias (mean), random error in the stand k (b,)
and random error of tree i in stand k (ey;):

Y =Y = mean +by +ey. (5.1.1)
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The studied statistics are bias (mean), standard
deviation between stands s,, standard deviation
within stands s,, total standard deviation s, and
root mean square error RMSE, (standard error)
and also standard error between stands RMSE,,.
Estimation of the reliability statistics has been
carried out using the formulas of Searle (1971, p.
474). The variables studied are the diameters of
the elementary stem curves, the bark curve and
the increment curve as well as stem, bark and
increment volumes (V,, Va, V3, By, Iy). The stem
volumes are volumes above stump height. The
stump height has been determined by the stump
height model (Laasasenaho 1982, equation 81.1),
which has the diameter at breast height and tree
height as independent variables. The minimum
stump height was assumed to be 10 cm. The tests
have been done utilizing the stand structure of
the data. The first four principal components of
the stem curve with bark, the bark curve and the
increment curve were used to estimate the stand
effects (p = 4 in equation 4.1.4).

The applicability of the model depends on its
reliability in the arithmetic scale. The natural
criterion for testing a logarithmic model in arith-
metic scale is the relative error
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e, =(y-y)/E(y) (5.1.2)

which is the first degree Taylor approximation
for the logarithmic error In(y)-In(y). E(y) is
the expected value of y conditional on s and §.
The relative error as defined in equation 5.1.2
measures the reliability of the prediction in rela-
tion to the independent variables of the model. If
the interest is in the reliability in relation to the
measured dimensions, the denominator is the
prediction of y (¥). _

The reliability of the diameter prediction is
studied on the logarithmic and on the arithmetic
scale and the reliability of the bark thickness and
the diameter increment predictions only on the
arithmetic scale. The denominator D is used for
the relative error. The reliability of the stem,
bark and increment volume predictions are stud-
ied empirically using absolute and relative er-
rors. In Table 5.1 some statistics for the relative
errors of the volume predictions are presented
using the real volume V, the predicted volume
Vand the expectation of the volume E(V) as
denominator. The values of E(V) are predicted
by the following allometric equations:

E(V)) = 0.07402 * 2%, R>=.999, RMSE% =3.2
E(V,) = 0.05322 * $*"7, R?=.996, RMSE% =5.7

E(V;) = 0.02812 * $*!% R2=.985, RMSE% =11.7
E(By) = E(V))-E(V>)
E(ly) = E(V2)-E(V3) (5.1.3)

n

The predictions of the bark and increment vol-
umes are clearly biased if V is used as denomina-
tor. V can only be used when size and volume
are closely related. The difference of the esti-
mates of the reliability statistics are small be-
tween V and E(V) as denominators. The use of
E(V) gives slightly smaller estimates for the var-
iance components. In studies of reliability, E(V)
has been used as the denominator.

To obtain complete test material in relation to
the measurements studied, 24 trees higher than 7
m without D, measurement were rejected from
the primary set of data. The final test material for
sample trees consisted of 682 trees. To the tally
tree test material only plots consisting of at least
six trees with complete tree information were
accepted, altogether 68 stands and 467 trees. The
average stem, bark and increment volumes are
near the same for the primary data set and the
sample tree data subset; but for the tally tree data
subset, the averages are higher (Table 5.2).

In tables of model reliability the sample tree
measurements are denoted as follows: diameter
at breast height with bark = D, ;, diameter at six

Table 5.1. Some statistics for the reliability of volume predictions when D, ; and H are known. The real volume V, !he
predicted volume V and the expectation of the volume E(V) have been used as the denominator for the relative

errors. Mean of the volume variable is X in dm?, and the reliability statistics (mean, s, and s,) are given as

percentages. Model 3.1.3 has been used.

Stem (Vg-Vg)/ Vg (Vg-Vg)/ Vg (Vg - Vg)/ E(Vg)
curve x mean Sh Siw mean Sh Sw mean Sh Sw

1 2359 0.23 275 5.58 0.62 2.76 5.55 0.31 2.68 5.42
2 206.9 0.11 4.25 6.38 0.68 4.15 6.28 0.37 4.02 6.16
3 167.2 -0.61 9.82 8.03 0.85 9.07 7.59 0.49 8.91 7.46
B 29.1 —4.34 18.34 13.18 0.28 18.29 11.57 -0.01 17.01 lO.Z7
1 406 -12.87 37.40 25.79 1.33 30.92 19.27 -0.03 27.87 18.50

Table 5.2. Average stem, bark and increment volumes of the primary data set and the test data subsets for sample trees

and tally trees.

Material n Vi Vs

Primary data set 706 237.7 2085
Sample tree data subset 682 2359 2069
Tally tree data subset 467 267.2 2346

1679 29.2 406
166.2  29.1 406
189.6 327 450
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Table 5.3. Reliability of the diameter, bark thickness and diameter increment predictions for sample
trees. The measured dimensions are D, ; and H. The logarithmic statistics are multiplied by 100
and the arithmetic statistics are in cm, except the height (u = 13) and the crown height (h,), which
are in m. RMSE% is the relative standard error given as percentages. Model 3.1.3 has been used.

Stem curve with bark

Logarithmic scale

u mean Sh Sw RMSE
1 045 252 581 6.35
2 040 159 373 4.07
3 037 143 326 358
4 038 1.07 210 239
5 031 056 176 1.87
6 029 1.02 235 258
7 028 141 259 296
8 026 149 292 328
9 022 155 312 349

10 0.14 176 297 345
11 007 175 242 298
12 0.03 1.09 154 1.89
13 0.00 0.00 0.00 0.00

h, -0.07 17.50 14.72 22.82

Bark curve, arithmetic scale

[

mean S Sw RMSE RMSE%

0.01 09 070 1.19 37.55
0.02 081 052 096 34.80
0.02 063 048 0.79 35.12
001 050 037 062 31.07
0.00 032 030 044 2861
000 024 026 035 29.88
000 022 018 029 2922
0.00 023 016 027 31.65
0.00 020 014 024 31.82
10 000 0.8 0.14 023 3146
11 0.00 015 0.2 0.19 3403
12 0.00 010 0.10 0.14 4434

R =le e R R o S

Arithmetic scale

mean S Sw RMSE RMSE%

014 060 149 161 7.01
008 029 078 084 3.9
007 025 061 066 343
006 016 034 038 209
005 013 032 035 199
004 022 040 046 275
004 026 042 050 3.14
004 026 043 050 347
004 023 039 046 3.60
002 021 032 038 351
001 015 019 024 308
000 005 007 008 197
000 000 000 000 000

010 123 091 153 2049

Increment curve, arithmetic scale

mean Sb Sw RMSE RMSE%

0.00 059 060 084 4647
0.00 051 045 0.68 43.94
000 044 039 059 4324
0.00 046 039 0.60 4507
000 042 035 055 4214
0.00 044 035 056 4282
0.00 045 037 059 4583
0.00 049 037 061 40.79
0.00 058 041 0.70 41.01
000 068 045 0.81 4025
-0.02 084 050 097 30.56
-0.04 102 048 1.12 37.42
-0.02 050 043 066 44.36

meter height with bark = Dy, tree height = H,
crown height = H,, double bark thickness at breast
height = B, ;, diameter increment at breast height
without bark in the last five years = I,, and
height increment in the last five years = Iy,.

5.2 Sample trees

The reliability of the predictions of diameter
with bark, bark thickness and diameter incre-
ment for sample trees was studied as a function
of the knot angles (Tables 5.3 and 5.4). Two
different measurement combinations of the sam-
ple trees were used: 1) diameter at breast height
with bark (D, ;) and tree height (H) or 2) D, ,,
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double bark thickness at breast height (B, 3), di-
ameter increment at breast height (I,3) and H.
The relative standard errors are also given in the
arithmetic scale.

Predictions of the bark thickness and the diam-
eter increment at knot angles include the diame-
ter difference at fixed height (E, in Fig. 5.1) and
a component caused by the difference between
heights at the knot angle (E, or E’,). The real
difference between the elementary stem curves
(E=E,+E,orE=E’|+E,) depends on the knot
angle. In studies of the reliability of the bark
thickness and the diameter increment at knot
angles, the elementary stem curves were assumed
to be linear and parallel in the neighborhood of
the knot angles. The difference between the di-
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Table 5.4. Reliability of the diameter, bark thickness and diameter increment predictions for sample
trees. The measured dimensions are D, 5, B, 5, I; ; and H. The logarithmic statistics are mulllp!led
by 100 and the arithmetic statistics are in cm, except the height (u = 13) and the crown height
(h,), which are in m. RMSE% is the relative standard error as percentages. Model 3.1.3 has been

used.
Stem curve with bark
Logarithmic scale Arithmetic scale

u mean Sh Sw RMSE mean Sh Sw RMSE RMSE%

E 239 573 6.22 013 058 147 159 6.90
; ggg 136 3.66 392 008 026 077 082 387
3 0.31 1.16 322 343 006 021 060 0.64 329
4 031 082 207 225 005 012 034 036 196
5 0.34 043 1.73 1.82 0.06 0.08 032 033 1.88
6 037 044 232 239 006 012 039 041 246
7 036 092 254 272 005 017 041 045 287
8 037 131 285 3.16 006 023 042 048 333
9 033 153 306 344 005 023 039 045 356
10 0.25 1.70 2.94 3.40 0.04 0.21 0.31 0.38 3.54
11 0.15 1.61 241 290 002 013 019 023 298
12 008 097 154 182 001 005 007 008 185
13 0.00 0.00 0.00 0.00 000 000 0.00 000 0.00
h, 0.36 11.81 1424 18.47 -0.04 0.82 0.86 1.19 16.24

Bark curve, arithmetic scale Increment curve, arithmetic scale

u mean Sh Sw RMSE RMSE% mean S Sw RMSE RMSE%
1 006 034 063 0.72 2280 002 0.14 042 045 2501
2 007 028 045 053 19.15 0.02 0.08 027 028 18.09
3 006 020 040 045 1993 002 007 022 023 17.00
4 006 0.14 025 029 1456 002 008 020 021 1580
5 004 006 022 023 1492 002 001 017 017 13.10
6 002 0.13 023 026 2201 002 005 017 018 13.79
7 001 017 018 025 2545 001 006 021 022 1724
8 001 019 016 024 2772 002 010 022 024 1594
9 001 017 014 022 28.69 002 018 029 034 19.78
10 000 0.15 014 021 2848 001 025 034 043 2126
11 000 013 012 0.18 31.90 000 013 012 018 2229
12 0.00 0.09 010 0.13 4147 -0.02 053 042 067 2234
13 -0.02 030 023 037 2487

ameters at the same height is E = E, + E,, where
E, is the difference between the diameters at the

same angle and E, is the component caused by

the height difference. Now E, = E,tan(u)/tan(w) E, E,
and E = E,(1+tan(u)/tan(w)). Denote f'= \
(1+tan(u)/tan(w)). Now E=E, f'. A sa}isfactory
approximation for angle w can be derived from
the stem curve with bark as function of angle u
since the stem form variation in the direction of u w

tree size is small. The function f'(u) estimated E, E
by Lappi (1986) was used here.
When only D, ; and H are measured, the stand-

Fig. 5.1. Difference in diameter between two el tary 4
stem curves at a given height. Explanation in the text.
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ard error of the prediction of diameter with bark
is largest at the stem base. The within-stand stand-
ard deviation is larger than the between-stand
standard deviation at each angle. The measure-
ments of B, ; and I, ; reduce slightly the standard
error of the predicted diameters with bark. The
reason for this is that stem form correlates weak-
ly with bark thickness and the increment rate
(Table 3.5).

In the prediction of bark thickness, when only
D, ; and H are measured, the absolute standard
error is largest at the stem base and decreases
toward the top. The relative error is smallest in
the middle of the stem and increases toward the
base and the top. The between-stand and within-
stand standard deviations are quite equal. The
measurement of B, ; clearly reduces the standard
deviation between stands at stem base and mid-
dle, but the reducing effect diminishes near the
top. The B,; measurement reduces the within-
stand standard deviation only near breast height.

If only D, ; and H are measured, the relative
standard error of the predicted diameter incre-
ment varies from 30 % to 47 % as a function of
the knot angle. The proportion of between-stand
variation increases from the stem base to the top.
The small within-stand variation in height incre-
ment was also clear in the results of the principal
component analysis of the increment curve (Fig.
3.7). The measurement of I, ; reduces the stand-
ard error to half. The between-stand standard
deviation clearly decreases more than the with-
in-stand standard deviation does. Measurement
of I, ; reduces the relative standard error of the
height increment from 44 % to 25 %.

The random variation between stands is clear-
ly larger in the model without average size (Equa-
tion 3.1.5) than in the model with average size
(Equation 3.1.3). If D, ; and H are measured, the
standard errors of the predictions for the diame-
ters with bark are equally large in both models.
This can be reasoned on the basis of the covari-
ance structure of the random stand and tree ef-
fects of the stem curve with bark. The higher
between-stand variation of the model without
average size is mainly in the direction of the first
principal components of the stem curve with
bark. The measurements of D, and H fix the
first principal components of the stem curve with
bark very effectively and cover the explanatory
effect of the average size.

If only D, ; and H are measured, the standard
errors of bark thickness and diameter increment
predictions of both models are equal in size. If
B,; and I, ; are also measured, the prediction of
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the model 3.1.5 has larger standard error for the
bark thickness at the upper part of the stem than
does the corresponding prediction of model 3.1.3.
For increment predictions, no difference was
found between the models.

When at least D, ; and H are measured, the
standard errors of the predictions for stem, bark
and increment volume are similar for models
3.1.3 and 3.1.5. Reliability of the volume
predictions for sample trees is studied here using
model 3.1.3. The residuals are examined in Fig.
5.2 on the arithmetic scale with respect to the
independent variable size S = exp(s), the meas-
ured diameter at breast height D, ; and the pre-
dictions for stem volume with bark V,, bark
volume By, and volume increment Iy . The
bias with respect to the measured dimension (D)
can be find as a downwards concave delineator
of the residual means of the predictions for vol-
ume with bark. The bark volume and the volume
increment predictions seem to be unbiased with
respect to S and D, ; because they are the differ-
ences between two volume predictions with the
same source of bias. All the predictions are unbi-
ased with respect to the predicted volume, and
the standard errors seem to be proportional to the
predictions.

All additional measurements from the stem
curve with bark besides D, ; and H reduce the
standard error of the prediction of stem volume
with bark (Tables 5.5 and 5.6). The crown height
measurement has no or only a small effect on the
standard error of the prediction of stem volume
with bark, when at least D, ; and H are measured.
This result is consistent with those of Lappi (1986)
and Korhonen (1991), although the standard er-
rors here are smaller because the data are more
homogeneous. The B,; and I,; measurements
does not affect the reliability of the prediction of
stem volume with bark.

With all measurement combinations from the
stem curve with bark, the standard error of the
bark volume prediction is about 20 %. Measure-
ment of the double bark thickness at breast height
reduces the standard error to 14 %.

The standard error of the volume increment
prediction is about 33 % when the measurements
are made only from the stem curve with bark and
is independent of the measurement combina-
tion. Measurement of the crown height reduces
the standard error between stands from 28 % to
23 % but has only a small effect on the standard
error within stands. The measurement of I, ; re-
duces the total standard error from 33 % to 13 %.
When I, ; is measured, the measurement of the
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Fig. 5.2. Mean and mean + standard deviation of V-V (dm® within groups of 50 trees_(
® group) with respect to arithmetic size S = exp(s), diameter at breast height D;; and predicted volume for
volume with bark, bark volume and volume increment V. The measured dimension is D, ; and the model with

average size (3.1.3) is used.
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Table 5.6. Reliability of the for stem, bark and increment volume predictions with different measure-
ment combinations. Measurements are made from the stem curve with bark and also from bark
and increment. The relative statistics are given as percentages and the absolute statistics as dm?.
Model 3.1.3 has been used. g is the index of the elementary stem curve.

Table 5.5. Reliability of the stem, bark and increment volume predictions with different measurement
combinations and as a function of the logarithmic tree size s. All measurements are made from the
stem curve with bark. The relative statistics are given as percentages and absolute statistics as dm>.
Model 3.1.3 has been used. g is the index of the elementary stem curve.

Measure— Absolute errors Relative errors Measure— Absolute errors Relative errors
ments ments
g mean Sp S RMSE mean Sp Sw RMSE g ean Sb Sw RMSE mean Sb Sw RMSE
1 03 45 93 103 057 1.62 O 351 D,;H 1 1.4 11.6 15.1 19.0 040 265 533 5096
: 2 03 71 103 125 0.24 361 2.28 556 P 2 09 106 145 179 028 348 582 678
3 05 166 134 217 096 860 647 10.74 3 10160 158 224 074 891 708 11.37
B 00 50 42 65 0.16 1650 10.44 19.47 B 05 48 37 60 120 11.01 898 14.21
I 09 172 111 205 -001 2832 17.30 33.10 I -01 135 107 172 -128 23.18 1843 2956
D, 1 37 275 273 387 057 1012 876 1338 D3 H 1 17120 151 193 050 263 535 597
2 37 261 260 368 070 1095 9.67 14.61 Bis 2 14 112 145 184 042 328 581 668
3 27 239 228 330 074 1504 1048 1830 L 3 11 111 130 171 018 458 626 776
B 0.1 54 44 70 030 1834 1133 2150 B 03 44 36 57 107989 9.03 13.39
I 10 168 119 205 058 27.87 2007 3427 I 03 33 55 64 097 664 1086 12.75
D,;H 1 12 132 152 201 031 268 542  6.06 DiuDeH 1 17 87 105 137 033 171 319 3.64
’ 2 L1 144 149 207 037 402 616 7.38 Bis % 15 94 105 141 028 249 371 448
3 06 159 158 223 049 891 746 11.62 Lis 3 14 94 99 137 022 376 3-66 6.00
B 01 49 42 64 -0.01 1701 10.77 20.07 B 03 40 35 54 074 977 861 13.01
I 05 170 114 204 -0.03 2787 1850 3336 I 01 39 51 65 028 771 967 1235
D.D.H 1 L6 81 101 130 034 190 312 365 D, H 1 17 120 150 192 048 260 532 596
2 14 90 100 135 025 289 385 482 HeBys 2 14 113 145 183 040 319 577 661
3 12 146 131 196 081 896 645 1105 » 3 L1 113 129 171 0.17 446 613 757
B 02 54 42 68 085 17.81 10.66 20.71 B 03 43 36 57 104974 907 1331
I 01 160 109 193 -151 2812 1675 3264 I 03 33 54 63 095 661 1083 1271
D3 H 1 10 123 150 194 027 266 540 6.04 DisDeH 1 18 93 106 142 031 167 320 3.62
H 2 07 125 147 192 031 402 615 736 H.B,, 2 15 100 107 147 024 232 362 431
3 08 155 153 217 045 840 7.06 10.97 Ly 3 14 99 101 142 017 352 451 573
B 03 49 40 63 0.14 1570 10.75 18.98 & 03 40 36 54 8~§2 ggg g-;’; i%%
I 00 132 103 167 029 2312 17.87 29.17 I 01 39 51 64 27 7. : -
DsDeH 1 18 92 103 139 032 175 310 356 Dy;H 1 16 113 150 188 052 248 533 590
H, 2 15 96 101 139 029 290 379 478 13 Z 12 Wz 145 14 043 342 580 660
3 16 139 127 188 059 789 603 992 Tali 3 04 79 128 151 0.17 363 615 714
B 03 51 40 65 056 1613 10.62 19.28 B 04 44 3'2 5-2 i;‘l‘ g-gg ]30; 322
I 01 133 98 165 —0.82 2333 1592 28.19 I 08 35 56 6 . : 62 11
D,DyH 1 15 74 100 126 030 165 318 3.60
B.; 2 L1 81 102 130 023 237 361 433
Ly 3 05 57 93 109 010 293 443 530
B 03 40 35 54 084 971 874 1306
crown height cannot reduce the standard error of  using the relative between-stand standard error I 06 36 53 65 066 532 939 10.79
the volume increment prediction. The Iy meas- (RMSE,%). 9
urement reduces the standard error only from The sample tree selection was simulated using g,,éH ; }? }(l)g }i'g igg 8‘5“1) %gg g;‘lz 222
13 % t0 12 %. random sampling. The stand effects were esti- l.c;l..u 3 04 80 127 150 015 348 604 698
mated from the sample trees. Only trees that - B 0.4 4.4 3.6 5.7 1.11 972 906 13.28
were not used as sample trees were used as tally I 07 33 55 64 127 467 1061 1161
5.3 Tally trees trees. The error variances are averages of 50
independent replications. The study was made D, 3,DeH 1 L5 ;-9 10-2 13; g-fg ;-gi g~ég i-;g
The stem curve sets for tally trees are predicted  using model 3.1.3. :'lc'?‘»‘ § (l)g 6'2 lg' 4 1 13 006 267 439 513
as a function of D, ; using the average stem curve RMSE,% of the prediction of stem volume 1o B 03 40 36 54 087 956 872 1294
of the population and the stand effects estimated ~ with bark for tally trees is independent of the I 06 35 53 63 066 535 932 10.74

from the sample trees. The reliability of the stem,
bark and increment volume estimates are studied

38

measurement combination of the sample trees if
at least D, ; and H are measured (Fig. 5.3). The
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sample tree measurements have a marginal re-
ducing effect on the RMSE,% of bark volume
and volume increment predictions when only
stem dimensions with bark are measured. The
crown height measurement reduces the RMSE, %
of the bark volume prediction from 19 % to 17 %
and the volume increment prediction from 30 %
to 27 %, assuming one measured sample tree per
stand.

One sample tree with the measurement of B, 5,
in addition to the measurements of stem dimen-
sions with bark, reduces the RMSE,% of the
bark volume prediction of tally trees from 19 %
to 15 %. The additional measurement of B, ; and
I, ; reduces the corresponding RMSE,% of the
volume increment prediction from 30 % to 18 %.
The I, ; measurement of two trees gives smaller
RMSE,% for the volume increment prediction
than does the measurement of both I,; and I
from one tree.

The RMSE,%:s of the sample tree predictions
indicate the asymptotic RMSE,% that can be
reached for tally tree prediction when the number
of sample trees approaches the total number of
trees in the stand (Fig. 5.3). In all cases exam-
ined, the first sample tree reduced the RMSEb%
by about half of the total decrease that can be
reached by increasing the number of sample trees.

5.4 Prediction without measured dimensions
with bark

In the preceding discussion the use of the stem
curve set model has been examined in situations
where one or more dimensions from the stem
curve with bark have been known. The model
can also be used without measured dimensions
with bark, e.g. to predict the stem curve with
bark from measurements without bark or to pre-
dict the future growth without bark as a function
of the dimensions without bark at the beginning
of the growth period.

The reliability of volume prediction is present-
ed in Table 5.7 with explanatory variables meas-
ured only from the elementary stem curves with-
out bark (g = 2,3). All predictions are unbiased.
The main result, compared with the predictions
using measured dimensions with bark, is larger
standard errors in the predictions of bark volume
and volume increment. This can be reasoned
because the size, which is defined as the weight-
ed sum of the tree dimensions with bark, is used
as an independent variable in the stem curve set
model. In the model application the size has to
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Fig. 5.3. Relative between-stand standard error of tally
trees for the stem with bark, bark and increment
volume predictions as a function of the number of
sample trees with different combinations of sample
tree measurements. The relative between-stand stand-
ard errors of the volume predictions of sample trees
are also indicated by small dots. The model with
average size (3.1.3) is used.
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Table 5.7. Reliability of the stem, bark and increment volume predictions with different measurement
combinations, when no measurements have been made from the stem curve with bark. The
relative statistics are given as percentages and absolute errors as dm?. Model 3.1.3 has been used.
D, 3, = diameter at breast height without bark in the year t, D, = diameter at a height of six meters
without bark in the year t, D5 s and Dy s in the year t-5, respectively, and H_s tree height in the
year t-5. g is the index of the elementary stem curve.

Measure— Absolute errors Relative errors
ments
g Sh Sw RMSE  mean Sh Sw RMSE
Dy 1 1.8 259 277 377 -0.13 1240 879 15.16
2 21 25 251 337 0.06 1210 9.15 15.13
3 1.3 264 230 350 004 17.63 9.89 20.16
B -0.3 6.4 5.0 8.1 -1.32 2237 1334 2598
I 08 162 11.7 199 0.19 26.16 19.90 32.79
D, s,H 1 0.1 112 16,6  20.0 -0.10 484 588 761
2 03 100 149 179 -0.03 399 594 715
3 -0.3 19.2 17.0 255 -0.08 10.51 7.22 12.72
B -0.2 55 4.7 1.2 -0.54 19.27 12.82 23.08
1 06 164 113 198 021 26.15 1838 31.88
D, 3,Dg,H 1 | K 9.1 108 140 043 384 367 530
2 13 7.1 9.1 11.5 038 186 350 396
3 1.1 140 120 184 069 819 6.01 10.13
B 0.2 5.7 4.7 7.4 0.73 1992 1342 2341
I 03 159 106 19.1 -0.57 2534 16.77 3031
D, 3, H,H, 1 4.7 10.4 19.3 219 0.42 3.73 6.49 7.48
2 45 94 172 196 068 312 651 721
2 29 160 161 225 1.88 870 7.05 11.17
B 0.2 5.0 4.7 6.9 -1.12 1790 13-19 22.18
1 16 121 119 169 -2.00 21.67 2355 3195
D, .. 1 21 282 309 418 001 1168 1060 15.74
2 23 254 281 379 0.17 11.36 1096 15.75
8 1.5 190 212 284 0.19 13.19 958 16.26
B -0.2 6.2 53 8.1 -1.04 2194 1431 26.12
I 08 173 131 217 0.22 30.24 23.63 3829
D, H, 1 04 188 204 277 —0.08 645 786 10.15
2 0.7 180 184 257 001 6.18 7.99 10.09
3 0.2 68 133 149 -0.02 400 639 753
B -0.2 53 49 7.2 -0.69 19.05 13.58 23.34
I 09 179 126 219 030 3049 2195 3748
D, HDes 1 12 201 159 255 022 670 608 9.03
2 1.2 19.1 14.2 23.7 0.21 6.45 6.00 8.79
3 0.6 3.6 12 8.0 0.29 1.43 3.67 3.94
B 0.0 5.3 4.7 7.1 0.26 18.87 1321 2297
I 06 170 119 207 0.11 26.68 21.34 35.67
D, H, 1 07 195 203 281 003 644 784 1013
H. 2 0.7 18.1 184 257 003 6.5 8.00 10.08
3 0.2 72 131 14.9 003 370 634 734
B 0.0 5.2 4.6 6.9 -0.41 18.78 1342 23.03
1 05 168 122 207 0.10 29.69 21.50 36.57
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be estimated as a function of the measurements.
The association between the size and the dimen-
sions of the stem curve with bark is closer than
between the size and the dimensions without
bark, because dimensions with bark are elements
of the measurement function or can be interpo-
lated from it. This produces more reliable esti-
mates of size when dimensions with bark are
measured. When the diameter at breast height of
one elementary stem curve is known, the averag-
es of the standard errors for size estimates are
0.0396, 0.0472 and 0.0503, corresponding to the
measures from elementary curves 1, 2, and 3,
respectively.

Formally the stand growth and development
can be simulated as a sum of the trees in a stand.
This can be done with the stem curve set model
by using repeated predictions so that the two
outermost stem curves (stem curves with and
without bark in the year t) are predicted as a
function of the dimensions of the innermost stem
curve (stem curve without bark in the year t-5).
At each loop the predictions of the previous loop
for the stem curve without bark in the year t are
located on the innermost stem curve in the year

t=5. If the model is inconsistent with regard to
change in stem form, a simulation will lead to
different tree form development than that which
occurred according the cross-sectional data used
for parameter estimation. Therefore the incon-
sistent model without average size (3.1.5) is in-
convenient for simulation purposes because it
will lead to rapid height development in relation
to diameter development. In addition, the model
with average size (3.1.3) will lead to inconsistent
development of stem form because of its inabili-
ty to take into account, that the relative size
varies with the average size.

5.5 Measurement errors

The measurement errors influence the utility of
the measurements. The reliability of the meas-
urements is studied here from the literature as-
suming the measurements made from standing
trees with the following instruments (named ac-
cording Loetsch et al. 1973) and reading accura-
cies:

Table 5.8. Effect of measurement errors on the relative volume prediction errors of
sample trees with different measurement combinations. Errors are given as per-
centages. Prediction with measurement errors are denoted by w. Model 3.1.3 has

been used.
Measurements Stem with bark Bark Increment
mean  RMSE mean RMSE mean RMSE
Dys w 0.12 1437 —0.68 21.82 0.17 34.65
0.57 13.38 -0.30 21.50 0.58 34.27
D,;,H w 0.18 8.06 -0.20 20.67 -0.04 3352
031  6.06 -0.01 20.07 -0.03 33.36
D, HD, w 031 685 0.14 20.42 —-0.83 3245
034  3.65 0.85 20.71 -1.51 32.64
Dy HH,  w 026 7.90 -020 19.39 —0.07 29.66
0.27 6.04 0.14 1898 -0.29 29.17
D,3H,B;; w 0.46  8.03 -0.85 17.20 -0.79 30.30
040 596 1.20 14.21 -1.28 29.56
D,3HB.; W 0.84 8.79 -1.04 16.33 0.78 16.29
Is 050 597 1.07 13.39 097 1275
D, HB;, w 084 9.02 -1.12 17.01 0.78 16.59
| PN 052 590 1.14 13.37 1.31 11.66
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D,; caliper 0.1 cm
D, the Finnish parabolic caliper for

the upper-diameters 1.0 cm
H Suunto hypsometer 10 cm
B3 the Swedish bark gauge 0.1 cm
I, the Swedish increment borer and

annual ring microscope 0.001 cm
Iy binoculars with built-in scale 10 cm

According to Hypponen & Roiko-Jokela (1978),
the standard deviation for the D, ; measurement
is 0.3 cm (1.4 %), for D, measurement 0.8 cm
(5.3 %) and for H measurement 0.9 m (6.3 %).
Pidivinen et al. (1992) found that the standard
deviation of diameter measurement at breast
height is 0.4 cm, at six meter height (D) 0.6 cm
and the standard deviation of height measure-
ment is 0.22 m. According to Thalainen (1987),
the standard deviation for D, measurement is 0.8
cm and this is independent of the tree size. He
also found that the standard deviation of height
measurement is proportional to the tree height
and is about 3.6 %. Standard error for the meas-
urement of the crown height is 0.5 m independ-
ently of tree size.

Kujala (1979) and Daamen (1980) both stud-
ied the measurement error of bark thickness.
Daamen found that the standard deviation of the
differences between the original measurements
and the control measurements in the Swedish
National Forest Inventory were 5.6 mm. Kujala
compared the normal bark measurement with
one accurate measurement made with a bark
measurer constructed on the increment borer.
When later measurements were assumed to be
the right bark thickness, he found that the stand-
ard error of the bark measurement was 4.1 mm.

If the direction of increment boring is not per-
pendicular to the height axis of the tree, the
diameter increment is overestimated. This bias
cannot be eliminated when the annual rings are
measured. If boring is directed past the midpoint
of the tree, the bias can be corrected during
measurement of the annual rings. Kujala (1979)
found that in the Finnish National Forest Inven-
tory the overestimation of the radial increment
was 0.4 %.

Noncircularity causes variation and overesti-
mation of the cross-sectional area when the cal-
culation is based on one or more diameter meas-
urements (Matérn 1956). The reliability of meas-
urements of diameter- and cross-sectional area
increment is especially sensitive to noncirculari-
ty. Matérn (1961) obtained the empirical result
that the standard deviation of diameter incre-
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ment caused by the noncircularity of the stem is
over 5 %. The irregularities caused by noncircu-
larity in tree diameter and diameter increment
are omitted here by assuming the cross-sectional
area to be circular. The diameter is assumed to be
the average of the measured diameters.

The height increment measurement is the most
unreliable of the measurements studied here.
Many authors have found a clear overestimation
of binocular measurements of height increment
(Tiithonen 1967, Alalammi 1968 and Piivinen et
al. 1992). According to Paivinen et al., the over-
estimation is 0.10 m (18 %) and the standard
deviation is 0.22 m (40 %).

The effect of the measurement errors was stud-
ied by generating random errors for the measure-
ments. The measurements were assumed to be
unbiased; and the measurement errors were as-
sumed to be normally distributed, mutually un-
correlated and uncorrelated with the random stand
and tree effects. The standard deviations used
are:

Measurement s cm s %
D,; 0.3
D, 0.8
H 3.6
H. 0.5
B, 0.4
Lis 5.0
Iy 24

where the standard deviation of I, is assumed
without any empirical studies. The measurement
errors were taken into account in the prediction
of stem curve set by adding the measurement
error variances to the diagonal elements of the
covariance matrix of the measured random tree
effects (Lappi 1986, p. 28-29). The reliability
statistics were calculated as an average of 50
independent replications.

The measurement errors studied have no sig-
nificant effect on the bias of the predictions of
the stem, bark and increment volume of the sam-
ple trees (Table 5.8). If at least D, ; and H are
measured, the measurement errors increase the
relative standard error of stem volume prediction
with bark by about 2 percentage points. The
measurement errors of B, ; and I, ; increase the
relative standard errors of the bark volume and
the volume increment predictions about 3 per-
centage points, and the measurement error of I
increases the standard error of the volume incre-
ment prediction by nearly 5 percentage points.
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When measurement errors are taken into account,
the standard error of the volume increment pre-
diction is higher with I;; measurement than with-
out it.

The measurement errors have only very small
effects on the predictions of stem volume with
bark of tally trees (Fig 5.4). Calibration of the
bark volume and the volume increment predic-
tions is considerably slower as a function of the
number of sample trees with measurement errors
than without them. According to the results for
sample trees, it is not possible to eliminate total-
ly the measurement error effect by increasing the
number of sample trees. The measurement errors
decrease the relative efficiency of the measure-
ment of I;; compared to the measurement of I, ;.
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Fig. 5.4. Relative between-stand standard error of tally
trees for the stem with bark, bark and increment
volume predictions as a function of the number of
sample trees with and without measurement errors.
The relative between-stand standard errors of the
volume predictions of sample trees are also indicated
by small dots. The model with average size (3.1.3) is
used.
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6 Comparison of the stem curve set model with
the volume and increment methods

The volume method is the prevailing method
used in Finland determining bark volume and
volume increment. Here the predictions of the
stem curve set model and those of the volume
method are compared with each other. The stem
curve set model utilizes the covariation of the
stand and tree effects between the elementary
stem curves. In order to separate the effects of
using variance components and using the covari-
ations between the elementary stem curves, three
different methods of prediction were compared:
1) normal use of the stem curve set model, 2) use
of the stem curve set model without the associa-
tions between the elementary stem curves when
the stand effects are estimated, and 3) the vol-
ume method using volume functions. In all these
methods, the bark volume and volume increment
are differences between the stem volumes. To
obtain reasonable results for the bark volume
and volume increment predictions using Meth-
ods 2 and 3, the same dimensions have to be
known from all the elementary stem curves. This
study was made using the following sample tree

Setup 6.1

Parameters
estimated as a
function of the
sample trees.

Prediction of the
volume of
sample tree i.

measurements: D, 5, H, B,;, I,5 and I;. D, and
H are thus known for all elementary stem curves.

In Method 2, the elementary stem curves were
predicted separately using diameters D, and
heights H, of the elementary stem curve g meas-
ured in the stand. The estimates of the sample
tree sizes and the principal components of the
stand effects are denoted by § and ¢ when they
are estimated from the measurements from the
stem curve with bark in the year t, by §'and ¢'
when they are estimated from the measurements
from the stem curve without bark in the year t, or
by §" and ¢" when they are estimated from the
measurements from the stem curve without bark
in the year t-5. The predictions of the elementary
stem curves and the volumes are given in set-up
6.1. In Method 2 the stand structure of the data is
utilized using variance components. If no sample
trees are measured, the predictions of Method 2
are identical to the predictions for the
normal use of the stem curve set model (Method

1).

Prediction of the
volume of
tally tree i.

Equation 4.1.2 See equation 4.2.3 See equation 4.2.6
(8 and ¢) |D1,H1 -> Vn |DIHHIiv§né and Vi |Dl|!é
(8 and &) [D,H, -> Vi Dy Hy8,&  and  Vy [Dy @
(8 and &) [Ds,H;  -> Vi [DyHy§,&  and  Vy [Dy,&

In Method 3 the form of the volume function
61.3 by Laasasenaho (1982) was used:

In(V) = a, + a;In(D; 5) + a;In(H) + a;ln(H-1.3)
+aD ;s +¢€ (6.1)

The parameters of the model (6.1) were estimat-

ed anew by the ordinary least square method
from the primary data set separately for the stem
volumes with and without bark in the year t (V,
and V,) and without bark in the year t-5 (V).
The parameter estimates are given in set-up 6.2.
This method cannot be used in predicting the
tally tree volumes without auxiliary models.

Set-up 6.2

Dependent

variable ay a, a, a3 a, S
Vi -3.44412 1.88812 2.88479 -1.72647  -0.0010275 0.0588
V, -3.29529 1.89733 221488 -1.08823  -0.0013091 0.0682
V; -3.42612 1.90404 246212 -1.29223  -0.0023385 0.0752
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With all methods the standard errors of the stem
volume predictions for the sample trees are near-
ly the same (Table 6.1). The bark volume and the
volume increment predictions of Methods 2 and
3 also gives similar standard errors, but Method
1 gives slightly smaller standard errors for the
volume increment predictions and clearly small-
er standard errors for the bark volume predic-
tions. When Method 1 is used without measure-
ment of Iy, the standard errors for stem volume
and volume increment are nearly the same as
using Methods 2 and 3 with the measurement of
IH.

The reliability of the predictions for stem, bark
and increment volume of tally trees were studied
with RMSE, % (Fig. 6.1). Only Methods 1 and 2

Table 6.1. Reliability of the stem, bark and increment volume predictions with measured D, 5, B, 5,

were used, since Method 3 requires auxiliary
models for tally tree predictions. Because for
Methods 2 and 3 the prediction results for sam-
ple trees were nearly identical, Method 2 can be
used as an approximation for the volume method
where volume functions are calibrated with vari-
ance components.

In Method 2 the RMSE,% of the bark volume
prediction increases as a function of the number
of sample trees. This is determined by the prop-
erties of Method 2. The predictions of Method 2
for tally trees are identical to those obtained with
Method 1 if no sample trees are measured. When
the number of sample trees increases, the weight
of Method 1 decreases in relation to the weight
of the sample tree information estimated by Meth-

ll..\y

H and Iy; using different methods: 1) normal use of the stem curve set model, 2) use of the stem
curve set model without the connections between the elementary stem curves when the stand
effects are estimated and 3) the volume method using volume functions. The statistics for normal
use of the stem curve model when only D, ; is measured (1a) and when D, 5, B, 3, I,; an H are
measured (1b) are also given. The relative statistics are given as percentages and absolute
statistics as dm®. Model 3.1.3 has been used. g is the index of the elementary stem curve.

Absolute errors

Relative errors

g Method 5 mean Sh Sw RMSE mean Sh Sw RMSE
1 la 2359 37 275 273 38.7 0.57 10.12 876 13.38
1b 1.7 120 15.1 19.3 050 263 535 597
1 1.6 113 150 18.8 052 248 533 590
2 18 145 167 22.1 050 274 548 6.12
3 -0.1 146 170 224 -043 284 525 597
2 la 206.9 37 261 260 36.8 0.70 1095 9.67 14.61
1b 1.4 112 145 18.4 042 328 581 6.68
1 12 102 145 17.7 043 312 580 6.60
2 08 10.7 16.0 19.2 0.11 395 601 7.19
3 0.2 9.8 158 18.6 -0.40 4.01 5.67 693
3 la 166.9 27 239 228 33.0 0.74 15.04 1048 18.30
1b 1.1 111 13.0 171 0.18 458 626 776
1 0.4 79 128 151 0.17 3.63 6.15 7.14
2 0.1 6.8 142 15.8 0.11 396 650 7.60
3 0.1 6.6 142 15.7 -031 409 620 742
B la 29.1 0.1 54 44 7.0 -0.30 1834 1133 21.50
1b 0.3 44 36 5.7 1.07 989 9.03 1339
1 0.4 44 36 5.7 1.14 987 9.01 1337
2 14 10.1 73 12.5 298 17.74 16.00 23.84
3 -03 101 gA| 123 -0.76 1733 16.79 24.08
I la 40.6 1.0 168 119 20.5 0.58 27.87 20.07 34.27
1b 0.3 33 55 6.4 097 6.64 1086 12.75
1 0.8 35 5.6 6.6 131 476 10.62 11.66
2 0.6 5.1 6.2 8.0 025 6.83 11.10 13.02
3 0.1 3.8 6.0 7.0 -0.63 639 10.73 12.48
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Fig. 6.1 Relative between-stand standard error of tally
trees for the stem with bark, bark and increment
volume predictions as function of the number of
sample trees with normal use of the stem curve set
model (Method 1) and use of the stem curve set
model without connection between the elementary
stem curves (Method 2). The relative between-stand
standard errors of the volume predictions of sample
trees are also indicated by small dots. The model with

—— Method 1
---- Method 2

Volume with bark

T 1

Bark volume

\

Volume increment

average size (3.1.3) is used.
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od 2. For sample trees the bark volume predic-
tions of Method 1 as a function of D, have
nearly the same RMSE,;% as the prediction of
Method 2 as a function of D, 3, H, B, 3, [, ; and I;;.
When the number of sample trees increases, the
decreasing sampling error cannot compensate
for the increasing weight of the prediction error
of Method 2.

The prediction for the stem volume with bark
in Method 1 has a slightly smaller RMSEb%
than does the prediction in Method 2. With Meth-
od 1 the RMSE, %:s for the bark volume and the
volume increment predictions are about half those
obtained with Method 2 when the number of
sample trees is small. This is also the case, if the
height increment is not measured when the stem
curve set (Method 1) is used.

Predictions based on the increment method are
also compared with those of the stem curve set
model. The functions of the increment method
are taken from Svensson (1988) and the parame-
ters are estimated from the primary data. Some
modifications are done: 1) the form quotient D¢/
D, ; is used instead of the form quotients Ds/D, 5
and Dy/D,;, 2) the geographical variables are
ignored and 3) for each function a model without
tree age as independent variable was also esti-
mated. The bark volume functions correspond-
ing the simple bark volume function by Svens-
son (1988) are

By =ag+a,Dyp +a:In(Dyy ) +a3In(T)+e  (6.2)
By =ag+a,Dy, +a,In(Dyy, ) +€ (6.3)

Corresponding the accurate bark volume func-
tion they are

By =a, +a,Dy3 +a,In(H)+a;B;; +a,In(B,3)
+a5(Dy /Dy3)+a,In(D, /Dy3) (6.4)
+a;T+agIn(T)+¢

By =a; +a,D;y +a,In(H)+a;B,; 4'aah'l(Bl,})(ﬁ s)
+as(Ds /Dy3)+asIn(Dg /Dy3)+€ ’

and corresponding the volume increment func-
tion they are
Iy =ay,+a,Dy3 +a,In(D;3, ) +asIn(H)
+agIn(l3)+asIn(H. /H)+a,(D, /Dy3) 66)
+a;In(D, /Dy3)+asT+agIn(T)
+ayIn(Bys/Dy3)+¢
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Table 6.2. Reliability of the bark and increment volume predictions using the stem curve set model and the models
based on the increment method. Model 3.1.3 is the stem curve set model. a means that the only used tree dimension

is diameter at breast height without bark and b that all information of D, 5, B, 3, I, 3 D, and H measurements are
used.
Absolute errors Relative errors
g Model x mean Sh Sw RMSE mean Sh Sw RMSE
B 3.1.3a 29.1 -0.3 6.4 5.0 8.1 -1.32 2237 1334 2598
6.2 -0.2 6.3 5.2 8.2 -0.26 22.01 14.63  27.37
6.3 0.2 6.8 5.5 8.7 -0.27 23.21 14.64 2739
3.1.3b 0.3 4.0 35 54 0.74 9.77 8.61 13.01
6.4 -1.3 4.5 3.7 59 —0.61 11.39 932  14.70
6.5 -1.0 4.7 3.7 5.7 -0.52  11.69 9.19 1485
1 3.1.3b 40.6 0.1 3.9 5.1 6.5 0.28 7.71 9.67 1235
6.6 0.3 3.8 4.9 6.2 0.11 6.57 9.64 11.65
6.7 0.3 4.2 5.3 6.7 -0.05 8.86 9.97 13.31

the height increment measurement is not needed
in the increment method. The predictions based
on the simple bark functions (6.2 and 6.3) are
compared to predictions of the stem curve model
so that the only known dimension is diameter at
The tree age in years is denoted by T and the  breast height without bark. Differences between
diameters without bark are denoted by the sub-  the stem curve set model and the increment meth-
script b. The parameter values of the functions  od are small. For bark volume, the stem curve set
are given in appendix C. The bark volume func-  model gives slightly smaller RMSE’s in the cas-
tions 6.2 and 6.4 are used in Svensson’s (1988)  es of the simple and the accurate bark volume
system to calculate the past bark volume incre-  functions. For volume increment, the function
ment as is described earlier (Chapter 1.2, Equa- 6.6 with tree age as independent variable gives
tion 1.2.1). slightly smaller RMSE’s than the stem curve set
It is assumed in the comparisons that the meas- ~ model, but the function 6.7 without tree age as
ured sample tree dimensions are D, ;, B3, 1,5,  independent variable gives slightly higher
Dy, H and, in increment method, also the tree age  RMSE’s.
T (Table 6.2). In contrast to the volume method,

Iy =ag+a,Dy3 +a,In(Dy3,) +a5In(H)
+agIn(l3)+asIn(H. /H)+a,(D, /D,3) (6.7)
+a;In(Dg /Dy3)+a,In(By;/Dyy)+¢
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7 Calibration of the model

7.1 Calibration with external information

A linear model gives the best linear unbiased
prediction as a function of the independent varia-
bles. For model applications some external vari-
ables, which correlate with the dependent varia-
ble, are often known. These external variables
can be used to improve the reliability of the
predictions in two ways: 1) by modelling the
fixed parameters as a function of the external
variables or 2) by using the conditional prior
distributions of the random parameters.

The simplest form of the fixed parameter mod-
elling technique is separate estimation of the
parameters in classes of one independent varia-
ble. Lappi (1986) estimated the fixed parameters
of the regionalized stem curve model separately
for eight climatic regions. The fixed variables
can also be modelled as a function of continuous
external variables. This practice has been used to
model the fixed parameters of diameter distribu-
tions as a function of stand variables (e.g. Ren-
nolls et al. 1985 and Kilkki & Pdivinen 1986).

The conditional prior distributions are utilized
in mixed linear model prediction. This prior in-
formation can be improved by regressing the
random parameters on some external variables.
Kilkki & Lappi (1987) and also Korhonen (1991)
have calibrated the stem curve model using the
expectations and variances of the principal com-

Set-up 7.1

cn c12 <13 Ci4 CB1 CB2

ponents of the stand effects conditional on some
stand variables.

To improve the conditional prior information
used in model calibration, unbiased measure-
ments or estimates of stand effects are needed.
The random effect estimates are always shrunk
towards zero and cannot be used as dependent
variables for regression models. To obtain unbi-
ased estimates for the principal components it is
necessary to know the delineation vectors exact-
ly, or the potential random error must be inde-
pendent of the regressors of the random effect
model. Here the stand effects are estimated as
fixed for each delineation variable separately
from the primary data set. The stand effect esti-
mates are unbiased but they include random er-
ror caused by the sampling.

The principal components of the stand effects
were regressed on some external variables using
stepwise regression. The independent variables
examined were used to describe the geographi-
cal position (longitude, latitude and altitude) and
the site quality (temperature sum and forest site
type) of the stand, the growing stock (mean di-
ameter, basal area and number of stems per hec-
tare) and also the time since the last thinning.
The models are presented in Appendix D. The
coefficients of determination (R?) for the princi-
pal components cy and the standard errors of the
models (s,) are presented in set-up 7.1.

CB3 CB4 < 2 ci3 Ci4

R? 047 018 009 012 044 023 022 011 038 034 003 011
s, 141 013 007 005 035 005 002 002 074 009 003 0.01

The main part of the unexplained variation of the
stem curve with bark, the bark curve and the
increment curve is in the directions of their first
principal components. Because of the quite me-
chanical formulation of the models for the prin-
cipal components, it is not reasonable to inter-
pret the meanings of individual independent var-
iables. Still some interdependences are obvious.
The variables describing the geographical posi-
tion and the site quality are the most important
for the two first principal components of bark
and for the first principal component of incre-
ment, the “increment rate” component. Varia-
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bles describing the growing stock are important
for prediction of stem form as it also is for the
second principal component of increment, the
“slenderness change” component.

The conditional expectations and error vari-
ances of the regression models were utilized to
predict the stem curve sets. The covariance ma-
trix of the principal components of stand effects
was reformed using the variances of the condi-
tional estimates on the diagonal and assuming
that the correlations between the different princi-
pal components remain unchanged.

When only diameter at breast height with bark

49



Table 7.1. Reliability of the predictions for stem, bark and increment volumes of sample trees with improved prior
information when only diameter at breast height with bark is measured. Method 0 is the control without improved
prior information. In methods 1-5 the stand effects are estimated using regression models for the principal
components of the stand effects cg as follows: 1) ¢y, 2) ¢y, €3, 3) Cyy, a1, €31, 4) €11, €125 Cay, Cazy Cayy C3p and S)icys
¢.,C5. . In methods a—c tree size is used as the random variable as follows: a) mean of s, b) s = f(d, 1), ¢) s = f(d, 5,
stand variables). Statistics are in percentages. Model 3.1.3 has been used.

Table 7.2. Reliability of the predictions for stem, bark and increment volumes of sample
trees with different measurement combinations and as a function of tree size s in the test
data set. The relative statistics are given as percentages and absolute statistics as dm?.

With bark, t

Method mean Sh Sw St mean

057 10.12 8.76 13.36 0.70
1 070 822 875 1198 0.86
2 070 822 875 11.98 0.84
3 0.70 8.22 875 1198 0.94
4 068 812 8.80 11.96 0.74
5 0.74 803 883 1191 0.80
a 0.68 10.70 9.06 13.99 0.94
b -0.24 10.50 8.71 13.61 -0.29
c 049 793 877 11.80 -0.40
Method mean
0 -0.30
1 -0.39
2 -0.24
3 -0.24
4 0.22
5 0.34
a -1.13
b -0.09
€ -1.13

Without bark, t

Without bark, t-5

Sb Sw St mean Sb Sw st
1095 9.68 14.59 0.74 15.04 1049 18.28
923 924 1332 098 14.12 1023 17.39
9.11 9.65 13.24 094 1441 1023 17.63
9.11 9.65 13.24 1.36 12.75 10.19 16.28
892 9.72 13.17 1.21 1258 1025 16.19
882 975 1313 090 1254 1033 16.21
11.58 997 15.25 095 1548 10.87 18.86
1142  9.64 1491 0.03 1529 10.19 18.32
9.00 9.69 13.21 -0.57 1385 1033 17.23
Bark Increment
Sb Sw st mean Sb Sw st
1834 1133 21.50 0.58 27.87 20.07 34.26
17.67 11.40 20.97 0.53 26.80 20.27 33.52
16.64 11.57 20.21 0.55 26.11 2026 3298
16.64 11.57 20.21 -0.99 1830 2040 2736
15.14 11.53 19.19 -0.92 1825 2041 2734
1539 11.52 19.18 041 1825 2039 2732
18.34 11.50 21.59 0.30 27.75 20.01 34.13
18.39 11.26 21.48 -1.84 28.08 20.61 34.75
17.16 1133 20.51 024 2754 2027 34.11

RMSE in the primary data is given in parentheses. Model 3.1.3 has been used.

Absolute errors

Relative errors

is measured, the improved prior information clear-
ly decreases the standard error between stands
for stem, bark and increment volume predic-
tions, but it has no effect on the standard error
within stands (Table 7.1). The first principal com-
ponent of all elementary stem curves gives al-
most the total extent of the improvement that can
be reached. Only in the bark curve does the
second principal component have a significant
influence on the standard error of bark volume
prediction. If sample trees with measured D, 1,
H, B, and I, ; are available, the improved prior
information has no effect on the standard errors
of the predictions for stem, bark and increment
volumes for tally trees.

s =2.61327
§ =0.237185 + 0.8415733 d, 5
$ = f(d, 5, stand variables)
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Size can also be assumed to be random. When
Lappi (1986) used the mean and variance esti-
mated from his primary data to describe the dis-
tribution of size, he found only very small differ-
ences between the results with fixed and random
size. This is due to the close relationship be-
tween diameter and size. When one or more
diameters are known, they explain most of the
size variation and the weight of the prior infor-
mation is small. The use of random size can be
made more efficient by using the conditional
distribution as a function of some variables known
in the application. Here the conditional expecta-
tions and variances are determined as follows:

var (s) = 0.0873 (7.1a)
var(s - $) = 0.00207 (7.1b)
var(s-§) =0.00123 (7.1c)

Ojansuu, R.

Measure- g mean St RMSE mean St RMSE
ments
S 1 -6.3 183 19.3 (10.3) -1.6 4.8 51 (35)
B -0.0 139 139 (6.5) -0.6 205 205 (19.5)
| -114 192 223 (20.5) -102 501 511 (33.1)
D;; 1 -589 1323 1448 (38.7) -145 253 292 (134
B -5.0 9.4 10.6  (7.0) -11.0 198 227 (21.5)
| -139 229 26.8 (20.5) -23.8 41.7 480 (343)
D,;H 1 =252 643 69.1 (20.1) =56 100 115 (6.1)
B -23 110 112 (6.4) -5.1 179 186 (20.1)
1 -155 265 30.7 (20.4) =233 420 480 (334)
D, 3,H,D; 1 1.6 123 124 (13.0) 0.3 4.6 46 (3.7)
B -6.6 129 145 (6.8) -9.0 201 220 (20.7)
I -50 168 175 (19.3) ~128 385 406 (32.7)
D,3H 1 -17.7 46.0 493 (19.3) —4.3 79 9.0 (6.0
- B 92 141 168 (5.7) -168 188 252 (13.4)
Iis I -1.0 88 89 (6.4) 00 173 173 (12.8)
D,;H 1 -18.1 46.6 50.0 (18.8) —4.0 7.9 89 (5.9
Bis B -9.0 138 165 (5.7) -164 18.7 249 (134)
RN 1 0.9 8.4 84 (6.6) -0.5 14.1 141 (11.7)
D, 3,H,Dg 1 20 129 13.1 (13.7) 0.6 4.2 42 (3.7
" B -70 111 131 (5.4) -125 159 202 (13.0)
I I 1.4 75 76 (6.5) 45 152 159 (124)
D, HD, 1 13 124 125 (12.6) 06 42 42 (3.6)
Bs B —-6.9 109 129 (54) -12.4 15.7 200 (13.4)
Il I 28 80 85 (65) 38 116 122 (10.8)

Model 7.1c is presented in Appendix D.

Use of the size conditional to the diameter at
breast height with bark (Equation 7.1.b) does not
decrease the standard error for prediction of the
volume with bark (Table 7.1), since Model 7.1b
is already implicitly included in the stem curve
set model. The standard error of the prediction
for volume with bark can be decreased using the
size conditional to variables that are not dimen-
sions included the stem curve set model. Here
the standard error decreases two percentage points
with Model 7.1c. The improved prior informa-
tion on size cannot decrease the standard errors
of the bark volume and the volume increment
predictions.
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7.2 Calibration to a set of independent data

Let us study the application of the stem curve set
model in the test data set. The test data set obvi-
ously represents a different Scots pine popula-
tion than the primary data set. The predictions
for the stem volumes are clearly biased, but the
bias decreases as the number of measurements
per sample tree increases (Table 7.2). The bark
volume predictions are also always clearly bi-
ased, even though bark thickness is measured.
Differences between the primary data set and
the test data set can be characterized using the
principal components of the between-stand ef-
fects. Let us call the weighted sums of the stand
effects at the knot angles component variables,

S1



Table 7.3. Correlations of the component variables estimated from the test data set. On the diagonal of the correlation
matrix of stand effect component variables are their variances*100. Means of the component variables in test data

set (mean) are also given.

Stem curve with bark (g = 1)

Bark curve (g = B)

Increment curve(g = I)

Component variable (k)

1 2 3 4 1

mean .101 056 .064 .034 -.037

g k

1 1 4.88
2 .63 .40
3 21 23 .16
4 17 -16 23 07

B 1 -01 -26 -11 24 27
2 -17 -15 .06 .19 .58
3 .04 =03 19 .28 31
4 -.05 12 37 12 -.08

I 1 d6  -03 -13  -00 37
2 -09 -09 .10 -03 24
3 -.00 06 -24 27 -15
4 -04 -01 .14 -02 01

2 3 4 1 2 3 4

-022 012 .003 -022 .017 -008 .002

.02
.68 .03
-01 12 .01

32 07 -16  1.66
41 20 -04 47 21
-22 -02 -16 -52 -34 .06
12 .10 A8 -13  -16 -05 .04

when the eigenvectors of the stem curve set model
are used for weighting. In the primary data set,
the component variables are identical to the prin-
cipal components and their expectations are zero.
The stand effects were calculated conditional to
the size as is also the case in the analysis stage.
The expectations of the component variables cal-
culated from the test data set clearly deviate
from zero (Table 7.3).

The variances and covariances between the
component variables in the test data were also

Set-up 7.2

g 1 2 3 4 5 6
1 072 078 083 081 076 0.71
2 057 061 062 050 033 042
3 0.66 065 063 062 068 0.70

Some estimates for the between stand covarianc-
es at knot angles were unreliable in terms of
estimated correlation coefficients over 1. Both
the fitting constant method and the REML esti-
mation gave the same result. This may be caused
by the small size of the data set and by the fact
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examined. Formula A.2.1 in Appendix A.2 was
used. In formula A.2.1 the covariances between
component variables are functions of the eigen-
vectors and covariances between the stand ef-
fects at knot angles. The variances of the stand
effects at knot angles were estimated using the
formulas of Searle (1971, p. 474). Reliability of
the estimates of the between-stand variances at
knot angles was checked by examining the con-
sistency of their proportion of the total variances
with neighbor angles (Set-up 7.2).

u
7 8 9 10 11 12 13

060 064 066 079 082 084 088
051 030 055 068 058 080
064 066 072 073 081 085 083

that in each plot there were only 1-5 trees. The
stand effect covariances between knot angles
were approximated assuming that the between
stand correlations are the same as the correlation
of total errors.

The variances of the component variables in

Ojansuu, R.

the test data set are about twice the variances of
the stand effect principal components in the pri-
mary data set, excluding bark curve, where they
are relatively smaller (Table 7.3). This can be
deduced by the different measurement accuracy
of bark thickness in the data sets. The bark meas-
urement in the primary data was made with a
Swedish bark gauge, but the measurement meth-
od used to obtain the test data is definitely more
accurate. The component variables within each
elementary curve have a different character than
the principal components in the original model,
because in the test data set the component varia-
bles are correlated.

The stem curve set model was calibrated to the
test data set using the estimated expectations of
the component variables. The results for predic-
tion of sample tree volume are given in Table
7.4. When only a few dimensions of a sample
tree are measured, the bias is smaller than that
for the prediction of uncalibrated model. When
the stem is measured more accurately, the bias
can also increase with the calibration. The cali-
bration slightly decreases the standard deviation
of stem volume, but has no effect on the standard
deviations of bark volume and volume incre-
ment when only D, ; is measured. The random
prediction errors for volume with bark and vol-
ume increment of the volume method and the
stem curve set model have the same magnitude.
For bark volume, the stem curve set model gives
smaller standard deviations. The volume predic-
tion for tally trees was not tested in the test data
because there were so few measured trees per
sample plot.

The inconsistent effect of the sample tree meas-
urements on the bias of the calibrated volume
prediction can be seen as being due to the char-
acteristics of the component variables in the test
data. If no calibrations are made for the test data
set, the bias of the stand effect estimates oscil-
lates as a function of the knot angles (Fig. 7.1).
The breast height varies between knot angles 3
and 6 and is, on average slightly over knot angle
number 4. The calibration with the averaged com-
ponent variables diminishes the average bias of
the stand effects over all knot angles; but in the
case of bark and increment curves can eliminate
only a part of the oscillation. Now the effect of
each measurement depends on its location on the
oscillating bias function; thus an inconveniently
located additional measurement can increase the
prediction error.
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Fig. 7.1. Bias of the component variable estimates in the
test data set as function of the knot angles u. The
solid line is without calibration, the broken line is
calibrated using means of the first principal compo-
nents of each elementary stem curve, and the dotted
line is calibrated using means of the first four princi-
pal components of each elementary stem curve. The
model with average size (3.1.3) is used.
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Table 7.4. Reliability of the stem, bark and increment volume predictions with improved prior information in the test
data set. Method 0 is the control without improved prior information. In methods 14 the stand effects are estimated
using expectations of the component variables c,, estimated from the test data set as follows: 1) ¢, 2) ¢, €4, 3)
€.,€2,C.3, 4) €.4,€,C.3,C.4. The measurements used are denoted as follows: a) D3, b) D, 3B,31,;and H c)D;3Bs15
H and ly. The statistics of the volume method (Method 3 in Chapter 7) are also given for the measurement
combination ¢ (M3). Statistics are given as percentages. Model 3.1.3 has been used.

With bark, t Without bark, t Without bark, t-5
Method mean Sh Sw st mean Sh Sw St mean Sh Sw St
Oa -14.48 21.04 1449 2528 -15.05 2291 16.64 28.03 -1230 30.18 16.95 34.21
la -6.64 19.58 14.08 23.87 =522 21.10 1595 26.20 -3.70 2836 16.42 32.40
2a -6.06 1853 13.51 22.70 —6.63 2043 15.64 2548 —4.99 2772 1640 31.84
3a -0.14 17.14 12.62 21.07 -0.31 1896 14.70 23.76 1.61 26.02 15.66 30.03
4a 030 16.87 1231 20.67 0.17 18.65 1437 2332 232 25.61 1550 29.60
0b -428 310 726 7.88 -2.50 228 7.14 7.49 =337 459 7.89 9.09
1b —4.51 333 746 8.14 -225 232 7.27 7.61 =329 458 7.97 9.16
2b —4.23 3.26 7.13 7.82 -349 297 7.09 7.67 -3.86 537 7.93 9.53
3b 292 364 6.76 7.65 344 351 6.84 7.66 345 5.98 7.66 9.66
4b 1.91 427 6.56 7.80 221 424 6.68 7.88 1.99 6.66 7.57 10.01
M3 -5.80 1.79 7.44 7.65 -1.98 2.65 591 6.46 099 0.61 6.53 6.59
Oc -3.98 3.06 7.30 7.90 -220 242 7.18 7.57 -2.45 294 7.86 8.38
1c —4.15 338 7.50 8.20 -1.87 257 7.31 173 -2.14 325 7.96 8.58
2c —4.14 295 115 1792 =343 270 7.11 7.59 -3.73 294 7.88 8.39
3c 2.77 3.46 6.80 7.61 315 333 6.88 7.62 247 312 7.55 8.16
4c 1.77 4.04 6.60 7.71 193 397 6.72 7.78 1.04 3.76 7.45 8.32
Bark Increment

Method mean Sh Sw St mean Sh Sw St
Oa -10.97 1223 15.66 19.75 -23.67 23.00 35.02 41.70
la -15.44 1373 1552 20.58 -9.92 2293 3413 4092
2a -2.62 1043 1533 1845 -12.02 22.66 33.60 40.34
3a 0.84 997 1523 18.12 -7.21 2298 33.06 40.06
4a 1.04 1005 1539 18.30 =777 23.07 3292 40.00
0b -16.75 12.54 14.14 18.78 0.03 632 16.10 17.26
1b -20.00 13.61 14.69 19.88 0.89 653 16.18 1741
2b -9.85 821 1329 1555 -3.07 613 1598 17.08
3b -0.79 6.76 1251 14.17 204 7.86 16.56 18.28
4b -034 648 1220 13.76 149 757 1640 18.01
M3 -32.31 20.03 31.36 39.00 439 771 12,67 14.77
Oc -16.33 1227 1420 18.65 -0.49 348 13.63 14.06
1c -19.59 1338 1475 19.78 -0.06 290 13.70 14.00
2c -9.19 796 1332 1545 -1.65 451 1352 14.23
3c 009 684 1250 14.20 572 3.66 14.08 14.54
4c 055 680 1221 1393 518 489 1395 14.76
54 Ojansuy, R.

8 Discussion

8.1 Factors affecting the applicability of the
stem curve set model in forest
inventories

When the direct application of the stem curve set
model in forest inventories is discussed, not only
the test results from the primary data set, but also
A) the representativeness of the primary data set,
B) stem form and increment variation not includ-
ed into the model and C) the model formulation
must be taken into account.

A) The fixed and the random parameters are
unbiased estimates only for the sampled target
population. The primary data set is a subjective
collection of the Scots pine cultures at the begin-
ning of the 1970’s. The main population of the
primary data set is difficult to identify from our
present forests. When the stem curve set model
is applied to other Scots pine populations, e.g. to
the Scots pines of the whole of Finland, it is
obvious that the prior information is biased. When
the tree stem curve sets are predicted, the predic-
tions shrink to the expectations of the model and
the prediction will be biased. The magnitude of
the shrinking varies from stand to stand as a
function of the quantity and quality of the sam-
ple trees.

The test results in the test data set presented in
Chapter 7.2 are not directly applicable to the
whole of Finland. The test data set used here as
the test material is representative for southern-
most Finland but because of its marginal geo-
graphical location, deviates more from the pri-
mary data set, which is a representative material
covering the whole country.

The highest measured diameter used in the
primary data set is at 70 % height. This can cause
inaccuracy to the interpolated stem curves be-
tween 70 % height and the stem top. However,
this inaccuracy can have only a small effect on
the volume prediction errors, because only 6.0 %
of the stem volume, 5.5 % of the bark volume
and 5.0 % of the volume increment is as average
above 70 % height in the primary data set.

The bark-thickness measurement in the prima-
ry data set has a random measurement error
caused by the measurement method. The meas-
urement error has an effect on the stem curves
without bark in the years t and t-5 and on the
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bark curve, but does not affect the stem curve
with bark or the increment curve. If the relative
measurement error is independent of the meas-
urement height, it only increases the within-stand
variation of the model. If the error is different on
the lower stem where the bark is rough and the
upper stem where the bark is fine, the eigenvec-
tors of the bark curve can be biased.

The effective estimation of models with ran-
dom stand effects and their application make
opposite demands on the selection of sample
trees. To obtain reliable estimates for the within-
stand variances, the model estimation requires
concentration of the sample trees on plots. In the
application the sample trees should be distribut-
ed on as many plots as possible, because the first
sample tree always has the largest effect on the
standard error of tally tree predictions. The con-
ditional prior information in the form of regres-
sion models for the stand effects as a function of
stand variables can be used to decrease predic-
tion error, but already one sample tree in the plot
improves the reliability of the prediction more.

The test data used here as test material will
later, when it covers the whole of Finland, be
more representative of the whole country than
the primary data set used here. In the test data
only an average of three sample trees are meas-
ured per sample plot. According to the problems
found with the test data set (discussed in Chapter
7.2), this seems too few for effective estimation
of the variance component. These estimation
problems can be avoided by increasing the
number of sample trees per plot. The estimation
trials made with different numbers of sample
plots in the prior data set indicates that the esti-
mation problems also disappears when the
number of measured sample plots is increased.

B) Stem form and its changes include variation
caused by the noncircularity of stem cross-sec-
tions and the variation of the annual growth
caused by effects external to the stand. The ef-
fects of noncircularity have already been dis-
cussed in Chapter 5.5. Usually the annual varia-
tion in growth is eliminated by annual growth
indices. Thinnings have different effects on the
growth in different parts of the stem. In the thin-
nings, decreasing competition increases diame-
ter growth in the lowest third of the stem; and
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near the top the diameter increment can even
degenerate (Vuokila 1960b). In this study the
data were not corrected to the average level,
because the effects of climate, thinnings and oth-
er exogenous factors are difficult to separate.
The five-year growth period used in this study
and its place in different calender years reduce
the effect of annual growth variation.

C) The model formulation has at least five criti-
cal points with regard to its application in forest
inventories: 1) the inflexibility of the model in
describing differences between stands, 2) the
problems caused by the use of size as an inde-
pendent variable, 3) the use of the concept of
stand, 4) the sensitivity of the random part of the
model with regard to the data set and 5) fluctua-
tions in the bark curve and in the increment
curve predictions. The first three restrictions have
already been discussed by Lappi (1986) and Kor-
honen (1991) with regard to the stem curve
model.

C1) The stem curve set model is inflexible in a
stand, because the logarithmic scale of the stand
effect is only an additive component without any
connection to tree size. Lappi (1986) and Korho-
nen (1991) showed that in the case of the stem
curve there exists size-dependent variation be-
tween stands. This may also apply to bark and
increment curves.

C2) The size as a fixed regressor has effects on
the usefulness of the model. The predictions are
biased in relation to the measured diameters.
When all trees have same probability to be sam-
pled or the sampling probability is proportional
to the size, this will not cause significant bias in
the predictions for stem, bark, and increment
volume. If the sampling is done with changing
probabilities in relation to some other tree varia-
bles, e.g. in relascope sampling the probability is
proportional to the tree basal area, the growing
stock volume prediction can be markedly biased,
because the model is biased in relation to the
sampling probability (Lappi & Bailey 1987).

To solve the problems of bias and inflexibility,
Korhonen (1991) proposed the use of diameter at
breast height as an independent variable in the
stem curve model. This kind of model will pro-
duce (also in relascope sampling) unbiased pre-
dictions for growing stock volume with respect
to measured diameter. If the coefficient of diam-
eter at breast height is used as a random parame-
ter, the stand-wise calibration will be more flex-
ible. The idea of using dimensions measured in
standard inventories as independent parameters
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of the model can be extended to formulate the
model in another way, utilizing the covariance
structure of random parameters and measure-
ments of random variables (e.g. Lappi 1990).

A theoretical advantage of size as an inde-
pendent variable is that the model is free of the
requirement for fixed measurements. In the stem
curve set model this means that prediction can
also made if only dimensions without bark in
year t or t-5 are made. In the present formula-
tion, where the size is a function of diameters
with bark, the predictions without measurement
of the elementary stem curve with bark lose
information because of the lack of a direct con-
nection between the measured dimensions and
tree size. One possibility to eliminate that infor-
mation loss is to separate sizes for each elemen-
tary stem curve defined as a function of its own
measurement function. In applications the sizes
can then be used as random parameters with
known covariance structure.

The allometric theory provides a basis for sim-
ple log-linear formation for models of the meas-
urement function when the standard size varia-
ble is used as an independent variable. When
diameters at fixed heights are used as independ-
ent variables, the pure allometric relation be-
tween independent variables and the measure-
ment function does not exist, because the fixed
height has different biological and geometrical
interpretation for trees of different sizes. Theo-
retically, this will lead to more sophisticated for-
mulation of the model than in the case when size
is used as an independent variable. An empirical
trial was made by replacing the size by diameter
at breast height with bark as the independent
variable of the stem curve set model (Equation
3.1.3). The error variances of the elementary
stem curve estimates were smaller than the error
variances of model 3.1.3 at the knot angles near
breast height, but larger on the stem base and on
the upper part of the stem. The prediction errors
of stem volumes, bark volume and volume incre-
ment were the same as those in model 3.1.3.

C3) The concept of stand has here been used as
synonymous with sample plot. With larger stands
the variances of the within-stand effects will be
greater than the estimates made from sample
plots. In small sample plots the mean size esti-
mates are inaccurate and they have an increasing
effect on the between-stand prediction errors.
The plot size of the primary data is quite large
and describes better the within-stand variation
than do the small sample plots used by Lappi
(1986) and Korhonen (1991). When the model is
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used for prediction, determination of the concept
stand or plot is not interesting as such. It is
enough if the concept is similar determined in
the phases of parameter estimation and stem curve
set prediction.

C4) The principal components of the covari-
ance matrix of the stand effects are very impor-
tant for the stand-wise calibration of the stem
curve set model. The analyses in the test data set
showed that the principal components estimated
from the primary data set do not have the same
meaning in the test data set as in the primary data
set (Chapter 7.2). This can be partly because the
covariance matrix of the stand effects was ap-
proximated using the assumption that the corre-
lations between the knot angles are the same as
the correlations of the total errors. There are two
more reasons which show that the principal com-
ponents are more stable than the results of Chap-
ter 7.2 indicate. Firstly, the results of the princi-
pal component analyses concerning the stem
curve with bark of the stem curve set model are
identical to the results of Lappi (1986) estimated
from an independent set of data. Secondly, the
interpretations of the two first principal compo-
nents of bark curve are consistent with earlier
knowledge of the vertical change in Scots pine
bark type, and the first principal components of
tree and stand effects for the increment curve are
consistent with the effect of competition on the
relationship between diameter and height incre-
ments.

C5) For extremely big trees, the predictions of
the bark and increment curves have irregular
fluctuations. The use of the seemingly unrelated
regressions technique for simultaneously esti-
mating models for all knot angles could decrease
the inconstant variation because the residuals of
the elements of the delineation vector are corre-
lated (e.g. Harvey 1981, p. 67). The predictions
of the model could also be improved by using
data sets with larger size variation.

8.2 Concluding remarks

Obviously there exists a large risk of obtaining
biased results, if the stem curve set model is
applied directly in forest inventories. The main
reason for this is the unrepresentativeness of the
primary data set and the probable bias if the
model is applied to the current Finnish Scots
pine population. In spite of the inadequacy of the
stem curve set model, the study provides a new
approach to the problem of predicting bark and
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increment on tree and stand level.

Generality of the stem curve set model gives
possibilities to critical examination of the effi-
ciency of different sample tree measurements.
The generality is obtained by using the tree size
as the independent variable so that the model
application is independent of fixed tree measure-
ments. In the model, all variation is divided to
the fixed, size dependent variation and to the
random variation of stand and tree effects. The
principal component analysis of the random var-
iation describes the main directions of the be-
tween stand and within stand variation in stem
form, bark thickness and stem increment.

For special purposes, it is possible to develop
simpler or, in some point of view, better models
by giving up the generality of the stem curve set
model. The volume increment model (Equation
6.7) is an example of a simpler model. It gives
the same reliability for sample tree predictions as
the stem curve set model, if the only interesting
variable is volume increment and the sample tree
variables are fixed. An example of a better mod-
el for stem curve in terms of stability in extreme
cases is the polynomial stem curve model based
on the relative form quotient (Laasasenaho 1982).
The use of relative heights and diameters gives a
stable stem curve which is always logical for
sample trees with one measured diameter and
height. The RMSE of volume prediction for sam-
ple trees is the same using the polynomial stem
curve model as when the elementary stem curve
with bark of the stem curve set model is used
(see Lappi 1986).

The elementary stem curve with bark of the
stem curve set model 3.1.3 is formally identical
to the stem curve model of Lappi (1986) and the
model 3.1.5 with the stem curve model of Kor-
honen (1991), respectively. The weight vector
for size and the model parameters were estimat-
ed anew for the stem curve set model from the
primary data. Still the differences between the
parameters of the stem curve model and the stem
curve set model describe the disparity in the data
sets used. Prediction errors of the stem curve set
model without measured sample trees are small-
er in the primary data set than the corresponding
errors of the stem curve model of Lappi (1986)
in its estimation data. The present results con-
cerning the elementary stem curve with bark and
crown height are consistent with those of Lappi
(1986) and Korhonen (1991). The sample tree
measurements of D and H, have no or very little
influence on the RMSE,% of the tally tree vol-
ume prediction with a small number of sample
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trees, if at least D, ; and H are measured from the
sample trees. Lappi (1986) showed by theoreti-
cal analysis that with a large number of sample
trees the measurement combinations with D, or
H, give a smaller RMSE,% than do measure-
ment combinations without them.

The application of the stem curve set model
for bark volume and volume increment predic-
tion can be interpreted as a combination of the
volume method and the increment method. The
final predictions are differences between two
volumes in the same way as in the volume meth-
od. The results of the comparison between the
stem curve set model and the volume method
shows clearly that the stem curve set model gives
significantly more accurate predictions of bark
volume and volume increment for tally trees
than the volume method, when only few sample
trees are measured.

Volume functions using diameter at breast
height and tree height as independent variables
are normally used with the volume method. Tree
height at the beginning of the increment period
usually includes measurement error, if the height
is measured directly, or prediction error, if it is
predicted with an auxiliary model. The effect of
omitting the height increment measurement can
be studied with the stem curve set model because
the sample tree measurements can be chosen
freely in the application phase. When the diame-
ter increment at breast height is measured from
the sample trees and if the random measurement
errors are taken into account, the height incre-
ment measurement decreases the standard error
of the volume increment only slightly for sample
and tally trees. For sample trees, the volume
increment prediction using the stem curve set
model has a smaller standard error without height
increment measurement than using the volume
method with measurement of height increment.
If we take into account the probable systematic
measurement errors of height increment, it is
obvious that, using multivariate modelling ap-
proach, the volume increment prediction is more
reliable without measurement of height incre-
ment than using the volume method with meas-
urement of height increment.
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In the increment method the volume increment
is regressed using generalist least squares esti-
mation directly on some fixed measurements and
gives the best linear unbiased prediction (BLUP)
of the volume increment. The stem curve set
model gives BLUPs for each elementary stem
curve conditional to the size. Because of the
linear structure of the model, the bark and incre-
ment curves are also BLUPs.

The stem curve set model and the increment
method (Equations 6.2-6.7) give approximately
the same reliability for the predictions of bark
volume and volume increment as a function of
the same fixed measurements. For tally trees, the
same reliability as in the stem curve set model
could also be reached using the increment meth-
od with random stand parameters. If we ignore
the consequences of the use of random stand
effects in the stem curve set method, the stem
curve set model has at least two advantages over
the increment method in increment prediction:
1) the consistency of the stem form and volume
predictions at the beginning and at the end of the
increment period and 2) free choice of the meas-
ured dimensions in the application phase. The
standard error of the volume increment predic-
tion with the increment method can be decreased
using some stand characteristics as independent
variables (Strand & Li 1990) and also stem form
variables; e.g. form quotients (Svensson 1988).
The stand variables can be taken into account by
using the stem curve set model with regression
models for the principal components of the stand
effect as a function of the independent stand
variables (see Chapter 7.1). The measured tree
dimensions used in the stem form variables can
be utilized directly in the stem curve set model.

The stem curve set model was developed for
prediction of past increment. When it is used to
stand growth simulation based on repeated pre-
dictions, there is a risk for getting biased tree
form development. For simulation purposes, the
fixed part of the stem curve set model should be
formulated a new, at least the interaction be-
tween relative size and average size should be
included in the model.

Ojansuu, R.
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Appendices

A Estimation of the stem curve set model
A.l Matrices

The stem curve set model consists of a mixed linear model for each element of the
delineation vector for stem curve set. The parameters are estimated separately for
each of the 40 element of the delineation vector (tree elementary stem curves with 13
knot angles and the crown height: 3 x 13 + 1 = 40). Denote the number of stands by
K, the number of trees in stand k by n, and the total number of trees by N. The
matrices of the normal equations (3.2.2) at the angle u for the elementary stem curve
g are the following:

The dependent variable, the elements of the delineation vector at the angle u for the
elementary stem curve g:

Y =[de(@sndy(Wia | 1N (A.L1)

The fixed independent variables, size s and average size s :

X= . rank(X) = 4 (A.12)
U Swg Skay Sx
Nx4
The fixed parameters:
a’ = [ay(u), a5 (u), a,(u), ag(u)], 1xq (A.1.3)

The incidence matrix of the stands:

Z- o rank(Z) = K. (A.1.4)

Lknk

NxK
The first and the last columns of X are linear combinations of Z, so rank [X Z] = K+2.
The random parameters, the stand effects at the knot angle u for the elementary
stem curve g:
b' = [vy(u);, ... V(W] 1xK (A.1.5)

The covariance matrix of the random parameters:

D = var[b], KxK. (A.1.6)

The covariance matrix of random errors:
R = varle], NxN. (A.1.7)

The variances var[b] and var[e] are estimated using the fitting constant method
(Henderson’s method 3, see Searle 1971).

A.2 Estimation of the covariances between the principal components
of the stem curve with bark, the bark curve and the increment curve

Covariances between the principal components of the stand effects of the elementary

stem curves are linear combinations of the covariances of the stand effects at the knot
angles and the elements of the eigenvectors:

cov(epncor) =3 Sau Wz (u)eov(v, (u)ve ()], A21)
u=l u'=l

where ¢ principal component

q = element of an eigenvector

v = random stand effect

kand k' = indices of the principal components
gand g' = indices of the elementary stem curves
uand u' = indices of the knot angles

To estimate the covariances of the principal components between the stem curve with
bark, the bark curve and the increment curve, we need the covariances between the
stand effects v;, vg= (v; — v;) and v;= (v, — v3):

cov(vi(u),ve(u)) = cov(vi(u),vi(u') — cov(vi(u),vx(u')), (A2.2a)

cov(vi(u),vi(u) = cov(vi(u),vx(u)) - cov(vi(u),vs(u)), (A.2.2b)

cov(vg(u),vg(u')) = cov(v,(u),v,(u")) + cov(vy(u),v,(u'))

= cov(vi(u),v2(u')) — cov(va(u),v,(u')), (A2.2c)
cov((ve(u),vi(u')) = cov(vy(u),va(u')) + cov(vy(u),vs(u'))

— cov(vy(u),vs(u')) — cov(vy(u),v,(u")), (A.2.2d)
cov(vi(u),vi(u')) = cov(vy(u),vy(u')) + cov(vs(u),vs(u'))

= cov(va(u),vs(u')) — cov(vs(u),va(u'), (A.2.2¢)

where the covariances between the random effects were estimated using the follow-
ing formula, which is derived from the formula for the sum of variances of two
random variables:

cov[xg(u),xg(u')] = 0.5{var[x,(u)+xg(u")] - var[xy(u)] — var[xg(u")]} (A.23)
where x vore

gand g' = indices of the elementary stem curves, g = 1, 2 or 3.
uand u' = indices of the knot angles
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B Application of the stem curve set model
B.1 Matrices

Denote the number of measured sample trees in a stand by n, the number of
measurements of tree i by m; and the total number of measurements in the stand by M.
The matrices of the normal equations (4.1.10) are:

The dependent variable, values of the auxiliary variable y corresponding to the
measurements:

i
y= , where y; -[yg(ui.),...,yg(uim,)] (B.1.1)
Y.n
Mx1

The independent variables, the fixed parameters estimated in the analysis stage,
interpolated from the values at knot angles to the measurement angles:

a

X= , where a;" =[ag(ui.),...,ag(u.m, )] (B.1.2)

a,
Mxn

The fixed parameters, sizes of the sample trees:
aT =87 =(815..-; So)s 1xn (B.1.3)

The interpolated elements of the eigenvectors for stand effects at the measurement
angles:

Z,
Z=| . |, where (B.1.4)
A
Mx(3p+1)
Zi=[Zy -Zn -Zi 1], where (B.15)
Qa(ui) .. qg(ua)
Zoy=| . . (B.16)

qgl(;li'nn) qsp(;-‘im.)

The random parameters to be estimated, the principal components of the stand effects
(ca,g=1,B,Tandk =1, ..., p):

b7 = €7 = (City oy Cipr Caty oo Catp €ty o Gy (WD), IxGpl)  (BL7)

The covariance matrix of the random parameters, the covariance matrix of the
principal components

Ojansuu, R.

var(c,) cov(cyy,v(h))
cov(cy,cpp)  var(cpn) cov(cyz,v(he))

D= : . (B.1.8)

cov(cy,€Ca)

var(cis)  cov(cy,v(h,))
cov(cy;,v(h,))

var(v(h.))

(3p+1)x(3p+1)
The random errors:
e =[ea(u)iey(um,)].  1xM (B.1.9)
The covariance matrix of the random errors:
R,
R = , where (B.1.10)
R,
MxM
R, =vur[eg(u.1) ..... e (U, )]. (B.1.11)

B.2 Simultaneous estimation of the stand effects for measured and
unmeasured elementary stem curves

The normal equations for the mixed linear model are

b

vector of the dependent variable

matrix of the fixed independent variables
vector of the fixed parameters to be estimated
matrix of the random independent variables
vector of the random effects to be estimated
vector of random errors

covariance matrix of the random errors
covariance matrix of the random effects

X'R'X  X'R'Z ][a]_[X'R-
Z'R'X Z'R'Z+D- Ha] = [ZTR-'H et (B2.1)

o

CR®TNE =

The covariance matrix of the random parameters can be partitioned into the measured

and the unmeasured part, if there is a lack of measurements for some random effects.

Denote the random effects of the measured part by b,, and the random effects of the
| unmeasured part by b,. D is now partitioned as follows:

v-[p! ] ®22)

where Dy, = var(b,,), D», = var(b,) and D, = cov(b,,. b,).

The normal equations for the measured part of the stem curves set are

ZIR'X ZIR'Z,+D; ||b,|=|ZIRy (B.2.3)

[XTR—'x X'RZ, ”é}a[XTR“y]
b, )
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The estimates for the random effects of the measured part are

ba = (ZLR-'Z, + D;}) ZIR-' (y - Xa), (B2.4)
and for the unmeasured part

b, = D,D;/b,, . (see Lappi 1991) (B.2.5)

Let us now write

D! D
D- - [D:, 1):1] (B.2.6)
and the following normal equations for the simultaneous estimation of the random
effects b, and b, :

XTR'X  XTR-'Z, 01a X'R'y
ZIR'X Z'R'Z,+D'" D"|[b,|=|ZIRy (B.2.7)
0 DZI DZI l;u 0

It can be shown that the normal equations B.2.7 are identical to equations B.2.4 and
B.2.5. The estimates for the unmeasured random effects are

Db, +D=b, =0

. . (B.2.8)
b, =-D>*"'Db,,
By inversion of the partitioned matrix we get
b, = ~(D - D3 (D;/ = Di2))(=(D:: - D3 (Di{D;2 )" (D27} )b, —

= D:IDTIII;m
which is identical to equation B.2.5.

Let us next solve the measured random effects. From the normal equations (B.2.7) we
get

ZIR"'Xa+(ZIR'Z, +D'")b, - (D2D2"'D2)b, = ZIRy. (B.2.10)
Now the term (D2D"'D2! )l;m can be written in the form
(Di{D;2)EEE (D2 i )b, = (D' ~Di})b,,. (B2.11)

where € =D, -D,(D;!D,,).

Now we get
ZIR-'Xa +(ZIR"'Z, + D' )b, - (D' D) )b, =ZIR'y 8313
ZIR-'Xa +(ZIR"Z, +D'" D" +Djl)b,  =ZIR'y’ (B.ule)
and the estimator for the measured random parameters is
b = (ZIR"Z, + Di})" ZLR"' (y - Xa) (B.2.13)

which is same as equation B.2.4.

Ojansuu, R.

C Regression models for the increment method

Model
Variable 6.2 6.3 6.4 6.5 6.6 6.7
Coefficients

Constant —4.294 -2.637 -2.879 -2.127 -1.357 -1.734
D, -0.01354 -0.002084 0.01598  0.00623
In(D, 5,) 2.1354 2.136 1.154 1.162 1.145 1.167
In(H) 0.7790 0.7337 0.5875 0.4067

3 -0.07102  0.08947
In(B, ;) 0.7030 0.7189
In(1, 3) 0.5491  0.6586
In(H/H) -0.08207  -0.1157
D¢/D, ; —0.008743 0.03030 0.7052 0.8468
In(Dy/D, ) -0.02113  -0.01971 0.07111 0.04642
T —0.05869 —0.008638
In(T) 0.4289 0.2457 -0.05189
In(B, ¥/D, ;) 0.06639  0.02337
S, 0.2709 0.2709 14.66 14.74 0.1442 0.1650
R 0.894 0.882 0.965 0.965 0.969 0.959
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D Regression models for the random parameters

Notation:

OMT Indicator variable. When the forest site type (Cajander 1909) is Oxalis-Myrtillys type,

OMT =1, others OMT = 0.

vT Indicator variable. When the forest site type is Vaccinium type, VT =1, others VT = 0.
CT Indicator variable. When the forest site type is Calluna type, CT =1, others CT = 0.

STONE Stoniness index: 0 = no stoniness, 1 = stoniness
PEAT  Peatland index: 0 = mineral soil, 1 = peatland

y-c y-coordinate

X-C x-coordinate

ALT Altitude, m

TS Temperature sum, d.d. (+5°C threshold)

D Breast height diameter of a tree, cm

Dmean  Arithmetic mean diameter of the stand, cm

N Number of stems, 1/ha

G Stand basal area, m*ha

TT Time from the last thinning, years
Standard error of the model

R? Coefficient of determination

Models for the principal component of the stand effects

Stem curve with bark, ¢,

Dependent variables

n €12 €13 Ci4
Independent
variables Coefficients and F-values
Constant -8551 9 -0.5707 11.8 -0.2608 8.8 -0.07265 5.8
OMT —0.1487 16.7 0.02999 6.8 0.01894 13.1
CT 0.0677 3.0
y-¢ —0.0005806 3.4 0.00004767 7.3 0.00003496 7.6
X-C 0.00003357 2.4
ALT -0.001018 7.1
TS -0.003374 7.3
In(TS) 2754 44
Dmean -0.006748 3.7
In(Dmean) -0.5692 31.1 0.09621 2.4
N 0.0001560 7.9
In(N) —0.4278 21.6 0.009568 5.2
In(G) 0.5248 45.7 0.02450 2.1
s, 0.01408 0.00134 0.00073 0.00052
R? 0.4684 0.1843 0.0882 0.1224

Bark curve, ¢y

Dependent variables

CB1 cB2 CB3 CB4
Independent
variables Coefficients and F-values
Constant —0.7876 14.3 2245 28 0.01081 0.7 -0.001743 0.3
OMT 0.08674 30.5
VT -0.02183 2.7
CT -0.03814 45
PEAT 0.05535 14.6 0.02116 6.6
y-¢ 0.00006592 4.9
X-C 0.00015619 9.4 0.00003881 12.0 0.00001478 4.6
ALT 0.00015912 14.6 —0.00003788 7.7
TS -0.00002123 5.5
In(TS) -0.3935 3.1
In(Dmean) -0.02041 5.9
—0.00000428 4.4
In(N) 0.03564 9.8
G 0.00101762 9.5
S 0.00357 0.00046 0.00019 0.00007
2 0.4425 0.2302 0.2216 0.1130
Increment curve, ¢;
Dependent variables
cn R c3 c4
Independent
variables Coefficients and F-values
Constant 9.729 34 -1.056 42.2 -0.01221 43 —0.009093 8.5
OMT 0.09895 22.3 0.006928 7.3
STONE 0.009257 9.5
y-C 0.00004108 6.9
X-C -0.00004356 3.1 0.00002827 5.1
ALT 0.0004764 8.2 0.00004557 6.1
TS 0.002037 5.2
In(TS) -1.768 3.8
Dmean —0.008541 9.3
In(Dmean) 0.2226 21.4
In(N) 0.05313 10.1 0.04125 24.1
T —0.004452 6.2 0.001192 3.7
S 0.00741 0.00090 0.00026 0.00012
R? 0.3772 0.3372 0.0348 0.1069
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Model for tree size (7.1c)

Independent

variable Coefficient F-value
Constant —4.787 26.7
OMT —0.009343 23
vT 0.01078 10.8
CT 0.01556 8.0
TS —0.0007677 235
In(TS) 0.8760 29.4
D —0.003188 94
In(D) 0.8238 1164.5
N 0.00003916 24.7
G —0.004306 93
In(N) -0.1078 97.5
In(G) 0.2094 40.2
S, .00123

R? 0.9861

Ojansuy, R.

E List of symbols

a vector of fixed parameters

ag(u),ag(1),ag(u),

ag(u)

dg(u)y
dg(u;)

—
-

C F£EBZP R

-
og.

(u;)

=

w »-»

Sby Sws S

Vg(u)k
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fixed parameters of the stem curve set model, in application treated as
variables

double bark thickness (cm)

double bark thickness at x meter height (cm)

bark volume

a vector of random parameters

covariance matrix of the random stand effects at the knot angles

k* principal component of the elementary stem curve g

vector of the first p principal components

stem diameter (cm)

diameter with bark in year t at x meter height (cm)

diameter without bark in year t at x meter height (cm)

diameter without bark in year t-5 at x meter height (cm)

logarithmic diameter at the angle u of tree i in the stand k for the
elementary stem curve g, analyze phase

logarithmic diameter at the angle u of tree i corresponding to the measure-
ment j for the elementary stem curve g, application phase

logarithmic delineation vector for stem curve set

covariance matrix of the random parameters (between class effects) in
linear model

index of the elementary stem curves: 1 = with bark in year t, 2 = without
bark in year t, 3 = without bark in year t-5, B = bark curve and I =
increment curve

a vector of random errors

random tree effect of the log-diameter at angle u for tree i in stand k for
elementary stem curve g

tree height (m)

tree height in year t-5 (m)

In(H)

crown height (m)

In(H,)

diameter increment at x meter height (cm)

height increment (m)

index for trees

index for measurements

index for stands

number of stands

number of trees in the stand k

total number of trees

number of measurements for tree i

total number of measurements in a stand

k* eigenvector of the between-stand covariance matrix B for the elemen-
tary stem curve g

Qi1 -+ »GQ313)

residual of the stand stem curve for measurement j in tree i

covariance matrix of the random errors (within class effects) in linear
model

size in arithmetic scale

size in logarithmic scale

preliminary estimate of s, used in applications

average size of trees in the same stand

empirically estimated between-stand, within-stand and total standard
deviations of the estimates

angle in the polar coordinate system, integer values u = 1,...,13 are used
for the knot angles.

random stand effect of the log-diameter at angle u in stand k for elemen-
tary stem curve g

stem volume

covariance matrix of the tree effects at the knot angles
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o= N b

(L LI (R [}

vector of the covariances between the random tree effects and observed
dimensions and a dimension to be predicted

model matrix for the fixed effects

model matrix for the random effects

dependent variable

transpose of matrix X

Ojansuu, R.
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of the manuscript. If the author finds the
suggested changes unacceptable, he can in-
form the editor-in-chief of his differing opin-
ion, so that the matter may be reconsidered if
necessary.

Decision whether to publish the manuscript
will be made by the editorial board within
three months after the editors have received
the revised manuscript.

Following final acceptance, no fundamental
changes may be made to manuscript without
the permission of the editor-in-chief. Major
changes will necessitate a new submission for
acceptance.

The author is responsible for the scientific
content and linguistic standard of the manu-
script. The author may not have the manu-
script published elsewhere without the per-
mission of the publishers of Acta Forestalia
Fennica. The series accepts only manuscripts
that have not earlier been published.

The author should forward the final manu-
script and original figures to the editors within
two months from acceptance. The text is best
submitted on a floppy disc, together with a
printout. The covering letter must clearly state
that the manuscript is the final version, ready
for printing.

Form and style
For matters of form and style, authors are

referred to the full instructions available from
the editors.

Kaisikirjoitusten hyviksyminen

Metsintutkimuslaitoksesta ldhtoisin olevien
kasikirjoitusten hyvaksymismenettelystd on
ohjeet Metsantutkimuslaitoksen julkaisuohje-
saannossa.

Muista kisikirjoituksista ldhetetdan Suo-
men Metsitieteellisen Seuran toimitukselle
kolme tdydellistd, viimeisteltyd kopiota, joi-
hin sisiltyvat myos kopiot kaikista kuvista ja
taulukoista. Originaaliaineistoa ei tdssa vai-
heessa laheteta.

Vastaava toimittaja lahettaa kisikirjoituk-
sen valitsemilleen ennakkotarkastajille. Teki-
jdn on otettava huomioon ennakkotarkasta-
ien ja toimituskunnan korjausesitykset. Kor-
aukset on tehtdvi vuoden kuluessa siitd, kun
kisikirjoitus on palautettu tekijalle. Jos tekija
ei voi hyviksya korjausesityksid, hinen on
ilmoitettava eridva mielipiteensd vastaavalle
toimittajalle tai toimituskunnalle, joka tarvit-
taessa ottaa asian uudelleen kasittelyyn.

Acta Forestalia Fennican toimituskunta
paittad kirjoituksen julkaisemisesta ennakko-
tarkastajien lausuntojen ja muiden ilmennei-
denseikkojen perusteella. P4atos tehddin kol-
men kuukauden kuluessa siité, kun kasikirjoi-
tuksen lopullinen korjattu versio on saapunut
toimitukselle.

Hyviksymisen jalkeen kasikirjoitukseen ei
saa tehdd olennaisia muutoksia ilman vastaa-
van toimittajan lupaa. Suuret muutokset edel-
lyttavit uutta hyvaksymista.

Tekijd vastaakirjoituksen tieteellisesté asia-
sisdllostd ja kieliasusta. Tekijd ei saa julkaista
kirjoitustamuuallailman Acta Forestalia Fen-
nican julkaisijoiden suostumusta. Acta Fores-
talia Fennicaan hyviksytddn vain aiemmin
julkaisemattomia kirjoituksia.

Tekijén tulee antaa lopullinen kisikirjoitus
ja kuvaoriginaalit toimitukselle kahden kuu-
kauden kuluessa hyviksymispaatoksesta. Ka-
sikirjoituksen saatteesta pitda selvasti ilmeti,
ettd kasikirjoitus on lopullinen, painoon tar-
koitettu kappale. Teksti otetaan mieluiten vas-
taan mikrotietokoneen levykkeelld, jonka li-
siksi tarvitaan paperituloste.

Kaisikirjoitusten ulkoasu

Kisikirjoituksen asun tulee noudattaa sarjan
kirjoitusohjeita, joita saa toimituksesta.
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Vaista, Lauri. An optimization model for Norway
spruce management based on individual-tree
growth models. Tiivistelmda: Kuusikon kasittelyn
optimointi puittaisiin kasvumalleihin pohjautuen.

Ovaskainen, Ville. Forest taxation, timber supply,
and economic efficiency. Seloste: Metsaverotus,
puun tarjonta ja taloudellinen tehokkuus.

Hamaldinen, Jouko & Kuula, Markku. An inte-
grated planning model for a farm with an
adjoining woodlot. Tiivisteimd: Metsadd omistavan
maatilan kombinoitu suunnittelumailli.

Nikinmaa, Eero. Analyses of the growth of Scots
pine: matching structure with function. Seloste:
Analyysi mannyn kasvusta; rakenteen sopeutu-
mista aineenvaihduntaan.

Nurmi, Juha. Heating values of the above ground
biomass of small-sized trees. Tiivistelma: Pienikokoisten
puiden maanpdadllisen biomassan lédmpdarvot.

Luomaijoki, Alpo. Climatic adaptation of Scots pine
(Pinus sylvestris L.) in Finland based on male flowering
phenology. Seloste: Mannyn sopeutuminen Suomen
iimastoon hedekukkimisaikojen valossa.

Makinen, Pekka. Puutavaran kuljietusyritysten menesty-
misen strategiat. Summary: Strategies used by timber
fruck transport companies to ensure business success.

Ojansuuy, Risto. Prediction of Scots pine increment using
amultivariate variance component model. Tiivistelma:
Mannyn kasvun ennustaminen monimuuttuja- ja vari-
anssikomponenttimaliilla.
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