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Highlights
• A method for assessing leaf shape for 3D plant models is proposed.
• The model is highly flexible and fits a large variety of shapes.
• It allows analysis of shape differences within and between leaf datasets.

Abstract
Accurate assessment of canopy structure is crucial in studying plant-environment interactions. The 
advancement of functional-structural plant models (FSPM), which incorporate the 3D structure of 
individual plants, increases the need for a method for accurate mathematical descriptions of leaf 
shape. A model was developed as an improvement of an existing leaf shape algorithm to describe 
a large variety of leaf shapes. Modelling accuracy was evaluated using a spatial segmentation 
method and shape differences were assessed using principal component analysis (PCA) on the 
optimised parameters. Furthermore, a method is presented to calculate the mean shape of a dataset, 
intended for obtaining a representative shape for modelling purposes. The presented model is able 
to accurately capture a large range of single, entire leaf shapes. PCA illustrated the interpretability 
of the parameter values and allowed evaluation of shape differences. The model parameters allow 
straightforward digital reconstruction of leaf shapes for modelling purposes such as FSPMs.
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1 Introduction

The shape of plant leaves plays an important role in various fields of study. Their diagnostic value 
is important in the field of systematics, where the taxonomy of closely related species, natural 
hybrids or subspecies is studied (Jensen et al. 2002), and paleobotany, where leaf geometry is 
used as proxy for paleoclimatic and paleoecological variables (Royer et al. 2005). In agricultural 
engineering, leaf shape analysis is essential for automated species recognition, which has applica-
tions in site-specific weed control and herbicide application using machine vision or remote sens-
ing (Meyer 2011). Similarly, in forest ecosystem monitoring, the ability to capture and model the 
structural complexity of the forest canopy is one of the main constraints in method development 
and can lead to inconsistencies when neglected (Côté et al. 2011). In the fields of plant model-
ling and ecophysiology, accurate descriptions of the leaves’ spatial arrangement and shape play a 
crucial role in the study of a plant’s interaction with its environment. The structure of the forest 
or crop canopy, which is the combination of leaf shape, size and spatial orientation, constitutes 
the major interface between the plant and its aerial environment, and thus influences important 
ecophysological factors such as boundary layer resistance and radiation interception, which heav-
ily impact the fluxes of water, heat and carbon (Prusinkiewicz et al. 1994). The prediction of these 
complex interactions and how morphological traits influence the final production is an important 
issue for applications such as plant breeding (Bergez et al. 2013). This makes a mathematical 
description and simulation of realistic leaf shapes indispensable in plant and tree models that take 
3D geometry into account, such as functional-structural plant models (FSPMs) (Perttunen et al. 
1996; Henke et al. 2014).

The purpose of geometric leaf descriptors is to provide a set of landmarks or parameters 
for a model, which allow the unambiguous approximation or identification of a leaf shape based 
on collected data. The level of geometrical detail contained in these descriptors depends on the 
application. A complex model may consist of large sets of parameters, which allow for a detailed 
and unbiased description of the leaf shape. Such descriptors can be useful in species determina-
tion, where the large set of parameters can be analysed through means of principal component or 
discriminant analysis (Neto et al. 2006), or for rendering realistic 3D scenes. A less complex model 
can provide a simplified though accurate representation of the leaf shape suitable for modelling 
purposes by saving substantial computation time (Fournier and Pradal 2012).

The most straightforward way to describe a leaf shape is by approximating the leaf width as 
a function of the distance to the leaf base by curve-fitting. This can be achieved using polynomials 
(Fournier et al. 2003), smoothing splines (Mündermann et al. 2005; Henke et al. 2014) or hermit 
curves (Henke et al. 2014). These methods are able to accurately describe simple leaf shapes, but 
have non-functional parameters, and therefore, cannot be directly interpreted as geometric features. 
Consequently, two morphologically very similar leaves can yield distinctly different parameter sets 
limiting applications such as studying leaf growth, as a small change in leaf shape during growth 
will not be captured by the gradual progression of one or a few parameters, but by a change of 
the entire parameter set. This limitation can be overcome by adapting the polynomial functions to 
contain only functional parameters such as curvature parameters (Dornbusch et al. 2007; Evers et 
al. 2007). While this works well for the lanceolate leaves of Gramineae, these functions are unable 
to capture more complex shapes (e.g. cordate leaves) due to their inherent inability to describe 
multivalued function shapes.

Another way to obtain geometric descriptors of leaf shape is by contour-fitting techniques, 
of which elliptic Fourier analysis (Iwata et al. 2002; Neto et al. 2006) allows near-perfect descrip-
tion of the leaf contour. However, the accuracy of this approach depends on the number of har-
monics (h) used, resulting in 4h – 3 parameters. A typical approximation uses the first 20 (Iwata 
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et al. 2002) or 30 (Neto et al. 2006) harmonics resulting in 77 or 117 (non-functional) parameters, 
respectively. While this imposes no limitations for multivariate analysis, such a number of param-
eters are not practically applicable for plant and tree models (Henke et al. 2014). Bézier curves 
(Chi et al. 2003) allow the description of a multivalued function with a low number of functional 
parameters. These are ideal for describing the general shape of plant leaves for applications such 
as species identification and growth measurements, but lack the flexibility to accurately describe 
more complex shapes.

Ideally, a leaf shape model should be applicable to a wide variety of leaf shapes and strive for 
an optimum between complexity and accuracy with parameters that are geometrically interpretable 
(i.e. functional). To this end, Young (2010) presented a simple shape algorithm that is capable of 
generating a large variety of leaf shapes with a small number of parameters. The starting condition 
of the algorithm is a line of points, representing the midrib of the leaf. These points are assigned 
a growth rate and growth direction using the model parameters and their relative position on the 
midrib. In each step of the algorithm, these points grow outward, following their assigned direc-
tion and growth rate, causing an exponential growth pattern. These “growth” parameters apply to 
the progression of the algorithm, and have no biological interpretation (i.e. they do not represent 
the growth of the leaf). Young’s primary focus was to capture the range of biological diversity in 
leaf shapes with a general and conceptually simple algorithm rather than accurately describing 
individual leaves. Therefore, the algorithm was kept relatively simple and has certain limitations 
in terms of flexibility and geometrical interpretability of the parameters.

This paper presents an adjustment to Young’s algorithm to resolve the limitations on param-
eter interpretability and flexibility. More specifically, the abstract “growth” concept was discarded, 
and the concepts of direction and length (i.e. “growth” rate) were modified into more flexible func-
tions to enable description of a large variety of single, entire leaf shapes. The model was applied to 
leaf scan data of a variety of leaf shapes (from seven tree species) to illustrate the model accuracy 
and the diagnostic interpretability of the model parameters. Furthermore, a method is described to 
allow calculation of the mean leaf shape in a dataset.

2 Materials and methods

2.1 Data acquisition

Seven tree species were selected from an existing leaf dataset (Mallah et al. 2013) based on their 
large shape differences to acquire a wide range of single leaf shapes. While this sample contains 
only trees, we believe the diversity of shapes to be sufficient to illustrate the applicability of the 
shape model for other plant species. The selection contained mask images for 16 different leaves 
derived from Alnus cordata (Loisel.) Duby, Arundinaria simonii (Carrière) Rivière & C. Rivière, 
Cercis siliquastrum L., Cercis siliquastrum F.Buerger ex Hance var. Chinensis, Argyrocytisus 
battandieri (Maire) Raynaud, Ginkgo biloba L. and Tilia oliveri Szyszył. These mask images were 
manually manipulated to remove the leaf petiole (if present) and to align the central vein of each 
leaf with the x-axis using the image manipulation software GIMP. Afterwards, contour coordinates 
were extracted by automated processing of the resulting images using the Python component of 
OpenCV. Finally, the contours were split at the midrib and normalised (i.e. length of midrib and 
width of the half leaf were set to one). Leaf model implementation, parameter optimisation, prin-
cipal component analysis (PCA) and mean leaf shape calculation were carried out in RStudio.
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2.2 Leaf shape model

The model describes the outline of a half leaf by progression of an internal variable j (0 ≤ j ≤ 1)
describing the position (j,0) on the leaf midrib. Each value of j corresponds to a coordinate on 
the leaf edge (xj,yj) (Fig. 1). This transformation is represented by a vector, of which the length 
and the orientation are determined by the value of j. The length of this vector is described by gL 
(0 ≤ gL ≤ 1), with its progression depending on the complexity of the leaf shape. In any case, the 
point at the leaf base and leaf tip correspond to the same point on the leaf edge, namely (0,0) and 
(1,0). Therefore, the length gL of their transformation vector is zero. For the common entire shape 
of many leaves, a single point jd can be located where the width is maximal (i.e. gL = 1), with gL 
strictly increasing from the leaf base to jd and strictly decreasing to the leaf tip. A simple power 
law dependence is well-suited to describe such behaviour (Young 2010):
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The magnitude of exponents k1 and k2 determine the drop-off rate of gL towards the leaf base and 
tip, respectively (Fig. 2).

The orientation of the transformation vectors is described by a slope value s, which is equal 
to tangent of the angle between the transformation vector and the midrib normal. Consequently, 
s = 0 represents a positive orientation parallel to the y-axis, a negative value for s represents a rota-
tion to the left and a positive value a rotation to the right. In the simplest case, a constant value for 
s can be used (as done in Young (2010)). However, this limits model flexibility and hinders the 
interpretability of parameter jd, as it will no longer indicate the relative position of maximal width 
on the leaf midrib. Therefore, we assured the fixed position of the maximal leaf width by assigning 
a value of zero to the slope at jd. Coordinates closer to the leaf base get assigned a negative slope 
value and those closer to the leaf tip a positive slope value. Progression of these values in terms 

Fig. 1. The model describes the leaf outline through a transformation of every 
point (j,0) on the leaf midrib. The size and orientation of these transformation 
vectors are dependent on the value of j. At the point of maximal width jd, the 
size of the this vector is 1 and its slope 0.
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of j can be described by a variety of functions depending on the complexity of the leaf that is to 
be described. In the general case of entire shapes, another power law dependence can be used:
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Contrasting to the functions describing the vector length, these functions achieve their maximal 
absolute value at the leaf base and tip. The magnitudes of b1 and b2 determine the maximal strength 
of the slope (Fig. 3), while p1 and p2 dictate the rate at which the slope increases (Fig. 4). Positive 
values for b1 and b2 cause the leaf to bulge outwards, negative values bulge inwards.

Fig. 3. Influence of parameters b1 and b2. The magnitude of these parameters deter-
mines the size of the formed extrusions. Positive values cause the leaf to push outwards, 
while negative values cause an inwards movement. jd = 0.3 , k1 = k2 = 2.5, p1 = p2 = 2.5.

Fig. 2. Influence of parameters k1 and k2 on the relative length of the transformation 
vector across the leaf midrib. jd = 0.3, b1 = b2 = 0.
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As the position of the coordinates changes according to the length and orientation of their 
transformation vectors, the change in coordinates from the leaf midrib to the leaf outline can be 
calculated using Pythagoras’ theorem:
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Therefore, the coordinates of the leaf edge are described by the following parametric equa-
tion:
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Concretely, these equations split each leaf side further into quadrants by the position of jd with 
parameters k1, b1, p1 and k2, b2, p2 describing the quadrants closest to the leaf base and tip, respec-
tively.

2.3 Model performance evaluation

Model performance was evaluated by comparing the segmentation of an area containing the input 
leaf with the model description using R packages “sp” and “rgeos” (Bivand et al. 2013; Bivand 
and Rundel 2017). This resulted in four regions (Smochina 2011) (Fig. 5):

- True Positive (TP) areas contain leaf surface that are captured by the model description;
- False Positive (FP) areas contain no leaf surface, but are described as leaf by the model;
- True Negative (TN) areas contain no leaf surface and are not described as leaf by the model;
- False Negative (FN) areas contain leaf surface, but are not captured by the model.

As this definition does not specify the size of TN around the leaf, TN was redefined as:

TN TP FP FN� � � �� �1 5( )

Fig. 4. Influence of parameters p1 and p2, which depend on the value of b. (A) b = 1, (B) b = –1. Lowering the parameter 
values cause the extrusions to move away from the midrib, while higher values cause them to move towards the midrib. 
jd = 0.3 , k1 = k2 = 2.5.
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These values were then used to calculate the accuracy (Acc) of the model (Smochina 2011):

Acc
TP TN

TP TN FP FN
FP FN�

�
� � �

� � �1 6( )

which represents the portion of correctly classified area (both leaf and non-leaf) by the model.

2.4 Parameter optimisation

A parameter optimisation was conducted to find the optimal parameter sets that best described each 
individual leaf half according to the accuracy criterion (Eq. 6). Due to the multi-dimensionality 
of this problem with respect to model parameters, optimisation was done by applying a genetic 
algorithm to find the global minimum using R package “genalg” (Willighagen and Ballings 2015). 
A genetic algorithm is a constrained optimisation (i.e. the boundaries of each parameter must be 
set prior to optimisation), which allows i) the elimination of nonsensical parameter combinations 
(e.g. negative values for k1,2) and ii) maintaining the geometric interpretability jd as the position on 
which the leaf reaches its maximal width, while still allowing a broad search within the parameter 
space. Therefore, k1,2 was constrained between 0 and 10, b1,2 between –10 and 10 and p1,2 between 
0 and 20. Parameter jd was set to allow a maximal deviation of 0.1 from the true relative position 
of maximal width in the data.

2.5 Mean leaf shape calculation

The mean leaf shape of each group cannot be calculated by simply averaging each parameter in the 
set due to the inherent interdependency of the parameters k, b and p in each quadrant of the leaf, 
i.e. the magnitude of these parameters heavily affects the contribution of the other parameters to 
the size and shape of each quadrant. Therefore, a set of comparable pseudo-landmarks (Dryden 
and Mardia 1998) needed to be defined on the outline of each (half) leaf.

This was achieved by calculating the intersections of a set of lines originating in the leaf 
centroid, defined as (jd,0), at an incrementing angle α with the leaf contour (Fig. 6). An arbitrary 
value of α = 2° was chosen, resulting in a set of 91 pseudo-landmarks. In Ginkgo, the centroid 
definition was shifted to (1,0) to ensure a single intersection for each line. The resulting coordi-
nates serve as a set of pseudo-landmarks which can be averaged across the samples, resulting in 
a description of the mean leaf shape.

Fig. 5. Illustrative example of model performance criterion areas when 
a leaf is classified as a square.



8

Silva Fennica vol. 52 no. 2 article id 7740 · Coussement et al. · A flexible geometric model for leaf shape…

3 Results

The flexibility of the model allows an accurate description of all selected single, entire leaf shapes 
(Fig. 7). On average, the model overestimated the normalised area of the leaves by 0.14%, and 
modelled them with an accuracy (as defined by Eq. 6) of 97.88%. The means and confidence inter-
vals of the normalised area, and the accuracy of the model for each leaf group are given in Table 1.

Fig. 6. Definition of pseudo-landmarks for calculating the mean leaf shape. α = 
180°
n

 
with n + 1 the amount of pseudo-landmarks.

Fig. 7. Optimised model description (solid line) of a random leaf sam-
ple in all seven tree species (Mallah et al. 2013): Alnus cordata (A), 
Cornus kousa (B), Ginkgo biloba (C), Arundinaria simonii (D), Cer-
cis siliquastrum (E), Argyrocytisus battandieri (F) and Tilia oliveri (G) 
plotted on the original data (white mask image).
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The interpretability of the parameters can be illustrated using a PCA on the parameter sets 
of the different plant species. For illustrative purposes, a PCA is shown for the half leaves of three 
distinctly different leaf types: i) the aristate shape of Cornus, ii) the reniform shape of Cercis and 
iii) the flabellate shape of Ginkgo (Fig. 8). It clearly shows how Ginkgo leaves distinguish them-
selves from Cornus and Cercis leaves by having relatively:

- Large values for k2 and b2, which indicates an outward bulge at the leaf tips,
- A large value for p2 indicating this bulge is oriented close to the leaf midrib,
- Low values for k1, b1, indicating an inward bulge at the leaf petiole.

Table 1. Comparison of the normalised area of the leaves of the seven selected tree species with their 
respective model fits. The accuracy of the model fit as defined in Eq. 6 is also given for each species.

Species name Area (Data)
Mean – [95% CI]

Area (Fit)
Mean – [95% CI]

Accuracy
Mean – [95% CI]

Alnus cordata  0.746
[0.710–0.800]

0.748
[0.712–0.801]

 0.984
[0.980–0.987]

Arundinaria simonii  0.719
[0.684–0.784]

0.718
[0.683–0.779]

 0.978
[0.970–0.984]

Cercis siliquastrum  0.934
[0.868–1.057]

0.936
[0.871–1.053]

 0.982
[0.974–0.988]

Cornus kousa  0.648
[0.623–0.688]

0.646
[0.621–0.687]

 0.989
[0.986–0.992]

Argyrocytisus battandieri  0.714
[0.692–0.731]

0.711
[0.689–0.725]

 0.987
[0.983–0.991]

Ginkgo biloba  0.735
[0.618–0.879]

0.726
[0.614–0.864]

 0.956
[0.941–0.972]

Tilia oliveri  0.749
[0.720–0.789]

0.754
[0.724–0.794]

 0.976
[0.970–0.980]

Fig. 8. Principal component analysis (PCA) on the parameters of the half leaf samples (where 
L and R represent the left and right side of the leaf respectively) of Cornus, Cercis and Ginkgo 
indicating the principal shape differences between groups expressed in relative difference in 
shape parameters. The ellipses represent the 95% confidence intervals for each group. Overlap-
ping ellipses indicate similarity between groups, and point to symmetry in the leaves.
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Similarly, Cercis is distinguished by high values for k1 and b1, combined with a low value for 
p1, illustrating the presence of an outward leaf bulge oriented away from the leaf midrib. Cornus is 
mainly distinguished by the high value for p1. Combined with moderate values for k1 and b1 this can 
indicate an acute leaf base. The low values of k2, b2, and p2 may suggest the presence of a leaf tip. 
It must be noted however, that the PCA plot shows relative rather than absolute parameter values. 
Therefore, PCA is a good tool to compare relative shape differences but direct interpretation of shape 
from the model parameters should preferably be done directly on the absolute model parameters.

The calculated mean leaf shapes underestimate the true mean area ranging from 0.13% in 
Alnus to 3.82% in Ginkgo (Table 2).

4 Discussion

The model presented in this paper was built on the concepts of the growth-algorithm model pre-
sented by Young (2010) with the intention of improving flexibility and parameter interpretability to 
describe individual leaves with high accuracy. The notion of using an internal variable to describe 
the leaf outline through transformation vectors proved a useful approach to describe a large variety 
of leaves with the inclusion of a slope variable to deal with multivalued function shapes. However, 
Young’s algorithm relies on multiple evaluations of the model (i.e. the transformation vectors are 
applied several times) to generate leaf shapes. Hence, the number of evaluation steps determines the 
final size of the leaf, but also alters its shape. This method is not suited for dealing with normalised 
shapes and hinders evaluation of the contribution of each parameter to the leaf’s shape. Secondly, 
Young represents the slope of the transformation vectors as a constant. This results in a low flex-
ibility of the model, but also hinders the interpretation of jd which then no longer corresponds to 
the point of maximal width. These problems were addressed to create an improved model, suited 
for mathematically describing the outlines of a large variety of single, entire leaf shapes.

In its current form, the shape of each leaf half is described by seven parameters (i.e. jd, k1, 
k2, b1, b2, p1 and p2), which results in a required 15 parameters for a full leaf shape description, 
including a single parameter describing the proportion of each leaf half to the entire normalised 
leaf. Additionally, the length and width of the leaf are required for a full digital reconstruction of 
the leaf on the original scale.

In applications where a low amount of parameters is preferred over high accuracy, a number 
of simplifications to the model can be made. Firstly, a PCA analysis can be used on the opposing 
leaf halves to assess whether the leaves can be assumed symmetrical (Fig. 8). If this is the case, 
the parameter set can be reduced from 15 to 7, as a proportionality parameter is then redundant. 

Table 2. Comparison of the mean normalised area of the leaves of the seven selected tree species with 
the normalised area of the calculated mean leaf shape for each group.

Species name Mean area (Data) Area mean shape Relative difference in area

Alnus cordata  0.746 0.745 –0.13%
Arundinaria simonii  0.719 0.708 –1.59%
Cercis siliquastrum  0.934 0.931 –0.35%
Cornus kousa  0.648 0.641 –1.15%
Argyrocytisus battandieri  0.714 0.708 –0.82%
Ginkgo biloba  0.735 0.707 –3.82%
Tilia oliveri  0.749 0.742 –0.93%
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Secondly, in the case of very similar leaves (e.g. a single species), less flexibility is required. This 
allows the user to replace one or more parameters with well-chosen constants, effectively fine-
tuning the model for the leaves in question.

In comparison to other methods, this model provides the advantage of being able to describe 
multivalued function shapes (as opposed to polynomials (Fournier et al. 2003), smoothing splines 
(Mündermann et al. 2005; Henke et al. 2014) or hermit curves (Henke et al. 2014)) with high flex-
ibility (as opposed to Bézier curves (Chi et al. 2003)) and a relatively low amount of diagnostic 
parameters (as opposed to elliptic Fourier analysis (Iwata et al. 2002; Neto et al. 2006)).

Aside from the leaf shape model, a method was presented for calculating the mean leaf shape 
as a simplified version of the Procrustes mean shape (Stegmann and Gomez 2002). Where the pre-
sented mean shape is obtained by immediate comparison of the acquired landmarks, the Procrustes 
mean allows additional rotation and rescaling of the landmarks in order to optimise the shape 
alignment. These additional operations are redundant in this case as scaling was removed during 
normalisation, and the orientation is fixed due to the presence of the leaf petiole. The method for 
acquiring the landmarks was chosen to obtain a large, unambiguous set of comparable landmarks. 
The resulting mean shapes are good representations of the shapes in each group, demonstrated 
by their normalised area which closely approximates the true group mean (Table 2). The larger 
deviation of Ginkgo can be ascribed to a combination of large shape variability in the dataset and 
the irregular edges at the leaf tips.

Calculation of the mean leaf shape allows for the generation of a single representative 
shape of a leaf dataset. Combining this with an architectural model, results in a detailed descrip-
tion of the canopy. In the case of crop models, this allows straightforward evaluation of how leaf 
shape differences between plant genotypes influence crop characteristics such as light interception 
and photosynthesis for plant ideotyping (Sarlikioti et al. 2011). This presents a significant increase 
in model complexity to classical crop models, which often represent the crop canopy as a fixed nu 
mber of horizontal layers (e.g. comparison in Confalonieri et al. 2016). However, it can provide 
a solution to inconsistencies arising from neglecting canopy complexity such as leaf senescence 
resulting from self-shading and leaf age (Stella et al. 2014). Furthermore, proper simulation of 
tree light interception could be of major importance in understanding the microclimate, and thus 
growth conditions, of understorey plant species (De Frenne et al. 2013). Inclusion of such com-
plexity substantially increases the performance of modelling light interception, but also allows 
simulation of the effect of individual leaves on tree hydraulics (de Reffye et al. 1997) and detailed 
descriptions of adaptation to light of individual leaves in the crown (Eschenbach 2000).

The presented model for capturing the planar leaf shape of trees can smoothly be extended 
for an even more detailed 3D leaf representation by including additional equations, which indepen-
dently describe the progression of potential z-coordinates (Supplementary file S1: Fig. S.1, avail-
able at https://doi.org/10.14214/sf.7740). However, parameterisation of this additional complexity 
requires 3D digitising using in situ photographs from different perspectives or use of digitisers 
(Falster and Westoby 2003; Evers et al. 2005; Dornbusch et al. 2007; Dauzat et al. 2008), which 
was not the focus of our study.

In this paper a highly flexible and customisable model has been presented for the digitalisa-
tion of single, entire leaf shapes. The model was demonstrated for seven contrasting leaf shapes, 
illustrating the model’s capability of capturing a large range of shapes with high accuracy. The 
interpretability of the parameters allows evaluation of (dis)similarities between leaf groups or 
opposing leaf halves through PCA. The presented method for calculating the mean shape of a 
group offers perspectives for modelling purposes such as FSPMs.

https://doi.org/10.14214/sf.7740
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