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Abstract

Pulkkinen, M. 2012. On non-circularity of tree stem cross-sections: Effect of diameter 
selection on cross-section area estimation, Bitterlich sampling and stem volume estima-
tion in Scots pine. Silva Fennica 46(5B): 747–986.

In the common methods of forest mensuration, including stem volume models and Bit-
terlich sampling, stem cross-sections are assumed to be circular. In nature this assumption 
is never exactly fulfilled. Errors due to non-circularity have been presumed to be small 
and unimportant but studied little: theoretical and empirical studies exist on cross-section 
area estimation, but errors in stem volume estimation have not been investigated at 
all, and errors in Bitterlich sampling are theoretically known only for stand basal area 
estimation. In the theoretical part of this study, we developed methods for quantifying 
the systematic and sampling errors that 22 common ways of selecting diameter within 
non-circular cross-sections induce (i) in area estimates by the circle area formula, (ii) 
in stand total estimates by Bitterlich sampling, and (iii) in stem volume estimates by a 
volume equation, by a cubic-spline-interpolated stem curve, and by a generalised volume 
estimator. In the empirical part, based on the digital images of 709 discs taken at 6–10 
heights in 81 Scots pine stems from different parts of Finland, we investigated the varia-
tion in cross-section shape, and demonstrated the magnitude of the errors presented in the 
theoretical part. We found that non-circularity causes systematic overestimation of area 
and volume, and inflicts potentially systematic error on stand total estimates by Bitterlich 
sampling. In our data these effects were small, but the finding is not generalisable due 
the skewed size distribution and poor geographical representativeness of the data. We 
recommend using diameter derived from girth for both tree and stand level estimation, 
as it involves no sampling error and produces clearly the most stable systematic errors.
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1 Introduction
In the common methods of forest mensuration, the cross-sections of tree stems are assumed 
to be circular: The area of a stem cross-section is usually estimated with the circle area 
formula. The volume of a stem is typically estimated as the solid of revolution of a stem 
curve, or with a volume equation constructed with a combination of circle-base geometric 
solids (cones, paraboloids, neiloids) as the starting point. Trees to be measured in forest 
inventories are often selected with Bitterlich sampling (relascope sampling), where the 
inclusion probabilities, required in the estimator of the stand total of any characteristic of 
interest, are estimated by assuming that the breast height cross-sections of the selected trees 
are circular. The basal area of a stand is estimated either as the sum of the treewise estimates 
of cross-section area given by the circle area formula, or, as is most often the case in practi-
cal forestry, by multiplying the number of trees selected in Bitterlich sampling with the so 
called basal area factor; the latter is a special case of the stand total estimation in Bitterlich 
sampling and thus assumes circularity on the breast height cross-sections of the trees.

In nature, however, the cross-sections of tree stems are hardly ever exactly circular. Non-
circularity occurs due to defects and deformations inflicted by pathogens or mechanical 
damages, but also without them, in entirely healthy and undamaged trees. Asymmetric 
growing space affecting the access of a tree to light has been suggested to be one potential 
cause of non-circularity: with uneven spatial distribution of light, the crown would develop 
asymmetrically, and the stem should then compensate the resulting mass imbalance by 
increased wood formation in the direction of the torsional moment. Observations have 
been reported both for (e.g. Isomäki 1986, Robertson 1991) and against (e.g. Bucht 1981, 
Bouillet and Houllier 1994) this idea. Wind is another factor proposed to induce non-
circularity (Banks 1973, Grace 1977). The mechanism would essentially be similar to the 
one suggested above: winds blowing continuously from the same direction would cause 
a torsional moment, which the stem should then counteract by forming more wood in the 
direction of the wind. Observations supporting this idea have been reported, for example, 
by Müller (1958a) and Robertson (1986, 1990, 1991). Through the same mechanism, 
growing in a steep slope or in a leaning position could also result in non-circular stems 
(Pawsey 1966, Loetsch et al. 1973). Regular heavy snow loads, in turn, could encourage 
trees to develop straight stems with circular cross-sections to resist the bending forces of 
the load (Professor emeritus Pertti Hari, personal communication). In general, eccentric 
radial growth has often been found to be associated with reaction wood formation (e.g. 
Burdon 1975, Harris 1977, Robertson 1991). The factors listed above could explain the 
age-related variation in non-circularity: old trees tend to have more irregular cross-sections 
than young ones, simply because they have been exposed to inflicting growing conditions 
for a longer time. However, even if growing in similar conditions, some species appear to 
be more non-circular than others: according to Kärkkäinen (2003), broad-leaved species 
in Finland are in general more non-circular than coniferous ones; Loetsch et al. (1973), in 
turn, mention Tectona grandis, Carpinus betulus and Robinia pseudacacia as the species 
with very irregular cross-sections.

Following from the circularity assumption, the key characteristic of a stem cross-section 
is its diameter. Yet in a non-circular cross-section there is no single diameter value but diam-
eter varies with direction. In practice, diameter is typically measured with a caliper, which 
gives the distance between two parallel tangents (that are perpendicular to the direction 
in which the diameter is being measured), or with a girth tape, by dividing the perimeter 
measurement by π, which gives the mean of the calipered diameter over all directions (as 
we will see in Chapter 2). It is important to differentiate between diameter variation due to 
non-circular shape and diameter variation caused by measurement errors (arising from faulty 
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handling of instruments, adverse measurement conditions, psychological factors etc.); in 
literature this distinction has not always been made, but genuine measurement errors have 
erroneously been ascribed to non-circularity (Matérn 1990).

Variation in diameter within a cross-section of a tree causes variation in the output of such 
a cross-section area or volume estimator where the diameter is used as an input variable: 
the estimate of area or volume depends on the selection of diameter. This selection involves 
the choice of the measurement direction, the number of diameters to be measured and the 
type of mean (geometric, arithmetic, quadratic) to be applied to the measured diameters. 
Volume models often involve diameters at more than one height in the stem; the more heights 
are involved the more complex variation non-circularity potentially induces in the volume 
estimates. The within-tree variation in estimator output can be characterised by bias and 
variance. Bias is a measure of the systematic error due to non-circularity: it is the deviation 
of the mean of all possible estimates, obtained with all possible outcomes of the diameter 
selection, from the true value, or in other words, the mean error expected over all possible 
outcomes of the diameter selection. Variance of all possible estimates around their mean, in 
turn, quantifies the sampling error related to non-circularity; from it we can derive the likely 
range of the error in the estimate associated with one outcome of the diameter selection.

In Bitterlich sampling, variation in diameter within the breast height cross-section causes 
variation in the estimate of the inclusion probability of a tree, since the estimator of the 
probability, based on the circularity assumption, involves the breast height diameter as its 
input variable. In addition (as we will see in Chapter 4; not shown before), non-circularity 
inflicts another separable error component in the inclusion probability estimate, dependent 
only of the cross-section shape and independent of diameter selection. The combination of 
these errors then decides how the tree contributes, due to its non-circularity, to the bias of 
the stand total estimator of any characteristic of interest.

In his path-breaking study, Matérn (1956) derived, without postulating anything about 
the shape of a cross-section, the bias and the approximative variance for the area esti-
mators based on the circle area formula and some common diameter selection methods 
(diameter derived from perimeter, diameter calipered in a random direction, mean of this 
diameter and its perpendicular, or mean of two diameters calipered in random directions). 
On the basis of the bias formulae, he could show that these area estimators systematically 
overestimate true cross-section area. Furthermore, he developed theory on the effect of 
non-circularity on basal area estimation with Bitterlich sampling and was able to establish 
that the overestimating bias induced by non-circularity is practically (with the commonly 
used small viewing angles) the same as we would get by calipering every stem in one 
randomly chosen direction. In a later work (1990), he then applied this theory in data that 
consisted of contour drawings made on over one hundred discs sawn on a about forty Scots 
pine and Norway spruce stems. Besides Matérn’s work, no other theoretical developments 
concerning the effect of within-cross-section diameter variation on area estimation are to 
be found in literature. Likewise, the effect of non-circularity on stem volume estimation 
or on estimation of other stand totals than basal area in Bitterlich sampling appear hitherto 
theoretically unexplored.

Many empirical studies addressing non-circularity have focused on the shape of cross-
sections, investigating with simple shape indices to what extent cross-sections deviate from 
a circle and how this deviation is related to position of the cross-section in the stem, tree 
species, silvicultural treatments, growing conditions etc. (e.g. Renvall 1923, Solbraa 1939, 
Williamson 1975, Kellogg and Barber 1981, Okstad 1983, Mäkinen 1998). Another large 
set of empirical studies have concerned cross-section area estimation with the circle area 
formula and different diameter selection methods, reporting differences in area estimates 
between the diameter selection methods and, more recently with the emergence of less 
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laborious area measurement methods, also the errors with respect to true area (e.g. Kennel 
1959, Chacko 1961, Kärkkäinen 1975a, Biging and Wensel 1988, Gregoire et al. 1990). In 
many of these studies, in particular earlier ones, data consist of field measurements with 
a caliper or a girth tape and are thus very likely to contain measurement errors. A clearly 
distinct branch of studies, making use of ample data of cross-section radii provided by 
scanners employed in sawmills, have tested different models of cross-section shape with the 
aim of adapting sawing patterns to maximise the sawing yield (e.g. Skatter and Høibø 1998, 
Saint-André and Leban 2000). Practically no empirical studies seem to exist concerning 
the effect of within-cross-section diameter variation on volume estimation nor concerning 
the effect of non-circularity on Bitterlich sampling.

Nonetheless, the effects of non-circularity are worth investigating, even though other 
sources of error (sampling errors, measurement errors, model misspecification errors, 
estimation errors in model parameters, model residual errors) probably induce much more 
uncertainty in the results of forest inventories: on the basis of Matérn’s theoretical results, 
it is realistic to anticipate that non-circularity might inflict systematic errors also in volume 
estimates and stand total estimates by Bitterlich sampling, and that these, although presum-
ably small in magnitude, can then cumulate into considerable errors in large area inven-
tories. Further, in research purposes where one often strives for eliminating confounding 
factors, taking non-circularity effect into account may clarify and consolidate the results 
of analyses; particularly, when estimating growth with the difference between diameters, 
cross-section areas or stem volumes at two time points, the potentially asymmetric growth 
in non-circular cross-sections need be heeded.

This study concerns the effects of non-circularity on (i) cross-section area estimation with 
the circle area formula, (ii) stand total estimation in Bitterlich sampling with the circularity 
assumption, and (iii) stem volume estimation by a standard three-variable volume equation, 
by a non-parametric stem curve often applied in research purposes, and by a theoretical 
general volume estimator based on a cross-section area estimation function. The estimators 
considered are commonly used for standing trees or felled sample trees and involve dimen-
sions of stems that can be measured from outside with the usual measurement equipment 
(calipered diameters, perimeters given by a tape, height obtained with a hypsometer or a 
tape). The diameter selection methods included in the examination are such that they exist 
in literature and are used, or could in principle be used, in practice. The first aim of the 
study was to develop further the existing theory: to derive the missing statistical properties 
of the area estimators under within-cross-section diameter variation, to devise methods for 
estimating similar statistical properties for the volume estimators, and to unravel theoreti-
cally how non-circularity affects Bitterlich sampling, without postulating anything about 
cross-section shape. The second aim of the study was to investigate with reasonable data 
how cross-section shape varies in Scots pine and of what magnitude the above-mentioned 
theoretically established effects of non-circularity can be in practice.

In the theoretical part of the work, we (i) derived the within-cross-section bias, approxi-
mative variance and true variance for the area estimators based on the circle area formula 
and five common diameter selection methods (involving diameters calipered in randomly 
chosen directions and their perpendiculars; methods already addressed by Matérn), as well 
as their generalisations up to n diameters, (ii) described how non-circularity of breast height 
cross-sections influences inclusion probabilities of trees and hence stand total estimation in 
Bitterlich sampling, (iii) derived the non-uniform direction distributions for the diameters 
measured parallel or perpendicular to plot radius in Bitterlich sampling, and presented the 
within-cross-section bias, approximative variance and true variance for the area estima-
tors based on the circle area formula and eight diameter selection methods involving these 
diameters, and (iv) presented methods for estimating the within-tree bias and variance of 
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the three types of volume estimators (volume equation, non-parametric stem curve, theo-
retical general volume estimator based on a cross-section area estimation function) with 
the diameter selection methods considered in (i) and (iii).

The empirical part of the work relied on the data of 709 discs taken at 6–10 heights in 
81 healthy Scots pine stems in different parts of Finland; to eliminate measurement errors, 
the characteristics of the cross-sections were computed from digital images. With these 
data, we (i) investigated the variation in cross-section shape in different parts of the stems 
by means of some scalar and functional indices, (ii) estimated the within-cross-section 
biases and variances of the area estimators based on the circle area formula and 22 diameter 
selection methods (including those considered in the theoretical part), (iii) estimated the 
within-tree biases and variances of the three types of volume estimators with the same 22 
diameter selection methods, and (iv) estimated, still with the same 22 diameter selection 
methods, the tree-specific errors caused by non-circularity in the inclusion probabilities 
in Bitterlich sampling, imparting the contribution of each tree in the bias of a stand total 
estimate. Owing to some defects in the data (non-probabilistic sampling of trees with 
uneven spatial distribution over Finland, skewed size distribution with small trees highly 
over-represented, debarking of discs before imaging), the empirical results cannot be gener-
alised to any defined population (such as the Scots pine trees in Finland) or do not compare 
with the usual characteristics (that include bark) but should rather be taken as illustrations.

As a final remark, non-circularity was here studied as a static geometric phenomenon: 
the biological processes forming cross-section shape and the factors influencing these pro-
cesses (site conditions, competition, management history of the stand etc.) were beyond 
the scope of this study.
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2 Geometrical and Statistical Concepts
In this chapter, we introduce the notions of convex closure and support function, the latter 
of which we then use to define the key concept of diameter. Then we describe diameter 
selection within a cross-section of a tree stem as a random experiment involving sampling 
from diameter direction distribution and present some characteristics to summarise the 
diameter distribution within a cross-section. Further, we illustrate with artificial examples 
how these characteristics relate to the shape of the convex closure of a cross-section. Finally, 
we define radius and breadth, two other dimensions of a cross-section. Much of the notation 
employed later in the thesis is set up in this chapter.

Let us consider a cross-section perpendicular to the longitudinal axis of a tree stem as 
a closed and bounded set in R2. This set is convex if for every pair of points in it the line 
segment connecting the points is also contained in it. The convex closure of the set is the 
intersection of all the closed convex sets in R2 that contain the set (Fig. 1); from the defi-
nition it immediately follows that the cross-section is convex if and only if it equals its 
convex closure (Santaló 1976, Kelly and Weiss 1979). The boundary of the convex closure 
forms a closed convex curve (Santaló 1976), the length of which is here referred to as the 
convex perimeter of the cross-section and denoted by C. The area of the convex closure is 
here termed the convex area of the cross-section and denoted by AC, whereas for the area 
of the cross-section the expression true area and denotation A is used. Clearly, every non-
convex cross-section is smaller in area and larger in perimeter than its convex closure, that 
is, always A ≤ AC and true perimeter ≥ C.

The concept of convex closure is important in forest mensuration, because the commonly 
used measuring instruments — girth tape, caliper and relascope — do not detect the pos-
sible non-convexity of a cross-section but only provide information on its convex closure: 
A girth tape stretched around a stem contours the convex closure of a cross-section and 
gives the convex perimeter as its reading. Caliper and relascope measurements, in turn, 
are based on observing the tangents of the convex closure of a cross-section (Matérn 1956, 
Matérn 1990, Loetsch et al. 1973, Bitterlich 1984).

Support function, first applied by Matérn (1956) in a context similar to this, is an invalu-
able tool for relating a convex closure with its tangents by a straightforward mathematical 
expression. In order to define the function, we first need to set a rectangular planar co-
ordinate system: the origin is chosen to be an interior point O of the convex closure, and a 
reference direction (the direction of the positive x-axis) is fixed; as usual, we measure the 
angles anticlockwise with respect to the reference direction. Now the value p(θ) of the sup-
port function p:[0, 2π)→(0, ∞) of the convex closure is defined as the length of the normal 
drawn in direction θ from the origin O to the tangent of the convex closure (Fig. 2) (Matérn 
1956, 1990, Santaló 1976; see Kelly and Weiss 1979, Rockafellar 1970, Stoyan and Stoyan 
1994, and Webster 1994 for a more general definition). Different selections of O naturally 
result in different functions (which cannot be transformed to the same form by a simple 

Fig. 1. Non-convex cross-section (left) and its convex closure (right).



762

Silva Fennica 46(5B), 2012 research articles

phase transition, as is the case with different x-axis direction selections); in other words, 
the support function of a set is always defined with reference to some inner point of the set.

A necessary and sufficient condition for any twice differentiable nonnegative function 
p(·) to be a support function of a convex closure is that p(θ)+p″(θ)>0 for all θ in [0, 2π) 
(Matérn 1956, Santaló 1976). There is a one-to-one correspondence between the shape 
of a convex closure and its support function, that is, the boundary curve of the closure 
determines p(·) uniquely and vice versa (Rockafellar 1970, Webster 1994). As suggested 
above, the family of all the tangents of a convex closure is easy to express in terms of the 
support function; from the tangents, in turn, a parametric representation for the rectangu-
lar Cartesian co-ordinates of the boundary is straightforward to derive; then, knowing the 
boundary co-ordinates, we can express the perimeter and the area of the convex closure in 
terms of the support function as

C = p
0

2π

∫ (θ)dθ ,  
(1)

and

AC = 1
2

p(θ)[p(θ)+ ′′p (θ)]
0

2π

∫ dθ

 = 1
2

[p(θ)2 − ′p (θ)2]
0

2π

∫ dθ  

(2)

(Matérn 1956, Santaló 1976, Stoyan and Stoyan 1994). For a more detailed discussion and 
derivation of these results, see Appendix A.

The crux of the usefulness of the support function in our context is that it lends itself so 
naturally to the diameter definition common in forestry: the diameter of a cross-section is 
the continuous function D:[0, π)→(0, ∞),

D(θ) = p(θ)+ p(θ+ π) .  (3)

The diameter in direction θ is thus the distance between the two parallel tangents of the 
convex closure of the cross-section drawn in direction θ+π/2, or, equivalently, the length of 
the orthogonal projection of the convex closure of the cross-section in direction θ (Fig. 3). 
Accordingly, a diameter defined in this way corresponds to a calipered diameter in practi-
cal forest mensuration on one hand (Matérn 1956, 1990), and to the general concept of 
the width of a closed set in Euclidian n-spaces on the other hand (Kelly and Weiss 1979, 
Stoyan and Stoyan 1994). Note that there is a clear distinction between this definition and 

p(θ)

O
θ

Fig. 2. Definition of the support function p(·) of 
the convex closure of a cross-section with 
reference to the interior point O.
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the usual topological concept of the diameter of a set, which is defined as the supremum 
of the Euclidian distances between all the pairs of the points in the set (see e.g. Kelly and 
Weiss 1979, Santaló 1976). Although the support function is always defined with respect 
to some interior point O of the cross-section, the diameter function is invariant of the 
selection of this point.

Measuring a diameter of a non-circular cross-section means sampling from an infinite 
“diameter population” within the cross-section. This can be carried out by selecting a 
diameter direction θ within the interval [0, π). If θ is sampled randomly, implying that θ 
is a random variable with some probability distribution, also the diameter D(θ) becomes a 
random variable with some probability distribution (as D(θ) is merely a continuous transfor-
mation of θ determined by the form of the cross-section). The diameter moments and central 
moments, which characterise the diameter distribution within the cross-section, can then 
be expressed by means of the diameter function and the direction distribution: for k∈Q+,

E[D(θ)k ] = D
0

π

∫ (θ)k fθ(θ)dθ  (4)

and

E D(θ)− E[D(θ)]{ }k{ } = D(θ)− E[D(θ)]{ }k

0

π

∫ fθ(θ)dθ ,  (5)

where fθ(θ) is the probability density function of θ. Note that although we in the following 
consider diameter moments in a cross-section primarily over the uniform direction distribu-
tion in [0, π), this distribution is, although perhaps the most natural choice, by no means 
the only option. For example, if the breast height cross-section of a tree deviates from the 
circular shape, measuring the breast height diameter parallel or perpendicular to the plot 
radius direction in relascope sampling corresponds to selecting the diameter direction from 
a particular non-uniform direction distribution (see Chapter 4, Section 4.2).

As the probability density function of the uniform direction distribution is 1/π for θ∈[0, π) 
and zero elsewhere, the mean diameter in a cross-section over this distribution becomes

µD = E[D(θ)] = 1
π

D
0

π

∫ (θ)dθ  (6)

(cf. Matérn 1956, 1990, Stoyan and Stoyan 1994). Between the mean diameter and the 
convex perimeter C there exists the following quite practical relation (obvious from Eqs. 
1, 3, and 6):

C = p
0

2π

∫ (θ)dθ = [p(θ)+ p(θ+ π)]dθ
0

π

∫ = D
0

π

∫ (θ)dθ = πµD  
(7)

θ

R(θ)

B(θ)

D(θ)

O

Fig. 3. Diameter D(θ), radius R(θ), and breadth 
B(θ) of a cross-section in direction θ. The 
interior point O, with respect to which R(·) 
and B(·) were determined, was selected to 
be the centre of gravity of the cross-section.
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(Matérn 1956, 1990). In other words, the mean diameter of a cross-section is obtained by 
dividing the girth tape measurement by π. This well-known result was originally proved 
by Augustin Louis Cauchy in 1841 (Matérn 1956; see Santaló 1976 and Stoyan et al. 1986 
for a more general representation of the result).

The diameter variance in a cross-section over the uniform direction distribution is given by

σD
2 = Var[D(θ)] = E D(θ)− E[D(θ)]{ }2{ } =  1

π
[D(θ)−µD]2

0

π

∫ dθ  (8)

(cf. Matérn 1956, 1990, Stoyan and Stoyan 1994). The covariance between the diameters 
intersecting at angle φ, that is, the diameter autocovariance function γD:[0, π/2]→[0, ∞) at 
point φ taken over the uniform direction distribution, is defined as

γ D(ϕ) = Cov[D(θ), D(θ+ϕ)]

 
= E D(θ)− E[D(θ)]{ } D(θ+ϕ)− E[D(θ+ϕ)]{ }{ }
= 1
π

[D(θ)−µD][D(θ+ϕ)−µD]
0

π

∫ dθ .
 

(9)

Variance is a special case of covariance, as σD2=γD(0). Further, the correlation between 
diameters intersecting at angle φ, that is, the diameter autocorrelation function ρD:[0, π/2]→ 
[–1, 1] at point φ, φ∈[0, π/2], is expressed as

ρD(ϕ) = Cov[D(θ), D(θ+ϕ)]
Var[D(θ)]Var[D(θ+ϕ)]

= 1
σD

2 π
[D(θ)−µD][D(θ+ϕ)−µD]dθ

0

π

∫   
 

(10)

(cf. Matérn 1956, 1990, Stoyan and Stoyan 1994). Clearly, ρD(0)=1. Both γD(·) and ρD(·) run 
symmetrically around the point φ=π/2, that is, γD(π/2–ν)=γD(π/2+ν) and ρD(π/2–ν)=ρD(π/2+ν) 
for all ν∈[0, π/2] — hence the domains of the functions are restricted to [0, π/2].

It is essential to notice that diameter information — however complete and precise con-
cerning the diameter function D(·) — is in general insufficient for making inference about 
the exact shape and area of a non-circular cross-section. Besides non-convexity, which is 
ignored in diameter information by definition, one may also encounter problems with the 
family of constant-width convex sets, also referred to as orbiforms (a name given by Leonhard 
Euler; Tiercy 1920, Matérn 1956), in which the diameter is constant in all directions (i.e., 
σD2=0). In addition to the circle, the family comprises, for example, the Reuleux polygons 
(Fig. 4): given a regular (i.e., equiangular and equilateral) polygon with an odd number of 
sides, the corresponding Reuleux polygon is formed by the circular arcs that are subtended 
by the sides of the linear polygon and whose centres are the opposite vertices of the linear 
polygon (Santaló 1976). While the circle is the largest in area of the orbiforms of equal 
diameter (Hadwiger 1957), the Reuleux triangle is the smallest. By Cauchy’s theorem (Eq. 
7), the orbiforms of equal diameter are also isoperimetric, that is, their perimeters are equal 
(this result is sometimes referred to as Barbier’s theorem after the French mathematician 
Joseph Emile Barbier).

The numerical examples provided by Matérn (1956) (Fig. 5, Table 1) illustrate how the 
above-mentioned diameter characteristics (computed over the uniform direction distribution) 
relate to the shape of the convex closure of a cross-section (Table 1, Figs. 6, 7 and 8). The 
mean diameter μD is merely a size parameter, whereas the diameter variance σD2 reflects 
both size, shape and smoothness of the convex closure (Stoyan and Stoyan 1994); the effect 
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of size can naturally be partialled out from σD2 by using the diameter coefficient of vari-
ation CVD=σD/μD. Even if the diameter autocorrelation function ρD(·) does not uniquely 
relate to the diameter function D(·) — different non-orbiform convex shapes with the same 
ρD(·) can be found (e.g. shapes B and C in Fig. 8; Stoyan and Stoyan 1994) — it evidently 
characterises some aspects of the shape of a cross-section. Simple inference can be made 
from the value of ρD(·) at the end point π/2 of the domain, that is, from the autocorrelation 
of perpendicular diameters (Matérn 1956, 1990, personal communication in November 28, 
1995): For an ellipse, ρD(π/2) is very near –1 — in fact, ρD(π/2) is a function of the axis 
ratio in the way that it tends to –1, although very slowly (cf. Matérn 1990, p. 16), as the 
axis ratio tends to 1. For a circle and other orbiforms, σD2=0, and ρD(π/2) thus becomes 
indefinite. Finally, for a square, ρD(π/2) tends to +1. The fact that the angle between the 
minimum and maximum diameters is π/2 for the ellipse and π/4 for the square makes these 
results intuitively plausible. Note that ρD(π/2) bears also some practical meaning, since if 
two diameters are measured in a tree, they are usually calipered at right angles to each other.

As mentioned before, the support function and the diameter function derived from it give 
no information on non-convexity, as they are defined for the convex closure of a cross-
section. A polar co-ordinate representation of the boundary of a cross-section provides 
means for distinguishing between a non-convex cross-section and its convex closure and 
examining non-convexity. We set the rectangular planar co-ordinate system as before, by 
choosing an interior point O of the cross-section as the origin and by fixing the positive 
x-axis. For uniqueness, we need to assume that any ray emanating from O intersects the 
boundary only once; regarding tree cross-sections, this assumption of star-shapedness 
seems feasible, that is, the origin inside the cross-section can practically always be selected 
so that the condition is fulfilled. Now the polar co-ordinate representation of the boundary 

88.6 % 97.1 %

96.0 %98.4 %

Fig. 4. Four examples of orbiforms — the Reuleux triangle and 
the Reuleux pentagon in the upper row. The percentage 
indicates the proportion of the area to the area of the isop-
erimetric circle (Matérn 1956, Santaló 1976).

A B C

D E F

Fig. 5. Six examples of convex shapes pro-
vided by Matérn (1956) to illustrate the 
relation between geometrical shape and 
some diameter characteristics. Shape A is 
an ellipse with axis ratio 0.8. See Table 1 
and Figs. 6, 7 and 8 for different charac-
teristics of the shapes.
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of the cross-section is a continuous function R:[0, 2π)→(0, ∞), where R(θ) is the uniquely 
determined radius of the cross-section in direction θ, that is, the distance between O and 
the point where the ray emanating from O at angle θ intersects the boundary (Fig. 3). By 
means of R(·), the perimeter of the cross-section can be expressed as

Cp = R(θ)2 + ′R (θ)2

0

2π

∫ dθ  (11)

and the area of the cross-section as

A = 1
2

R
0

2π

∫ (θ)2dθ   (12)

(Coxeter 1969, Edwards and Penney 1994).

Fig. 6. Diameter functions D(θ), θ∈[0, π), scaled with the mean diameter μD, for the six 
example shapes in Fig. 5. The positive x-axis, with respect to which the direction θ is 
determined, runs horizontally through the centre of gravity of the shape; θ increases 
anticlockwise.

Table 1. Support function p(θ), diameter coefficient of variation CVD, ratio between 
minimum and maximum diameters Dmin/Dmax, and correlation coefficient ρD(π/2) 
of the diameters intersecting at right angles for the shapes in Fig. 5 according to 
Matérn (1956).

Shape p(θ) CVD(%) Dmin/Dmax ρD(π/2)

A (100cos2θ+64sin2θ)1/2 7.82 0.800 –0.9985
B 9+cos(2θ) 7.86 0.800 –1.0000
C 16+cos(2θ)+cos(3θ) 4.42 0.882 –1.0000
D 32+2cos(2θ)+cos(3θ)+cos(4θ) 4.94 0.871 –0.6000
E 35+2cos(2θ)+2sin(4θ) 5.71 0.817 0.0000
F 16+cos(4θ) 4.42 0.882 1.0000
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The sum B(θ)=R(θ)+R(θ+π) is here termed the breadth of the cross-section in direction 
θ, θ∈[0, π); it is the length of the chord passing through the point O in direction θ (Fig. 3). 
Note that the term breadth has sometimes (e.g. Santaló 1976) been used as a synonym for 
the usual meaning of the width of a set, which, as said before, corresponds to the concept 
of diameter in this study (in Santaló 1976, however, the width of a convex set is defined as 
the least of the breadths, i.e., the concept of minimum diameter in this study).

Obviously, the radius and breadth functions depend on the selection of the reference point 
O. Two examples of a non-arbitrary choice for O are the centre of gravity and the Steiner 
point (the centre of the mass, distributed over the surface of a convex body, with density 

Fig. 7. Cumulative distribution function FD(d)=Pr{(D(θ)≤d} of diameter with the uniform 
direction distribution within [0, π) for the example shapes in Fig. 5.
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Fig. 8. Diameter autocorrelation function ρD(φ), φ∈[0, π/2], over the uniform direction 
distribution within [0, π) for the example shapes in Fig. 5. For the shapes B and C, the 
autocorrelation functions are congruent.
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equal to the Gaussian curvature; see Hazewinkel 1992). Given O, the radius function, as 
opposed to the diameter function, determines the shape of the cross-section uniquely; further, 
if O is the centre of gravity of the cross-section, the radius function being constant implies 
that the cross-section be a circle (Matérn 1956, Santaló 1976, Stoyan and Stoyan 1994).
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3 Estimation of Cross-Section Area
In this chapter, we consider estimating the area of a tree stem cross-section with the circle 
area formula and somehow selected diameters; each area estimator is thus characterised 
by the diameter selection method, comprising both the way in which the diameters are 
selected and the way in which the selected diameters are combined (typically averaged) 
into the circle formula input. We study how variation in diameter within a non-circular 
cross-section is reflected to area estimates produced by different estimators; ultimately, 
we want to find out what can be said about the performance of different estimators without 
assuming anything about the shape of a cross-section. In the end, we briefly discuss area 
estimation based on radii.

3.1 Foundations: Source of Randomness and Measures of Estimator Performance

Within a cross-section, we regard the randomness in an area estimator as arising from the 
procedure of selecting diameters from a fixed, albeit infinite, “diameter population” (cf. the 
discussion in Chapter 2). Measuring a diameter in a direction sampled from the uniform 
distribution over [0, π) means carrying out simple random sampling in the diameter popula-
tion, whereas taking a diameter in a direction sampled from some non-uniform distribution 
means performing random sampling with unequal selection probabilities. Further, measur-
ing an additional diameter perpendicular, or at any fixed angle, to a random diameter is 
systematic sampling with a random starting point. Yet, naturally, the diameter selection 
need not involve any randomness at all: taking fixed diameters, such as the maximum or 
the minimum diameter, or the mean diameter (the girth measurement divided by π), is just 
selective sampling that entails no randomness when carried out in a fixed diameter popula-
tion. The area estimators based on a sample of random diameters are of course also random 
variables, whereas non-randomly selected diameters result in non-random area estimators 
when viewed from within a cross-section.

The sampling distribution of an area estimator within a cross-section is determined with 
respect to the diameter sampling design, that is, over all possible samples of diameters. If 
we select diameters by sampling their directions from a known direction distribution, we 
obtain the area estimator distribution via this direction distribution and the diameter function. 
The area estimator can be thought to be composed of a systematic part and a random part:

Â(θ) = Eθ[Â(θ)] +  ε(θ) ,  (13)

where Eθ[Â(θ)] is the within-cross-section expectation of the area estimator taken over 
the diameter direction distribution and ε(θ) is a random error term with zero expectation 
(and with the distribution determined by the diameter direction distribution and the diam-
eter function). The argument θ here refers to the source of randomness in general; it can 
be thought of, for example, as a random vector containing the directions of the diameters 
included in the estimator. 

The area estimation error now consists of the bias of the estimator and of the random 
error term:

Â(θ)− A = {Eθ[Â(θ)]− A}  + ε(θ) .  (14)

The bias, measuring how far the expected value of the estimator is from the true area, rep-
resents the systematic error associated with the estimator; note that this is the “mean error” 
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to be expected over repeated diameter samplings within a cross-section, not an error being 
realised in each individual sampling. The random error term, in turn, stands for the sampling 
error resulting from the fact that a diameter sample does not perfectly represent the diameter 
population but that there is variation between diameter samples that causes variation in esti-
mator values. The usual measure for the magnitude of the sampling error ε(θ), also termed 
the precision of the estimator, is its variance or standard deviation. The mean squared error

Eθ{[Â(θ)− A]2} = {Eθ[Â(θ)]− A}2  +  Eθ[ε(θ)2]

 = {Eθ[Â(θ)]− A}2  + Varθ[Â(θ)]  
(15)

combining the squared bias with the precision is a commonly used measure for the accuracy 
of an estimator (e.g. Lindgren 1976).

Trivially, non-random area estimators — those based on girth or fixed diameters, for 
example — are unaffected by sampling errors: for them, Eθ[Â(θ)]=Â(θ) and Varθ[Â(θ)]=0, 
and the mean squared error is reduced to the squared bias, that is, to the squared estimation 
error [Â(θ)–A]2.

An alternative to the design-based thinking discussed above could be a model-based 
approach where cross-sections were regarded as realisations of random figures or as sto-
chastic deformations of a template curve and where stochastic models for the invariant 
parameters of the random contour functions were then established and estimated in empirical 
analysis (see e.g. Stoyan and Stoyan 1994 and Hobolth and Jensen 1999). In this thesis, 
however, we will examine the different area estimators expressly in a design-based way 
at the within-cross-section level. What was discussed above in terms of diameter-based 
estimators naturally apply to radius-based estimators as well.

3.2 Effect of Non-Convexity

As already mentioned in Chapter 2, the difference AC–A between the convex area and the 
true area of a cross-section is always nonnegative. Aptly, Matérn (1956) termed this dif-
ference the convex deficit of a cross-section.

From the practical point of view, non-convexity is rather an insidious source of error, 
since it cannot be observed by a girth tape or a caliper commonly used for measuring 
standing trees. Thus nothing besides non-negativity can be inferred about convex deficit 
in an ordinary area estimation situation. It then becomes a valid question whether we had 
better use the convex area, instead of the true area, as the reference when computing the 
within-cross-section bias of an area estimator.

3.3 Estimators Based on Diameters and Circle Area Formula

As suggested many times above, an intuitively appealing and the most commonly used way 
to estimate cross-section area is to apply the circle area formula

Â = π
4

D2  ,  (16)

where D is the diameter of the circle that the cross-section is assumed to equate with. As 
already discussed, D can be chosen in a number of ways within a cross-section. Firstly, 
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D may be a single measurable diameter: either random, that is, a diameter the direction 
of which is a random variable usually chosen to be uniformly distributed over [0, π); or 
systematically sampled, such as the diameter perpendicular to a random diameter; or fixed, 
such as the minimum diameter or the maximum diameter or the mean diameter derived from 
the convex perimeter. Secondly, D may be the arithmetic, geometric, or quadratic mean of 
two or more randomly or systematically sampled or fixed diameters. Using the geometric 
mean of two diameters in the circle area formula implies the assumption of ellipticity, 
as this estimator yields the area of an ellipse with the axis lengths equal to the diameters 
used in the geometric mean. Employing the quadratic mean of two or more diameters, in 
turn, corresponds to estimating the area as the arithmetic mean of the areas of the circles 
that have the diameters used in the quadratic mean. Thirdly, D may as well be some other 
expression constructed from random and non-random diameters, such as the “diameter” 
involved in the area estimator where the geometric or the quadratic mean of two or more 
area estimators of the types mentioned above is written in the form of a circle area formula 
(Matérn 1956, 1990, Loetsch et al. 1973, Kärkkäinen 1974, 1975a, 1984).

In this study, we confine ourselves to estimators where D is a single measurable diameter 
or a mean of two or more measurable diameters. About the mutual relations between the 
three types of means, it is useful to remember the following two results: First, for positive 
variables Xi, i=1, ..., n,

Xi
i=1

n

∏⎛⎝⎜
⎞
⎠⎟

1
n

≤ 1
n

Xi
i=1

n

∑ ≤ 1
n

Xi
2

i=1

n

∑  ,
 

(17)

that is, the geometric mean of is never greater than the arithmetic mean, which in turn is 
never greater than the quadratic mean (see Hardy et al. 1988 for the proofs); the equality 
between the means holds if all the variables Xi are equal. This implies that the area estimate 
given by the circle area formula with the geometric mean of unequal diameters be always 
less than the estimate obtained with the arithmetic mean of the same diameters, which in 
turn be always less than the estimate obtained with the quadratic mean of the diameters. 
Second, in the case of two positive variables X1 and X2, there exists the following relation 
between the squares of the quadratic, arithmetic and geometric means:

X1
2 + X2

2

2
− 2

X1 + X2

2
⎛
⎝⎜

⎞
⎠⎟

2

+ X1X2 = 0 .
 

(18)

This implies that the area estimate based on one of the three diameter means be straight-
forwardly obtained from the estimates based on the other two (Matérn 1956).

3.3.1 Girth Diameter: Mean Diameter Derived from Convex Perimeter

The non-random area estimator

Â0 =
π
4
µD

2 = C2

4π
 ,  (19)

where the mean diameter μD=C/π (over the uniform direction distribution) derived from 
the convex perimeter C of the cross-section, termed here the girth diameter, is substituted 
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in the circle area formula, yields the area of the isoperimetric circle, that is, the area of the 
circle that has the perimeter equal to the convex perimeter of the cross-section.

For a non-circular cross-section, this estimator overestimates the convex area irrespec-
tive of the shape of the cross-section, because the circle has the largest area among the 
isoperimetric figures in plane (Hadwiger 1957). Matérn (1956) termed the nonnegative 
difference Â0–AC the isoperimetric deficit of a cross-section. Regardless of the shape of a 
cross-section, this deficit can be shown to have the following lower bound depending on 
diameter variance σD2 within the cross-section:

Â0  − AC ≥
3π
4
σD

2   
(20)

(see Matérn 1956 for the proof).
Interestingly, Â0 serves as a baseline for many estimators based on random diameters: in 

cross-sections with nonnegative correlation between perpendicular diameters, the overes-
timation error in Â0 is a lower bound for the within-cross-section bias in those estimators, 
as we will see in the next section.

3.3.2 Random Diameters with Uniform Direction Distribution

Estimators Involving One or Two Diameters

In the way paved by Matérn (1956), we next consider the area estimators that are of the 
same form

Â = π
4

D(⋅)2  ,  (21)

but where D(·) is now
1. random diameter D(θ), θ~Uniform(0, π) (Â1)
2. arithmetic mean of a random diameter D(θ) and the diameter D(θ+π/2) perpendicular to it (Â2)
3. geometric mean of D(θ) and D(θ+π/2) (Â3)
4. arithmetic mean of two independent random diameters D(θ1) and D(θ2), θ1, θ2~Uniform(0, π) 

i.i.d. (Â4)
5. geometric mean of D(θ1) and D(θ2) (Â5).

First we focus on the systematic errors, that is, on the within-cross-section biases of these 
estimators. With the notation introduced before — μD denoting the diameter mean, σD2 
denoting the diameter variance, and ρD(π/2) denoting the correlation between perpendicular 
diameters within a cross-section — the expectations of the estimators over the uniform 
diameter direction distribution become as follows:

E(Â1) = π
4
µD

2 + π
4
σD

2

 = Â0 +
π
4
σD

2  ,  

(22)
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E(Â2 ) = π
4
µD

2 + π
8
σD

2 1 + ρD

π
2

⎛
⎝⎜

⎞
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⎡

⎣
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⎤

⎦
⎥

 = Â0 +
π
8
σD

2 1 + ρD

π
2

⎛
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⎡

⎣
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⎤

⎦
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(23)

E(Â3) = π
4
µD

2 + π
4
σD

2 ρD

π
2

⎛
⎝⎜

⎞
⎠⎟

 = Â0 +
π
4
σD

2 ρD

π
2

⎛
⎝⎜

⎞
⎠⎟

 ,

 

(24)

E(Â4 ) = π
4
µD

2 + π
8
σD

2

 = Â0 +
π
8
σD

2  ,
 

(25)

and

E(Â5) = π
4
µD

2

 = Â0  
 

(26)

(cf. Matérn 1956, 1990). (The expectations are obtained by writing the area estimators as sums 
of squared diameters and diameter products, by taking the expectations separately on each 
term in the sum, and by applying to these the usual rules that relate means, variances and cor-
relations to each other: E[D(θ)2]=E[D(θ+π/2)2]=μD2+σD2, E[D(θ)D(θ+π/2)]=μD2+σD2ρD(π/2), 
E[D(θ1)D(θ2)]=E[D(θ1)]E[D(θ2)]=μD2.) Clearly, the estimator Â0 based on the convex perim-
eter of a cross-section, which in the previous section was found to overestimate the convex 
area of a cross-section, now makes a convenient reference. Interestingly, the estimator Â5 
based on the geometric mean of two independent random diameters comprises a bias equal 
to that of the estimator Â0. Moreover, the bias of the estimator Â2 is the arithmetic mean 
of the biases of the estimators Â1 and Â3 (Matérn 1956). In Table 2, the expectations of the 
estimators are given for the six example shapes of Fig. 5.

Table 2. Expectations of the area estimators Â0–Â4 (Eqs. 19 and 22–25) for the 
shapes in Fig. 5, expressed in permille of true area (cf. Matérn 1956). The 
expectation of the estimator Â5 is equal to Â0 (Eq. 26).

 Shape
 A B C D E F

Â0/A (‰) 1019 1019 1022 1017 1030 1030
E(Â1)/A (‰) 1025 1025 1024 1020 1034 1032
E(Â2)/A (‰) 1019 1019 1022 1018 1032 1032
E(Â3)/A (‰) 1013 1013 1020 1016 1030 1032
E(Â4)/A (‰) 1022 1022 1023 1019 1032 1031
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The mutual ranking of the estimators in terms of bias obviously depends on the values 
of σD2 and ρD(π/2) within a cross-section. With the condition σD2>0 — that is, orbiforms 
excluded — and by recalling that –1≤ρD(π/2)≤1, we can compose the following ρD(π/2)-
dependent comparisons between the estimator expectations:

ρD(π/2)=–1: E(Â3) < Â0 = E(Â5) = E(Â2) < E(Â4) < E(Â1)
–1<ρD(π/2)<0: E(Â3) < Â0 = E(Â5) < E(Â2) < E(Â4) < E(Â1)
ρD(π/2) = 0: Â0 = E(Â5) = E(Â3) < E(Â4) = E(Â2) < E(Â1)
0<ρD(π/2)<½: Â0 = E(Â5) < E(Â3) < E(Â4) < E(Â2) < E(Â1)
ρD(π/2)=½: Â0 = E(Â5) < E(Â4) = E(Â3) < E(Â2) < E(Â1)
½<ρD(π/2)<1: Â0 = E(Â5) < E(Â4) < E(Â3) < E(Â2) < E(Â1)
ρD(π/2)=1: Â0 = E(Â5) < E(Â4) < E(Â3) = E(Â2) = E(Â1)

We find here that with the nonnegative values of ρD(π/2), all the estimators have expecta-
tions greater or equal to that of Â0; in consequence, all the estimators yield a positive bias, 
that is, they systematically overestimate the area of a cross-section. With the negative 
values of ρD(π/2) this does not hold for the estimator Â3; however, E(Â3) attains its smallest 
value when ρD(π/2)=–1, and by combining this minimum with the lower bound previously 
obtained for Â0 (Eq. 20) we get

E(Â3) ≥ Â0 −
π
4
σD

2 ≥ AC +
3π
4
σD

2⎛
⎝⎜

⎞
⎠⎟
− π

4
σD

2 = AC +
π
2
σD

2  ,  (27)

which shows that also Â3 always systematically overestimates the convex area of a cross-
section (Matérn 1956). We hence conclude that regardless of the shape of a non-circular 
cross-section all these estimators systematically overestimate the convex area of the cross-
section. In the case of orbiforms this conclusion also stands, since a circle is the largest in 
area among the orbiforms (cf. Fig. 4). (Note that this systematic overestimation motivates 
the omission of the estimators based on the quadratic mean of diameters, which yield the 
largest estimates by definition, from our considerations.)

The comparison above also shows that regardless of the value of ρD(π/2) and thus irrespective 
of the shape of a cross-section, the estimator Â1 based on only one random diameter yields 
the largest bias. The best strategy in terms of bias minimisation, however, depends on the 
shape of a cross-section: with negatively correlated perpendicular diameters (–1<ρD(π/2)<0), 
the use of the geometric mean is preferred and, given this, the second diameter is recom-
mended to be taken at right angles to the first one instead of picking it randomly; with 
mildly positively correlated perpendicular diameters (0<ρD(π/2)<½), the preference of the 
geometric mean still pertains, but now the second diameter is more advisable to be taken 
independently at random direction; and finally, with the highly positively correlated per-
pendicular diameters (½<ρD(π/2)<1), the priority is given to measuring both the diameters 
independently at random directions, and, conditional on this, to employing the geometric 
mean. The equalities in the change points are also interesting: if ρD(π/2)= –1 (ellipse-like 
cross-sections, cf. shapes A–C in Fig. 5 and Table 2), employing the arithmetic mean of 
two perpendicular diameters is equivalent, in terms of bias, of using the geometric mean of 
two random diameters; if ρD(π/2)=0 (cf. shape E in Fig. 5 and Table 2), the way of choosing 
diameters does not matter, but the estimators based on the same type of mean yield an equal 
bias; if ρD(π/2)=½, using the geometric mean of two perpendicular diameters equals, in terms 
of bias, using the arithmetic mean of two random diameters; and, if ρD(π/2)=1 (square-like 
cross-sections, cf. shape F in Fig. 5 and Table 2), the estimators based on two perpendicular 
diameters yield as large a bias as the estimator based on only one random diameter.



775

Pulkkinen On Non-Circularity of Tree Stem Cross-Sections: Effect of Diameter Selection …

The optimal selection of an estimator may, however, contribute to bias reduction only 
marginally, since, quoting Matérn (1956), “the average difference between the ‘worst’ 
and the ‘best’ estimate cannot be greater than the average difference between the ‘best’ 
estimate and the area of the convex closure”: if 0≤ρD(π/2)≤1, then Â1 is the worst and Â0 
is the best estimator, and

E(Â1 − Â0 ) = E(Â1)− Â0 = Â0 +
π
4
σD

2⎛
⎝⎜

⎞
⎠⎟
− Â0 = π

4
σD

2

 < 3π
4
σD

2 = AC +
3π
4
σD

2⎛
⎝⎜

⎞
⎠⎟
− AC

 ≤ Â0 − AC = E(Â0 − AC ) ;

 

(28)

if, in turn, –1≤ρD(π/2)<0, then Â1 is the worst and Â3 is the best estimator, and

E(Â1 − Â3) = E(Â1)− E(Â3) = Â0 +
π
4
σD

2⎛
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⎞
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− Â0 +

π
4
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2 ρD

π
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 = π
4
σD

2 1 − ρD

π
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 ≤ π
2
σD

2 = AC +
π
2
σD

2⎛
⎝⎜

⎞
⎠⎟
− AC
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(29)

(in both these elaborations, Eq. 20 giving the lower bound for Â0 is employed, and in the 
latter derivation also Eq. 27 giving the lower bound for Â3 is used).

From the systematic errors we proceed into the sampling errors quantified by the within-
cross-section variances of the estimators over the uniform direction distribution. Except for 
the estimator Â5 based on the geometric mean of two independent diameters, the variances 
cannot be expressed in terms of the simple parameters μD, σD2, and ρD(π/2), but involve 
higher moments and product moments of diameters, which make them somewhat difficult 
to compare with each other:

Var(Â1) = π2

16
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2 + σD
2( )2{ } ,

 
(30)
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Var(Â3) = π2
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(32)

Var(Â4 ) = π2
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(33)

and

Var(Â5) = π2

16
µD

2 + σD
2( )2

−µD
4{ } .

 
(34)

(The variances are obtained by applying the definition of variance Var(X)=E(X2)–E(X)2 
straightforwardly to the squared mean of diameters in the estimator, by writing the 
expressions inside the expectation operators as sums of diameter powers and products 
of diameter powers, by taking the expectations separately on each term in the sums, 
and by applying to these the usual rules that relate means, variances and correlations 
to each other: E[D(θ)2]=E[D(θ+π/2)2]=μD2+σD2, E[D(θ)D(θ+π/2)]=μD2+σD2ρD(π/2), 
E[D(θ)aD(θ+π/2)b]=E[D(θ)bD(θ+π/2)a], E[D(θ1)aD(θ2)b]=E[D(θ1)a]E[D(θ2)b].) We can see 
that if ρD(π/2)=0, the estimators Â2 and Â4, on one hand, and the estimators Â3 and Â5, on 
the other hand, coincide in terms of variance quite as we saw them to do in terms of bias; 
in other words, if perpendicular diameters in a cross-section are uncorrelated, the way of 
selecting the diameters does not influence the sampling error but the type of mean used in 
the area estimator does. In Table 3, the standard deviations (square roots of variances) of 
the estimators are given for the six example shapes of Fig. 5.

By the procedure known as the delta method (see e.g. Casella and Berger 1990) — based 
on the linearisation of a non-linear function by Taylor series expansion — the following 
variance approximations expressible in terms of only μD, σD2, and ρD(π/2) are found:
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(For the estimators Â1–Â4, Matérn (1956, 1990) presented, without reference to the delta 
method or any derivation, approximate standard deviations, the squares of which are seen 
to correspond to these approximate variances.) The nonnegative difference between the 
actual and approximate variance of the estimator Â5

Var(Â5)− Var(Â5) = π2

16
µD

2 + σD
2( )2

−µD
4⎡

⎣⎢
⎤
⎦⎥
− π2

8
µD

2 σD
2 = π2

16
σD

4  
 (38)

suggests that these approximate variances might underestimate the true ones; in the example 
shapes of Fig. 5, however, the approximate variances practically equal the true variances 
(Table 3).

Unlike the biases and the true variances, the approximate variances are invariant of the 
type of the mean employed in the estimator — only the number and the way of selecting 
the diameters influence the approximate sampling error of the estimator; consequently, in 
terms of approximate variance, it would appear natural to favour the estimators based on 
the geometric mean, as they yield smaller bias than those based on the arithmetic mean. 
By the possible values of ρD(π/2), the variance approximations can be ranked as follows:

–1≤ρD(π/2)<0: Vãr(Â2) = Vãr(Â3) < Vãr(Â4) = Vãr(Â5) < Vãr(Â1)
ρD(π/2)=0: Vãr(Â2) = Vãr(Â3) = Vãr(Â4) = Vãr(Â5) < Vãr(Â1)
0<ρD(π/2)<1: Vãr(Â4) = Vãr(Â5) < Vãr(Â2) = Vãr(Â3) < Vãr(Â1)
ρD(π/2)=1: Vãr(Â4) = Vãr(Â5) < Vãr(Â2) = Vãr(Â3) = Vãr(Â1)

This comparison suggests that when measuring two diameters in a cross-section, one 
should take the second diameter at right angles to the first one, if –1≤ρD(π/2)<0, and at 
random direction, if 0<ρD(π/2)≤1, in order to minimise the approximate sampling error. 
Noteworthily, this policy agrees with minimising the bias, as was shown by the previous 
comparison of the within-cross-section expectations of the estimators.

The equalities in the change points of the above comparison are also somewhat interest-
ing: If perpendicular diameters in a cross-section are uncorrelated (ρD(π/2)=0), also the 
effect of the diameter selection method vanishes: all the two-diameter estimators Â2, Â3, 
Â4, and Â5 have the same approximate sampling error, half of that of the estimator Â1. 
If, in turn, perpendicular diameters are fully positively correlated (ρD(π/2)=1), taking the 

Table 3. Square roots of the variances (Eqs. 30–34; Sd) and approximate variances (Eqs. 
35–37; S d̃) of the area estimators Â1–Â5 for the shapes in Fig. 5, expressed in permille 
of true area (cf. Matérn 1956).

 Shape
 A B C D E F

Sd(Â1)/A (‰) 159 160 90 102 118 91
S d̃(Â1)/A (‰) 159 160 90 101 118 91
Sd(Â2)/A (‰) 4 0 0 45 83 91
Sd(Â3)/A (‰) 9 4 1 44 83 91
S d̃(Â2)/A = S d̃(Â3)/A (‰) 4 0 0 45 83 91
Sd(Â4)/A (‰) 113 113 64 72 83 64
Sd(Â5)/A (‰) 113 113 64 71 83 64
S d̃(Â4)/A = S d̃(Â5)/A (‰) 113 113 64 71 83 64
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second diameter at right angles to the first one benefits none compared to measuring only one 
diameter but the approximate variance is halved only by measuring the two diameters inde-
pendently. Finally, if perpendicular diameters are fully negatively correlated (ρD(π/2)=–1), 
the approximate sampling error for the estimators Â2 and Â3 disappears (cf. shapes B and 
C in Table 3); hence, for ellipse-like cross-sections, measuring two perpendicular diameters 
should always lead to an approximately sampling-error-free area estimate.

Generalisation to n Diameters

The area estimators based on a mean of two diameters can naturally be generalised to involve 
countably many diameters. For the generalised estimators involving the arithmetic mean, 
the within-cross-section expectations are expressible in terms of the simple parameters μD, 
σD2, and ρD(π/2): the expectation of the estimator based on the arithmetic mean of n∈N, n≥2, 
independent random diameters (a generalisation of Â4 and thus denoted by ÂG4) becomes

E(ÂG 4 ) =  π
4
µD

2 + π
4n

σD
2

 = Â0 +
π
4n

σD
2  ,  

(39)

and the expectation of the estimator based on the arithmetic mean of n/2, n=2k, k≥1, k∈N, 
independent random diameters and their n/2 perpendiculars (a generalisation of Â2 and 
thus denoted by ÂG2) is found to be

E(ÂG 2 ) = π
4
µD

2 + π
4n

σD
2 1+ ρD

π
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
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π
4n

σD
2 1+ ρD

π
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ 

 

(40)

(cf. the commonly known theorem about the mean of quadratic forms, to be found in e.g. 
Kendall and Stuart 1979). If perpendicular diameters are uncorrelated, these general esti-
mators clearly coincide in terms of bias. Further, as n tends to infinity, the expectations of 
both the general estimators tend to Â0; the biases of the estimators can hence be reduced 
by measuring more diameters, but the biases can never fall below that of Â0.

The expectations of the generalised estimators based on the geometric mean of more than 
two diameters cannot be expressed in terms of μD, σD2, and ρD(π/2), but involve “fractional 
diameter moments”, that is, expectations of fractional powers of diameters over the uniform 
direction distribution, which make them difficult to compare with those presented above: 
the expectation of the estimator based on the geometric mean of n independent random 
diameters (a generalisation of Â5 and thus denoted by ÂG5) becomes

E(ÂG5) =
π
4
E D(θ)

2
n

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

n

,
 

(41)

and the expectation of the estimator based on the geometric mean of n/2 independent 
random diameters and their n/2 perpendiculars (a generalisation of Â3 and thus denoted 
by ÂG3) is found to be
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E(ÂG 3) = π
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For the generalised area estimators based on the arithmetic mean, the variances become 
somewhat intricate:

Var(ÂG 4 ) = π2

16n4 n E[D(θ)4]+ 4n(n −1)µDE[D(θ)3]+ n(2n − 3) µD
2 + σD

2( )2{
 + 6n(n −1)(n − 2)− 2n2(n −1)⎡⎣ ⎤⎦µD

2 µD
2 + σD

2( )
   + n(n −1)(n − 2)(n − 3)− n2(n −1)2⎡⎣ ⎤⎦µD

4 } ,  

(43)

and

Var(ÂG 2 ) = π2
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For the generalisations based on the geometric mean, the variance expressions are far simpler 
on the face but again relatively uninformative if one wants to compare them to those above:
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and

Var(ÂG 3) = π2
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Contrary to these actual variances, the delta method approximations are both uncomplicated 
and interpretative:

Var(ÂG 4 ) = Var(ÂG5) = π2

4n
µD

2 σD
2

 = π
n

Â0σD
2  ,  

(47)

and

Var(ÂG 2 ) = Var(ÂG 3) = π2
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Trivially, by measuring more diameters one reduces the true and the approximate variances 
of the generalised estimators, up to zero as n tends to infinity. Otherwise the generalised 
estimators share the properties previously demonstrated for the two-diameter estimators: 
If perpendicular diameters are uncorrelated in a cross-section, the generalised estimators 
coincide pairwise in terms of true sampling errors (Var(ÂG3)=Var(ÂG5), Var(ÂG2)=Var(ÂG4)) 
and all together in terms of approximate sampling errors (Vãr(ÂG3)=Vãr(ÂG5)=Vãr(ÂG2) 
=Vãr(ÂG4)). Further, in the case of an elliptic cross-section, for which ρD(π/2) is near –1, 
the approximate variances of ÂG2 and ÂG3 become close to zero independent of the value 
of n, and thus increasing the number of diameter measurements within the cross-section 
should not make much difference in terms of the approximate sampling error.

3.3.3 Minimum and Maximum Diameters

From the estimators involving random diameters with uniformly distributed directions, we 
proceed to discussing six fixed estimators based on the minimum and maximum diameters 
of a cross-section. The estimators are still of the form

Â = π
4

D2  ,
 

(49)

where D is now, following Matérn (1956),
6. arithmetic mean of the minimum diameter Dmin and the maximum diameter Dmax in the cross-

section (Â6)
7. geometric mean of Dmin and Dmax (Â7)
8. arithmetic mean of Dmin and its perpendicular (Â8)
9. geometric mean of Dmin and its perpendicular (Â9)
10. arithmetic mean of Dmax and its perpendicular (Â10)
11. geometric mean of Dmax and its perpendicular (Â11).

Note that the estimators Â8–Â11 may not always be well-defined — consider, for example, 
the situation where Dmin is attained in two different directions but the diameters perpen-
dicular to these diameters are unequal (Matérn 1956). If the estimators are well-defined, 
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they are also fixed, as the randomness induced by a selection between the alternative 
diameters is avoided. In Table 4, the values of the estimators are given for the six example 
shapes of Fig. 5.

Since the geometric mean is never greater than the arithmetic mean for nonnegative 
measurements and since D2 is a monotonously increasing function for D>0, the above 
estimators can be ranked pairwise as Â6≥Â7, Â8≥Â9, and Â10≥Â11. In fact, the larger is 
the difference between the diameters to be averaged, the more pronounced becomes the 
reducing effect of using the geometric mean instead of the arithmetic one: if we denote 
by β the ratio of the smaller diameter to the larger one, the ratio between the estimator 
involving the arithmetic mean and the estimator involving the geometric mean becomes 
(β+1)2/4β (cf. Matérn 1990), which is a monotonously decreasing function of β in (0, 1]. 
Furthermore, since the diameter perpendicular to Dmax cannot be smaller than Dmin in a 
cross-section and, similarly, since the diameter perpendicular to Dmin cannot be larger than 
Dmax, we can straightforwardly infer that Â10≥Â6≥Â8, and Â11≥Â7≥Â9. The equalities hold 
for the cross-sections that have Dmax and Dmin at right angles to each other. For ellipses, the 
estimators Â7, Â9 and Â11 naturally give the true area, whereas, contrary to what Matérn 
(1956) claims, the estimators Â6, Â8 and Â10 yield the arithmetic mean of the true area and 
the estimate involving the quadratic mean of Dmax and Dmin. 

However, no general inference independent of cross-section shape can be made on how 
these area estimators relate to the estimators based on girth or one or more random diameters 
with uniformly distributed directions; unlike those estimators, the estimators involving 
extreme diameters may also underestimate the convex area of a cross-section (cf. estima-
tors Â8 and Â9 with shapes D–F in Table 4).

3.4 Estimators Based on Radii

Lastly, we digress a little from the circle area formula and diameters and briefly discuss area 
estimation based on radial information. In the following, we assume a cross-section to be 
star-shaped so that all the radii from a suitably chosen interior point O of the cross-section 
can be uniquely determined (cf. Chapter 2).

The true area of a cross-section, expressed as a function of the polar co-ordinate repre-
sentation R(·) of the contour of a cross-section (see Chapter 2), can alternatively be viewed 
as the product of π and the expectation of the squared radius over the uniform direction 
distribution in [0, 2π):

A = 1
2

R
0

2π

∫ (θ)2dθ = π 1
2π

R
0

2π

∫ (θ)2dθ = πE[R(θ)2] .  (50)

Table 4. Area estimates produced by the estimators Â6–Â11 for the shapes 
in Fig. 5, expressed in permille of true area (cf. Matérn 1956).

Shape A B C D E F

Â6/A (‰) 1013 1019 1022 1066 1030 1030
Â7/A (‰) 1000 1006 1018 1061 1020 1026
Â8/A (‰) 1013 1019 1022 986 921 905
Â9/A (‰) 1000 1006 1018 985 919 905
Â10/A (‰) 1013 1019 1022 1082 1145 1163
Â11/A (‰) 1000 1006 1018 1078 1143 1163
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These expressions suggest an area estimator of the type

Â = 1
2

R(θi )
2 2π

n
⎡

⎣
⎢

⎤

⎦
⎥

i=1

n

∑ = π
n

R(θi )
2

i=1

n

∑  ,  (51)

where R(θi) is the radius of a cross-section measured in direction θi, i=1, 2, ..., n. In the 
first expression, the definite integral of R(θ)2 is obviously approximated by the sum of n 
rectangles with the width 2π/n and the height R(θi)2. This corresponds to estimating the 
area of the cross-section with the sum of n disjoint, equally wide circular sectors (the area 
of a circular sector with angle Δθi=2π/n and side length R(θi) is ΔθiR(θi)2/2=πR(θi)2/n, and 
summing up n such sectors then results in the second expression). This expression is straight-
forwardly seen to be π times the squared quadratic mean of n radii R(θi), a natural estimator 
for π times the expectation of the squared radius over the uniform direction distribution. 
The application of this estimator does not require that the radii be measured equidistantly.

Just as the diameters in the estimators based on the circle area formula can be chosen 
in many ways, also for the radii various selection strategies are naturally available (see 
e.g. Gregoire and Valentine 1995). The remarkable property of the estimator of Eq. 51 is 
that it is unbiased if the marginal distribution of each radius direction θi is uniform over 
[0, 2π) (Matérn 1956, Gregoire and Valentine 1995). This condition naturally holds if the 
directions are independently sampled from the uniform distribution over [0, 2π), in which 
case it is also easy to derive analytically the exact variance for the estimator and also to 
find an unbiased estimator for that variance (Gregoire and Valentine 1995). However, the 
variance is directly related to the variation in the radii used and thus considerably affected 
by the choice of the location of O; for decreasing the variance of the estimator, centralising 
the location of O as well as applying systematic sampling strategies for radii have been 
suggested (Gregoire and Valentine 1995). 

In sum, the bias in area estimation can be avoided, if the cross-sections can be observed 
“from inside” instead of “from outside”, that is, if radii instead of diameters can be meas-
ured. For standing trees this is not feasible with the standard measurement equipment, but 
to estimating the area of end sections of logs — or the area of the crown projection of a 
tree — for instance, this approach certainly pertains (Matérn 1956).
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4 Bitterlich Sampling
Bitterlich sampling — also referred to as relascope sampling, angle-count sampling, horizon-
tal point sampling, variable radius plot sampling, and plotless sampling — was introduced 
in forestry by the Austrian forester Walter Bitterlich (1948a, 1948b) as a simple counting 
technique for estimating relative basal area of a tree stand. Nowadays it is also extensively 
used for sampling trees in forest inventories. The idea in the method is to count, or pick 
into the sample, those trees in a stand that subtend an angle greater or equal to a fixed angle 
α when viewed horizontally at breast height from a randomly located point in the stand 
(Fig. 9). An estimate for the relative basal area at breast height is then obtained by simply 
multiplying the tally of trees by an α-dependent constant. The procedure may be repeated 
at several randomly located viewing points in the stand.

There are several alternative ways to formalise Bitterlich sampling. In a model-based 
approach, the sampling procedure is considered under a model assumed for the structure 
of the tree stand: in such a model, tree locations are typically regarded as a realisation of 
a (stationary) spatial point process and tree diameters are treated either as independent 
random variables with assumed (identical) probability distributions or as the marks of the 
point process with a mark distribution function involving spatial dependence between the 
trees; the viewing points need not then be randomly located, but the statistical properties 
of the estimators of stand totals (typically relative basal area or stem volume) based on 
angle-count samples are derived given the assumed model (e.g. Holgate 1967, Sukwong 
et al. 1971, Matérn 1972, Oderwald 1981, and Penttinen 1988). In this study, however, we 
adopt the usual design-based approach (refer to common textbooks such as e.g. de Vries 
1986, Schreuder et al. 1993, and Gregoire and Valentine 2008), where the spatial pattern 
of tree locations in the region of interest is regarded as fixed and where the randomness 
in estimators is considered to arise only from the choice of the viewing point locations. 
Within this design-based context, there are then at least three different unequal probability 
sample designs for finite population and one formulation for infinite population to choose 
among (Eriksson 1995); these differ from each other by the definition of sampling unit and 
population — whether the sampling unit is considered to be the area from which a tree is 
seen by relascope, the actual tree, or the viewing point in which relascope is used, and, 

Fig. 9. Selection of trees in region L by Bitterlich sampling with viewing angle α: 
the trees (white cross-sections) that subtend an angle greater or equal to α, when 
viewed at breast height from a randomly selected point Q in L, are included in 
the sample. The inclusion region Mi(α) of the tree i with diameter Di is outlined 
with the dashed line.
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accordingly, whether the population to be sampled then becomes finite or infinite. In this 
study, we adhere to the classical Grosenbaugh design.

In the Grosenbaugh design, the population is finite and consists of the trees reaching 
above the breast height in the region of interest. A sample is then composed of the trees 
selected at one randomly located viewing point, and sampling at k independently randomly 
located viewing points in the region results in k independent samples. The probability of 
being included in a sample, termed the inclusion probability — which in this case equals the 
probability of being selected at each view, referred to as the selection probability — varies 
according to tree. More precisely — and first realised by the American forester Lewis R. 
Grosenbaugh (1958), hence the name of the design (Eriksson 1995) — Bitterlich sampling is 
a method of PPS sampling, that is, sampling with probability proportional to size, meaning 
that each sampling unit is included in a sample with probability proportional to a covariate, 
in this case the cross-section area at breast height, which is positively correlated with the 
variable of interest, in this case typically stem volume.

The estimation of population totals in PPS sampling relies upon the Horvitz-Thompson 
theorem, which is a beautifully general theory for design-based inference from probability 
samples (Overton and Stehman 1995). The Horvitz-Thompson estimation is based on the 
inclusion probabilities of the sampling units, by the inverses of which the observed values 
of the characteristics of interest are weighted. The theorem is explained in more detail in 
Appendix B.

Our interest focuses on how non-circularity in the breast height cross-sections of trees 
affects stand or tree characteristic estimation based on Bitterlich sampling. In order to avoid 
the complications irrelevant from this point of view, we make the following three assump-
tions, which are independent of our chosen sampling strategy consisting of the Grosen-
baugh design and the Horvitz-Thompson estimator: First, we assume the ground level to 
be horizontal. Second, we assume the viewer’s eye to be at breast height (1.3 m) from the 
ground level and the viewer to sight trees horizontally. And third, we assume the region of 
interest to be such that the edge effects on the inclusion probabilities of trees need not be 
considered (for example, we assume the borders of the region to be set in the manner that 
each tree taken to belong to the stand is located farther than its inclusion radius (Eq. 52) 
from the borders; for some methods of dealing with the edge effect in Bitterlich sampling, 
see Grosenbaugh 1958, Haga and Maezawa 1959, Barrett 1964, and Schmid 1969).

4.1 Estimation of Stand Totals

We start by explaining how stand totals, that is, sums of tree characteristics within a stand, 
are estimated from a Bitterlich sample of trees, when the tree cross-sections at breast height 
are circular. Then we investigate the errors that emerge when the estimators based on the 
circularity assumption are applied to trees with non-circular of cross-sections. Finally, we 
examine the estimation of relative basal area in both these aspects. 

In addition to the general simplifying presumptions stated above, we assume the char-
acteristics of the trees in the sample to be measured or estimated without error. For the 
notation, let L denote the region of interest in the ground plane, |L| the area of this region, 
and I the set of the trees growing in L and reaching above breast height. Further, let Q 
denote a uniformly randomly located viewing point in L and α∈(0, π) the viewing angle 
used in a relascope.
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4.1.1 Principle under Assumption of Circular Cross-Sections

If the cross-sections of the trees are circular at breast height, the maximum distance, deter-
mined from the tree pith, at which the tree i∈I with breast height diameter Di is taken into 
the Bitterlich sample becomes

ri(α) =
Di

2
⋅ 1
sin(α / 2)  

(52)

by a straightforward trigonometric consideration (Fig. 9). In other words, the inclusion 
region Mi(α) within which the tree i∈I is observed in an angle greater or equal to α is a 
circle with radius ri(α) and area

|Mi (α) | = π ri(α)
2 = π
4
Di
2 ⋅ 1
sin2(α / 2)  

(53)

(Fig. 9). The ratio κi(α) of the cross-section area to the inclusion area for tree i∈I is now seen 
to depend only on the viewing angle α and thus have the same value for all the trees in I:

κ i (α) =

π
4

Di
2

|Mi (α) |
= sin2(α / 2) ;  (54)

the ratio is referred to as the basal area factor. (Note that the cross-section area and inclu-
sion area are here assumed to be expressed in the same units, so that the units cancel out in 
sin2(α/2); to express the basal area factor in m2/ha or ft2/ac, sin2(α/2) has to be multiplied 
with 10 000 or 43 560, respectively.)

The inclusion probability πi(α) of a tree i∈I is the probability that the viewing point Q 
is located in the inclusion region Mi(α); on account of the uniform distribution of Q in L, 
the probability is given by the simple area ratio

π i (α) =
|Mi (α) |

|L |
= π

4
Di

2 ⋅ 1
sin2(α / 2) |L |

 .  (55)

(Note that the inclusion region is here defined to contain the ground-level cross-section 
of the stem, although the viewing point Q cannot be located within the cross-section.) 
Accordingly, the probability of a tree to be included in a sample is proportional to its 
cross-section area (squared diameter) at breast height and inversely proportional to the 
area of the region of interest; further, the smaller the viewing angle (and, consequently, 
the smaller the basal area factor) the larger the probability, as sin2(α/2) is monotonously 
increasing for α∈(0, π).

Let now sQ(α)⊆I denote the sample of trees obtained with the relascope angle α at the 
viewing point Q∈L. From each tree i in sQ(α), we measure the breast height diameter Di 
and the value Yi of the characteristic of interest. As is apparent from Eq. 55, we need the 
diameter measurements for the inclusion probabilities of the sample trees, which then 
enable us to apply the Horvitz-Thompson theorem for an unbiased estimation of the total 
amount of the characteristic of interest in the region L. The sum Y=Σi∈IYi is estimated by
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ŶHT =
Yi

π i (α)i∈sQ (α )
∑

 = |L | sin2(α / 2)
Yi

π
4

Di
2i∈sQ (α )

∑  ,  
(56)

that is, as a weighted sum of the sample tree measurements with the inverses of the cross-
section areas (squared diameters) as weights and with a quantity depending on the viewing 
angle (or the basal area factor) and the area of the region of interest as the scaling coefficient.

The randomness in ŶHT stems from the placement of the viewing point Q in the region 
L, as this determines the sample sQ(α). By the Horvitz-Thompson theorem (Appendix B), 
ŶHT is unbiased with respect to the sampling design, that is, E(ŶHT)=Y, where the expecta-
tion is taken over the probability distribution of all possible samples sQ(α) resulting from 
all possible locations of Q.

The variance of ŶHT depends on the spatial pattern of the trees in the stand, as it involves 
the joint inclusion probabilities for all the pairs of the trees in the population (Appendix 
B). The joint inclusion probability πij(α) for trees i, j∈I is the probability that both the 
trees are included in a sample, and in Bitterlich sampling this probability is proportional 
to the overlapping area of the tree inclusion regions. For the unbiased variance estimator 
given in Appendix B (Eq. B9) and based on a sample of trees taken at one viewing point, 
these probabilities need not only be known but also positive for all the pairs of trees in 
the sample. In a Bitterlich sample, the positivity requirement is invariably fulfilled, as the 
inclusion regions of the trees in the same sample necessarily overlap. The requirement of 
knowing the spatial pattern of the trees in the sample can be circumvented by repeating 
Bitterlich sampling at k randomly and independently selected viewing points Qj∈L, j=1, ..., 
k: The estimators ŶHT[sQj(α)] obtained from the k samples are independent and identically 
distributed, and hence have the same variance Var{ŶHT[sQj(α)]}≡Var(ŶHT) for all Qj. An 
unbiased estimator for this variance is given by the sample variance of the k estimators:

Vâr(ŶHT ) = 1
k −1

ŶHT[sQj
(α)]− YHT{ }2

j=1

k

∑  ,  (57)

where Y̅HT is the mean of the k independent estimators ŶHT[sQj(α)]. The population total 
Y is estimated with Y̅HT, the variance of which is Var(Y̅HT)=Var(ŶHT)/k. An unbiased 
estimator of the variance of Y̅HT then becomes

Vâr(YHT ) = 1
k

Vâr[ŶHT]

 = 1
k(k −1)

ŶHT[sQj
(α)]− YHT{ }2

j=1

k

∑
 

(58)

(cf. de Vries 1986, Schreuder et al. 1993, Eriksson 1995, Gregoire and Valentine 2008). 
A model-based approach provides an alternative way of estimating the variance of a 

stand total estimator — in fact, the model-based studies referred to in the beginning of this 
chapter expressly address this problem. Under a certain class of models for the random 
mechanism generating forest stands, analytical expressions for the variance can be found; 
under other models, the variance can be estimated via simulations.
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4.1.2 Effect of Non-Circularity of Cross-Sections

Since Bitterlich sampling operates with the tangents of the convex closures of breast height 
cross-sections, non-convexity in the cross-sections is unobservable and thus does not influence 
the selection of trees. Therefore, when examining how non-circularity in the breast height 
cross-sections of trees affects stand total estimation by Bitterlich sampling, we confine our-
selves to considering the convex closures of the cross-sections of arbitrary non-circular shape.

If the convex closure of the breast height cross-section of a tree i∈I is not a circle, the 
maximum distance at which the tree is counted with a certain viewing angle α varies by the 
direction in which the tree is being viewed. Ergo, the inclusion region becomes non-circular 
(Fig. 10; cf. Grosenbaugh 1958, Bitterlich 1984). The size and shape of the inclusion region 
depend not only on the size and shape of the breast height cross-section but also on the view-
ing angle α used (Fig. 11). Using the support function pi(·) of the breast height cross-section 
in tree i, now defined in a co-ordinate system with the origin set in the centre of gravity of 
the convex closure of the cross-section (or in the pith of the cross-section), we attain the 
following parametric representation for the length of the radius of the inclusion region:

ri(θ; α) =  1
sinα

pi(θ)2 + pi(θ+ π −α)2 + 2pi(θ)pi(θ+ π −α)cosα  ,  (59)

where α∈(0, π) and θ∈[0, 2π) (see Appendix C for the derivation). (Note that in this para-
metrisation, θ does not indicate the direction of the radius, but the direction is a function 
of θ and α (Appendix C); consequently, the area of the inclusion region is not obtained 
straightforwardly by integrating ri(θ; α)2 from 0 to 2π (cf. Eq. 12 in Chapter 2).) We see that 
as α tends to zero, the numerator of ri(θ; α) tends to pi(θ)+pi(θ+π)=Di(θ) (and the denomi-
nator tends to 0); accordingly, for the trees with an orbiform breast height cross-section 
(constant diameter function D(·) at breast height), the limiting shape of the inclusion region 
is a circle (e.g. Fig. 11 B). As α tends to π, the viewer draws closer and closer to the stem, 
and the radii ri(θ; α) are finally found to tend to the radii of the convex closure of the breast 
height cross-section; in other words, the inclusion region tends to the convex closure of the 
breast height cross-section (cf. Matérn 1956, p. 24).

A B C

D E F

Fig. 10. Inclusion regions obtained with the viewing angle α=20° for five of the 
six example shapes discussed in Chapter 2 (A and C–F in. Fig. 5 and Table 1) 
and for an orbiform (B, cf. Fig. 4). The dashed line indicates the inclusion 
region of the circle that has the same area as the cross-section.

A B C

D E F
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The area of the inclusion region of the tree i∈I can be expressed as

|Mi (α) | = 1
sin2 α

[pi(θ)2 + pi(θ)pi(θ+ π −α)cosα
0

2π

∫
     + pi(θ) ′pi(θ+ π −α)sinα]dθ 

 

(60)

(cf. Matérn 1956; see Appendix C for the derivation). If pi(·) is multiplied with a constant, 
so is pi′(·), and |Mi(α)| thus becomes multiplied with the square of the constant. A similar 
reasoning pertains to the convex area of the breast height cross-section

ACi =
1
2
[pi(θ)

2 − ′pi(θ)
2]dθ

0

2π

∫
 

(61)

(Eq. 2 in Chapter 2). In the basal area factor κi(α) for tree i, then, defined as

κ i (α) =
ACi

|Mi (α) |
 ,  (62)

the multiplying constant cancels out. Now if pi(·) is defined with reference to the centre of 
gravity of the convex closure of the breast height cross-section, the size of the cross-section 
influences pi(·) only by a multiplying constant. Consequently, the basal area factor of a 
tree is a function of the viewing angle α that depends on the shape but not on the size of 
the breast height cross-section.

For example, if the breast height cross-section of the tree i is a circle with radius Ri, for 
which pi(θ)=Ri for all θ, the convex area of the cross-section is naturally ACi=πRi2, and the 
area of the inclusion region is given by

A B C

D E F

Fig. 11. Effect of viewing angle α on the shape of the inclusion region 
in the six example shapes in Fig. 10. The regions were produced 
with viewing angles α=30°(innermost), α=20°, α=10°, α=5° and 
α=1°(outermost), and rescaled with factors 1, 0.875, 0.550, 0.325, 
and 0.075, respectively, to facilitate perception of the change in 
shape.

A B C

D E F
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|Mi (α) | = 1
sin2(α)

(Ri
2 + Ri

2 cosα)
0

2π

∫ dθ =
2πRi

2(1+ cosα)
sin2 α

 ,

 

(63)

whereby the basal area factor becomes

κ i (α ) =
ACi

|Mi (α) |
= sin2 α

2(1+ cosα)
= sin2(α / 2)  (64)

– a result already established, in a different way, in the previous section (cf. Eq. 54; Ri=Di/2, 
cosα=2cos2(α/2)–1, sinα=2sin(α/2)cos(α/2)). Patently, the ratio does not depend on the radius 
Ri of the cross-section but is sin2(α/2) for every tree with circular cross-section at breast 
height. For any other convex shape irrespective of size, the basal area factor is then another 
function of α, although not necessarily very much different from sin2(α/2) (cf. Fig. 12).

As in the circular case (cf. Eq. 55), the inclusion probability of the non-circular tree i∈I 
is proportional to the convex area of the breast height cross-section:

π i (α) =
|Mi (α) |

|L |
=

ACi

κ i (α) |L |
 ,

 
(65)

where the proportionality coefficient 1/κi(α) just varies according to the shape of the cross-
section. The Horvitz-Thompson estimator of the sum Y=Σi∈IYi then becomes

ŶHT =
Yi

π i (α)i∈sQ (α )
∑

 = |L | κ i
i∈sQ (α )
∑ (α)

Yi

ACi

 ,
 

(66)

that is, a weighted sum of the sample tree measurements with κi(α)/ACi as weights and with 
the area of the region of interest as the scaling coefficient (cf. Eq. 56).

α

0 π 2 π

0.00

0.25

0.50

0.75

1.00

κ(
α)

Circle: sin2(α 2)
A
B
C
D
E
F

α

0 π 2 π

0.00

0.01

0.02

0.03

0.04

0.05

si
n2 (α

2)
 −

 κ
(α

)

Fig. 12. Basal area factor κ(α)=AC/|M(α)|, where AC is the convex area of the breast 
height cross-section and |M(α)| is the inclusion area of the tree, as a function of 
viewing angle α for the six example shapes in Fig. 10, with reference to the basal 
area factor sin2(α/2) of a circle.
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Yet in practice, both the shapes and the convex areas of the cross-sections usually remain 
unknown, and the inclusion probabilities are estimated by applying the formula of the cir-
cular case (Eq. 55) also to non-circular cross-sections. The resulting estimator (cf. Eq. 56)

Ŷ =
Yi

π̂ i (α)i∈sQ (α )
∑

 =
Yi

π
4

Di
2 ⋅ 1

sin2(α / 2) |L |
i∈sQ (α )
∑

 = |L | sin2(α / 2)
Yi

π
4

Di
2i∈sQ (α )

∑  ,

 

(67)

where Di now denotes the diameter selected in some fashion at breast height in a non-circular 
tree i, is not necessarily unbiased with respect to the sampling design.

To unveil the possible bias caused by the estimated inclusion probabilities, we bring in 
the random variable

δ i[sQ(α)] =
1, i∈sQ(α)

0, i∉sQ(α) 

⎧
⎨
⎪

⎩⎪  
(68)

indicating whether a tree i∈I is included in the sample sQ(α); obviously, E{δi[sQ(α)]}=πi(α), 
the expectation being taken over the probability distribution of all possible samples (see 
Appendix B). Now

E(Ŷ) = E
Yi

π̂ i (α)i∈sQ (α )
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = E δ i
i∈I
∑ [sQ(α)]

Yi

π̂ i (α)
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

= E
i∈I
∑ δ i[sQ(α)]{ } Yi

π̂ i (α)

= Yi
i∈I
∑ π i (α)

π̂ i (α)

= Yi
i∈I
∑

ACi ⋅
1

κ i (α) |L |
π
4

Di
2 ⋅ 1

sin2(α / 2) |L |

= Yi
i∈I
∑ ACi

π
4

Di
2
⋅ sin2(α / 2)

κ i (α)
 .

 

(69)

Here we see that the possible bias in the estimator ensues from two tree-specific flaws in 
the estimated inclusion probabilities: First, the diameter Di selected to be measured in the 
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non-circular breast height cross-section of tree i may not yield the true convex area ACi 
when substituted in the circle area formula. Second, the deviation of the true basal area 
factor κi(α)=ACi/|Mi(α)| from that of the circle, that is, from sin2(α/2), produces an error 
the magnitude of which depends on the relascope angle α and the shape of the breast height 
cross-section. (Note that if the selection of diameters Di involves randomness, E(Ŷ) becomes 
a random variable the expectation of which over the (multidimensional) diameter direction 
distribution should be used as the measure for the goodness of the estimator.)

The two-fold errors resulting from the estimated inclusion probabilities tend to be system-
atic and of opposite signs. With the diameter derived from the girth, the circle area formula 
was previously (Section 3.3.1) found to overestimate the convex area of a cross-section of 
any shape; this is the case also when the maximum diameter is used. This overestimation 
in all the trees then causes Ŷ to underestimate Y on average. Also with random diameters, 
the circle area formula was found to overestimate the convex area on average, that is, in 
terms of the expectation over the uniform direction distribution within cross-section (Sec-
tion 3.3.2). However, ACi/Eθ[πDi(θ)2/4] ≤ 1 does not imply that Eθ{ACi/[πDi(θ)2/4]} ≤ 1. 
Yet for the example shapes in Fig. 10, also the latter inequality holds with the diameter 
selection methods 1–5 (Table 5), but the order of Eθ{ACi/[πDi(θ)2/4]} does not follow the 
order of ACi/Eθ[πDi(θ)2/4].

The basal area factor κi(α), in turn, can be shown to be not larger than sin2(α/2) irrespec-
tive of the shape of the breast height cross-section of tree i: Matérn (1956) proved that for 
any (convex) shape of breast height cross-section

sin2(α / 2) |Mi (α) |−Â0i ≤ Â0i − ACi  ,  
(70)

where Â0i is the area estimator based on the convex perimeter at breast height in the tree i; 
we can rephrase this (setting |Mi(α)|=ACi/κi(α) according to Eq. 62) to get

1 ≤ sin2(α / 2)
κ i (α)

≤ 1 +
2(Â0i − ACi )

ACi

 .
 

(71)

The basal area factor being smaller than sin2(α/2) in all the trees then causes Ŷ to overes-
timate Y on average.

Table 5. Within-cross-section expectation of AC/[πD(θ)2/4] for the example shapes 
in Fig. 10, when the diameter D(θ) is measured with methods 1–5 (used in 
area estimators Â1–Â5, see Section 3.3.2). For a reference, the ratio obtained 
with the girth diameter (AC/Â0, diameter selection method 0) is shown. The 
values are given as 100-fold.

Diameter selection Shape
method
 A B C D E F

0 98.16 96.00 97.85 98.29 97.06 97.07
1 100.00 96.00 98.43 98.98 98.02 97.64
2 98.16 96.00 97.85 98.43 97.54 97.64
3 98.77 96.00 98.04 98.62 97.70 97.64
4 99.07 96.00 98.14 98.64 97.54 97.36
5 98.77 96.00 98.04 98.62 97.70 97.64
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In Fig. 13, the ratio sin2(α/2)/κi(α) is drawn as a function of α for the six example shapes 
of Fig. 10. With the viewing angles used in practice (α around 1–2°, not more than 5°), each 
tree with such a non-circular breast height cross-section and with the area ACi correctly 
estimated with πDi2/4 appears to contribute to the stand total estimate with an amount that 
is 2.5–4 % too large. For ellipses, the overestimation increases substantially along with 
eccentricity (Fig. 14; cf. the results by Grosenbaugh (1958) showing that for an ellipse with 
axis ratio 0.5 the overestimation amounts to over 25 % with α =1.74°, 3.81°, 45° or 90°). 
As for more exotic cross-section shapes, we can deduce from the results given by Bitterlich 
(1984) that for a half circle the overestimation becomes 38 % with α=2.29°.

Grosenbaugh (1958) examined the combined error sin2(α/2)/κi(α)·ACi/(πDi2/4) in the 
ellipses with axis ratio 0.9 or 0.5 by employing the girth diameter or the quadratic, arithmetic 
or geometric mean of Dmin and Dmax as Di and by applying the values 90°, 45°, 3.81° and 
1.74° for α. He found that in all those cases, the combined error was larger or equal to 1, 
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Fig. 13. Ratio of the basal area factor of a circle, sin2(α/2), to the basal area factor of a 
non-circular cross-section, κ(α)=AC/|M(α)|, as a function of the viewing angle α for 
the six example shapes in Fig. 10 (cf. Matérn 1956, p. 25).
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Fig. 14. Ratio of the basal area factor of a circle, 
sin2(α/2), to the true basal area factor, κ(α), as 
a function of the viewing angle α, for ellipses 
with axis ratio of 0.5 (uppermost curve), 0.6, 
0.7, 0.8, and 0.9 (lowermost curve).
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implying an overestimating bias in Ŷ. Not unexpectedly, the quadratic mean yielded the 
smallest combined error (in fact, an error of negligible magnitude when the two smallest 
values of the viewing angle were used): the quadratic mean in πDi2/4 results in the largest 
overestimation of ACi, which then most effectively counterbalances the overestimation of 
κi(α) by sin2(α/2) (which, in turn, does not depend on diameter selection). In Table 6, the 
combined errors produced by the diameter selection methods 0–11 and viewing angles 1° 
and 30° are given for the example shapes of Fig. 10. Manifestly, Grosenbaugh’s findings 
on elliptical cross-section cannot be generalised, but with different shapes and diameter 
selection methods the combined error may very well result in underestimation. In a major-
ity of the shapes, however, the most common diameter selection methods 0–5 result in 
overestimation smaller than 1 %. Within the range applied, the viewing angle appears to 
influence the error only negligibly. 

Table 6. Contribution of a sample tree to bias in stand total estimation from Bitterlich 
sample (sin2(α/2)/κ(α)·AC/(πD2/4), see Eq. 69), if the breast height cross-section of 
the tree is one of the shapes in Fig. 10 and if its diameter is measured with methods 
0–11 used in area estimators Â0–Â11 (see Section 3.3). Results with viewing angles 
α=1° and α=30° (in parentheses) are given; with α=2° and α=5°, the results were 
similar to those obtained with α=1°. For the diameter selection methods 1–5, the 
expectation of AC/(πD2/4) over the uniform direction distribution (Table 5) was used 
in the computation. The values are given as 100-fold.

Diameter  
selection  
method

Shape

A B C D E F

0 100.61
(100.75)

100.00
(99.87)

100.20
(100.19)

100.24
(100.29)

100.33
(100.40)

100.20
(100.24)

1 102.50
(102.64)

100.00
(99.87)

100.79
(100.79)

100.95
(100.99)

101.32
(101.40)

100.79
(100.83)

2 100.61
(100.76)

100.00
(99.87)

100.20
(100.19)

100.39
(100.43)

100.82
(100.90)

100.79
(100.83)

3 101.24
(101.38)

100.00
(99.87)

100.39
(100.38)

100.58
(100.62)

100.99
(101.06)

100.79
(100.83)

4 101.55
(101.69)

100.00
(99.87)

100.49
(100.48)

100.60
(100.65)

100.82
(100.90)

100.49
(100.54)

5 101.24
(101.38)

100.00
(99.87)

100.39
(100.38)

100.58
(100.62)

100.99
(101.06)

100.79
(100.83)

6 101.23
(101.38)

100.00
(99.87)

100.20
(100.19)

95.71
(95.75)

100.33
(100.40)

100.20
(100.24)

7 102.50
(102.64)

100.00
(99.87)

100.59
(100.58)

96.16
(96.20)

101.35
(101.43)

100.20
(100.63)

8 101.23
(101.38)

100.00
(99.87)

100.20
(100.19)

103.45
(103.50)

112.19
(112.27)

114.00
(114.05)

9 102.50
(102.64)

100.00
(99.87)

100.59
(100.58)

103.56
(103.60)

112.46
(112.54)

114.00
(114.05)

10 101.23
(101.38)

100.00
(99.87)

100.20
(100.19)

94.26
(94.30)

90.25
(90.32)

88.75
(88.79)

11 102.50
(102.64)

100.00
(99.87)

100.59
(100.58)

94.61
(94.65)

90.42
(90.49)

88.75
(88.79)
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If we choose to measure the girth diameter at breast height from each tree included in 
Bitterlich sample, we obtain the following bounds for the expectation of Ŷ (the stand total 
estimator involving inclusion probabilities that were estimated as if the cross-sections were 
circular, Eq. 67):

Yi
i∈I
∑ ACi

Â0i

≤ E(Ŷ) ≤ Yi
i∈I
∑ 2−

ACi

Â0i

⎛

⎝⎜
⎞

⎠⎟
 

 

(72)

(combine Eqs. 69 and 71 and set πDi2/4= πμDi2/4=π(Ci/π)2/4=Â0i). The bounds of the bias 
are now ascribed to the deviations of the cross-section area estimates Â0i from the convex 
areas ACi at breast height in the stems of the stand. The lower bound evidently falls below 
the true value Y=Σi∈IYi, and hence Ŷ with girth diameters may even systematically under-
estimate Y.

If, in turn, we choose to measure from each tree in the sample one random diameter with 
uniformly distributed direction, we attain a point approximation for the expectation of Ŷ: 
Matérn (1956) proved that for any (convex) shape of breast height cross-section

sin2(α / 2) |Mi (α) |−Eθ (Â1i )  ≤ Eθ (Â1i )− ACi
⎡⎣ ⎤⎦ tan2(α / 2) ,

 
(73)

where Eθ(Â1i) is the expectation, over the uniform direction distribution, of the area esti-
mator Â1 involving one random diameter at breast height in tree i; by rephrasing this, the 
basal area factor κi(α) is found to satisfy

    
Eθ (Â1i )

ACi

− tan2(α / 2)
Eθ (Â1i )

ACi

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤ sin2(α / 2)
κ i (α)

≤
Eθ (Â1i )

ACi

+ tan2(α / 2)
Eθ (Â1i )

ACi

−1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 .

 

(74)

With the usually employed relascope angles α of the magnitude 1–2°, tan2(α/2) assumes 
the values 0.000076–0.00030, and hence sin2(α/2)/κi(α) becomes very close to Eθ(Â1i)/ACi. 
Consequently,

E(Ŷ) = Yi
i∈I
∑ sin2(α / 2)

κ i (α)
⋅

ACi

Â1i

 ≈ Yi
i∈I
∑ Eθ (Â1i )

ACi

⋅
ACi

Â1i

 = Yi
i∈I
∑ Eθ (Â1i )

Â1i

 ,
 

(75)

that is, the bias in the stand total estimator Ŷ is attributable to the deviation of the area 
estimates based on one random diameter from their within-cross-section expectations in 
the stems of the stand.
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When the viewing point is located close to the boundary of the inclusion region of a tree 
with non-circular (breast height) cross-section, it is not a straightforward task to check 
whether the tree should be included in the Bitterlich sample, as the critical distance varies 
according to the viewing direction (cf. Eq. 59). Contrary to what Grosenbaugh (1958) 
reasoned, the convention of measuring diameter D perpendicular to the viewing direction 
and computing the critical distance with the circle formula (Eq. 52) as

r(α) = D
2
⋅ 1
sin(α / 2)  

(76)

appears to give a good approximation with the viewing angles used in practice (α around 
1–2°, not more than 5°) (Fig. 15). For ellipses, Grosenbaugh (1958) recommended com-
puting the critical distance as the radius of a circle with the same area as the inclusion area 
(for ellipses this can be easily determined as a function of Dmin, Dmax and α); however, if 
applied only when the viewing point appears to be near the inclusion region boundary (and 
not routinely to all sample trees), this practice is likely to result in an inclusion region that 
is the union of the true inclusion region and the approximating circle (Fig. 16) and is thus 
not something to advocate.

4.1.3 Special Case: Relative Basal Area

We complete our examination of stand total estimation by Bitterlich sampling by applying 
the theory presented above to the estimation of relative basal area. As non-convexity of 
cross-sections cannot be observed with relascope, we define the relative basal area of a stand 

A B C

D E F

Fig. 15. Approximation (dashed line) of the inclusion region (solid line) 
by computing the inclusion region radii as r=D(ξ+π/2)/[2sin(α/2)] 
(cf. Eq. 52), where D(ξ+π/2) is the tree diameter taken perpendicular 
to the plot radius direction and α is the viewing angle, for the six 
example shapes in Fig. 10. The inclusion regions were produced with 
α=1° (outermost), α=5° and α=20° (innermost) and rescaled with 
factors 0.08, 0.325 and 1.25, respectively. Note that for the orbiform 
with constant diameter (shape B), the approximated inclusion regions 
are naturally circles irrespective of the value of the viewing angle.

A B C

D E F
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I growing in region L as the sum of the convex areas of the breast height cross-sections of 
the trees in the stand divided by the area of the region:

G = 1
|L |

ACi
i∈I
∑  .

 
(77)

If the cross-sections of the trees are circular at breast height — let Di again stand for the 
breast height diameter of a tree i∈I — the relative basal area can be expressed as

G = 1
|L |

π
4

Di
2

i∈I
∑  ,

 
(78)

and its Horvitz-Thompson estimator becomes (cf. Eq. 56)

Ĝ HT = 1
|L |

π
4

Di
2

π i (α)i∈sQ (α )
∑

 = 1
|L |

|L | sin2(α / 2)

π
4

Di
2

π
4

Di
2i∈sQ (α )

∑

 = nsin2(α / 2) ,

 

(79)

Fig. 16. Approximating the inclusion region (solid line) with a circle of the same area (dashed line), 
when the cross-section of a tree is an ellipse. If we determine the critical distance at which the 
tree is included in a sample as the radius of this circle (Grosenbaugh 1958) and if we then apply 
this critical distance only if the tree appears to be a “borderline case” (the inclusion of which we 
are uncertain about on the basis of viewing), we risk employing the union of the regions as the 
inclusion region: when the viewing point is located outside the true inclusion region but inside 
the circle, applying this critical distance causes the tree to be included in the sample, and the 
inclusion region then becomes dilated in the parts where the circle reaches farther than the true 
inclusion region; when the viewing point is located inside the true inclusion region but outside 
the circle, we do not necessarily realise to make the checking (because the tree does not appear 
to be a “borderline case” but obviously seems to be included in the sample), and the inclusion 
region is then not reduced as it should in the parts where the true inclusion region ranges farther 
than the circle. The problem can be eliminated by applying the critical distance systematically 
to all the trees.
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where n is the number of trees in the sample sQ(α) obtained at point Q∈L with viewing 
angle α. Thus, an unbiased (with respect to the sampling design) estimate for the relative 
basal area is indeed attained by just counting the number of trees subtending the relascope 
angle — the fact perceived by Walter Bitterlich, at first only empirically (Bitterlich 1984)! 
The result follows from the fact that the inclusion area, and thereby also the inclusion 
probability, of each sampled tree i is proportional to πDi2/4 with 1/sin2(α/2) as the propor-
tionality coefficient. (Note that ĜHT here is unitless, i.e., the cross-section areas and the 
area of the region L are assumed to be expressed in the same units; as mentioned before, 
the basal area factor sin2(α/2) is usually multiplied by 10 000 or 43 560 so as to express 
ĜHT in m2/ha or ft2/ac, respectively.)

If counting of trees is repeated at k randomly and independently selected viewing points 
Qj∈L, j=1, ..., k, G is unbiasedly estimated with the mean G̅HT of the k independent estima-
tors ĜHTj; an unbiased estimator for the variance of G̅HT is given by

Vâr(G HT ) = 1
k(k −1)

(Ĝ HTj
−G HT )2

j=1

k

∑

 = sin4(α / 2)
k(k −1)

(n j − n)2

j=1

k

∑  ,

 

(80)

where n̅ is the arithmetic mean of the numbers of trees nj counted at the k separate view-
ing points.

If the convex closures of the breast height cross-sections of the trees are non-circular, the 
basal area estimator Ĝ=nsin2(α/2) is biased (when considered over the probability distribu-
tion of all possible tree samples):

E(Ĝ) = sin2(α / 2)E(n)

 = sin2(α / 2)E δ i
i∈I
∑ [sQ(α)]

⎧
⎨
⎩

⎫
⎬
⎭

 = sin2(α / 2) π i
i∈I
∑ (α)

 = sin2(α / 2)
|Mi (α) |

|L |i∈I
∑

 = 1
|L |

sin2

i∈I
∑ (α / 2) |Mi (α) |

 = 1
|L |

sin2(α / 2)
κ i (α)i∈I

∑ ACi

 ≡ 1
|L |

Ai
i∈I
∑ (α) .

 

(81)

Clearly, the bias of Ĝ owing to the non-circular shapes of tree cross-sections manifests itself 
in the deviation of Ãi(α) from ACi (Matérn 1956), that is, in the deviation of sin2(α/2)/κi(α) 
from 1. As sin2(α/2)/κi(α) was found to be larger or equal to 1 (Eq. 71) for all convex shapes, 
Ĝ tends to overestimate G systematically.

The inequalities proved by Matérn (1956) and introduced in the previous section (Eqs. 70 
and 73) give bounds for the overestimating bias in Ĝ (originally, the inequalities were derived 
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expressly for the case of estimating relative basal area by relascope). The first inequality

Ai(α)− Â0i ≤ Â0i − ACi     ⇔    ACi ≤ Ai(α) ≤ ACi + 2(Â0i − ACi )  (82)

implies that, irrespective of the shape of a cross-section, Ã(α) be always greater or equal to 
the convex area of the cross-section, and that the error of Ã(α) never exceed double the iso-
perimetric deficit. Accordingly, no matter what shapes breast height cross-sections assume,

G ≤ E(Ĝ) ≤ G + 2
|L |

(Â0i − ACi )
i∈I
∑  .  (83)

The second inequality

A(α)− Eθ (Â1) ≤ Eθ (Â1)− AC
⎡⎣ ⎤⎦ tan2(α / 2)  (84)

shows that in practice — α being of the magnitude 1–2°, and tan2(α/2) thus 0.000076–
0.00030 — Ã(α) becomes very close to the within-cross-section expectation Eθ(Â1) of the 
estimator based one random diameter. Accordingly,

E(Ĝ) ≈ 1
|L |

Eθ
i∈I
∑ (Â1i ) ,  (85)

which implies that, regardless of the shapes of breast height cross-sections, the overesti-
mating bias of the basal area estimator by relascope be approximately equal to the bias 
obtained by calipering all the trees in I in a random direction and applying the circle area 
formula (Matérn 1956). 

Relative basal area may, of course, be estimated using diameter measurements, if they 
are available on the trees included in the Bitterlich sample. Then it is possible to apply 
different area estimators, say ÂX and ÂY, in the inclusion probability estimation versus the 
cross-section area estimation: the estimator with estimated inclusion probabilities becomes 
(cf. Eq. 67)

Ĝ = 1
|L |

ÂYi

π̂ i (α)i∈sQ (α )
∑

 = 1
|L |

ÂYi

ÂXi ⋅
1

|L | sin2(α / 2)
i∈sQ (α )
∑

 = sin2(α / 2)
ÂYi

ÂXii∈sQ (α )
∑  ,

 

(86)

and its expectation over the probability distribution of all possible tree samples is (cf. Eq. 69)
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E(Ĝ) = ÂYi
i∈I
∑ π i (α)

π̂ i (α)

 = ÂYi
i∈I
∑

ACi ⋅
1

κ i (α) |L |

ÂXi ⋅
1

sin2(α / 2) |L |

 = ÂYi
i∈I
∑ ACi

ÂXi

⋅ sin2(α / 2)
κ i (α)

 .
 

(87)

For elliptical cross-sections, Grosenbaugh (1958) recommended using the geometric mean 
of Dmin and Dmax in the circle area formula for ÂY and the quadratic mean ditto for ÂX 
to minimise the bias. This is a most natural choice: the geometric mean in the circle area 
formula yields the true area AC of an ellipse, whereas the quadratic mean gives the largest 
overestimation and thus minimises the combined error sin2(α/2)/κ(α)·AC/ÂX.

4.2 Bitterlich Diameters: Diameters Measured Parallel or Perpendicular to Plot 
Radius Direction

When a tree to be investigated is selected by Bitterlich sampling, it is a common practice 
to measure its breast height diameter parallel or perpendicular to the plot radius, that is, 
parallel or perpendicular to the line segment from the viewing point to the assumed centre 
of gravity, or pith, of the breast height cross-section (Fig. 17). This diameter is then usually 
regarded as “random”, implying a correspondence to the diameter with the uniform direction 
distribution, which is the way in which “random diameter” is usually understood in colloquial 
language. Although practically sensible and seemingly sound, this practice involves a likely 
pitfall if the breast height cross-section of the tree is non-circular: Plot radius direction in 
Bitterlich sampling is a random variable the value of which depends on the outcome of the 
random experiment of placing the viewing point in the inclusion region. If the inclusion 
region of a stem deviates from a circle, the probability of a viewing point to be located in a 
certain direction when viewed from the tree pith varies according to the direction. In Fig. 
17, for example, it is more probable to place the viewing point in the way that the plot radius 
direction becomes tQ than in the way that it becomes tR — simply because the line segment 
from the pith to the inclusion region boundary is longer through the point Q than through 
the point R. Accordingly, the distribution of the plot radius direction — and, in consequence, 
the distribution of the diameter measurement direction — is not uniform over [0, 2π) — or 
over [0, π), respectively — when viewed from the pith of the tree. In other words, contrary 
to the usual implicit assumption or belief, the diameter taken parallel or perpendicular to 
relascope plot radius direction does not correspond to a random diameter with the uniform 
direction distribution, if the cross-section of a tree is non-circular. In Fig. 17, for example, 
measuring diameters near D(tQ) is more probable than measuring diameters near D(tR) if the 
measurement practice is to take the diameter parallel to the plot radius, and less probable if 
the practice is to take the diameter perpendicular to the plot radius.

In the following, we first derive the direction distributions for these Bitterlich diameters, 
that is, for the diameters measured parallel or perpendicular to plot radius in Bitterlich 
sampling. Then we derive the expectations, variances and approximate variances of the area 
estimators similar to those dealt with in Section 3.3.2 but with Bitterlich diameters involved.
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4.2.1 Direction Distributions of Bitterlich Diameters

The tree-specific probability distribution of the plot radius direction τ∈[0, 2π) is obtained 
from the inclusion region M(α) of the tree via geometrical probability. The density mass 
of τ between directions t1 and t2, t1<t2, is the probability that the viewing point is located 
in the sector of M(α) edged by the rays emanating from the tree pith in directions t1 and t2 
(Fig. 18); since the viewing point is uniformly randomly located in the region of interest, 
the probability equals the area of the sector divided by the total area of M(α), that is,

  Pr t1 ≤ τ ≤ t2; α{ } = |M(α)t1

t2 |

|M(α) |
 .  (88)

The plot radius directions τ and τ+π result in the same diameter of the cross-section, and 
hence the probability that the direction ξ∈[0, π) of the diameter taken parallel to plot radius 
is between t1 and t2 is the sum of the probabilities of τ being between t1 and t2 or between 
t1+π and t2+π (Fig. 19), that is,

Pr t1 ≤ ξ ≤ t2; α{ } = Pr t1 ≤ τ ≤ t2; α{ } + Pr t1 + π ≤ τ ≤ t2 + π; α{ }

 =
|M(α)t1

t2 |

|M(α) |
+

|M(α)t1+π
t2+π |

|M(α) |
 .

 

(89)

Setting t1=0 and t2=t and restricting t∈[0, π), we obtain the cumulative distribution func-
tion of ξ:

Fig. 17. In a tree with a non-circular breast height cross-section and, hence, with a non-circular inclu-
sion region, measuring diameter in the plot radius direction does not result in a random diameter 
with the uniform direction distribution: here it is more probable to place the viewing point in the 
way that the plot radius direction becomes tQ than in the way that it becomes tR, because the line 
segment from the pith to the inclusion region boundary is longer through the point Q than through 
the point R; hence the diameter measurement is more likely to give a value D(tQ) than D(tR).

tQtR

D(tR)
D(tQ)

Q

R

α
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Fξ (t; α) = Pr ξ ≤ t; α{ }
 = Pr 0 ≤ ξ ≤ t; α{ }
 = Pr 0 ≤ τ ≤ t; α{ } + Pr π ≤ τ ≤ π + t; α{ }
 =

|M(α)0
t |

|M(α) |
+

|M(α)π
π+t |

|M(α) |
 .

 

(90)

Although the inclusion region boundary co-ordinates (Eq. C9 in Appendix C) or radii (Eq. 
59) can straightforwardly be expressed as functionals of the support function p(·), the sector 
area of the inclusion region cannot, or at least this is rather troublesome; the difficulty lies 
in the determination of the integration limits (see Appendix D). Therefore, when computing 
the Bitterlich direction distribution, we resort to numerical integration.

The probability density function fξ(t; α)=Fξ′(t; α) may be approximated with

 fξ (t; α) ≈
Fξ (t + Δt; α)− Fξ (t; α)

Δt
 ,  (91)

where Δt is small (0.5°, for example). For the example shapes of Fig. 10, the approximated 
density functions with viewing angles 1°, 20° and 30° are shown in Fig. 20.

The direction distribution of the diameter taken perpendicular to plot radius in Bitterlich 
sampling is obtained from Fξ(t ; α) by a location shift of –π/2: 

Fξ+π/2 (t; α) = Pr ξ + π / 2 ≤ t; α{ } = Pr ξ ≤ t − π / 2; α{ } = Fξ (t − π / 2; α) .  (92)

M(α)
M(α)

α

t1
t2

t2
t1

Fig. 18. Illustration of the probability distribution 
of the plot radius direction τ in Bitterlich 
sampling with α as the viewing angle: the 
density mass between directions t1 and t2 
is the probability of the viewing point to be 
located in the hatched sector of the inclusion 
region M(α).

α

t1

D(t1)

t2
D(t2)

M(α) t1
t2

M(α) t1+π
t2+π

Fig. 19. Illustration of the probability distribution 
of the direction ξ of the diameter measured 
parallel to plot radius direction in Bitterlich 
sampling with α as the viewing angle: the 
density mass between directions t1 and t2 
is the probability of the viewing point to be 
located in either of the hatched sectors of the 
inclusion region M(α); D(t1) and D(t2) are the 
diameters in directions t1 and t2.
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In the example shapes of Fig. 10, taking the Bitterlich diameter perpendicular to plot radius 
results in larger (or equal; shape F) values on average than taking it parallel to plot radius 
(Table 7), even though the differences are rather small (about 2.5 % in the ellipse A, less 
than 1 % in the other shapes). Compared to the diameters with the uniform direction distri-
bution, the Bitterlich diameters parallel to plot radius are on average smaller in a majority 

Fig. 20. (Approximated) probability density function fξ(ξ; α) of the direction ξ of the diameter 
taken parallel to plot radius in Bitterlich sampling for the six example shapes in Fig. 10. 
The distributions were determined with viewing angles α=1° (continuous line), α=20° 
(dotted line) and α=30° (dashed line). The positive x-axis, with respect to which the 
direction ξ is determined, runs horizontally through the centre of gravity of the shape; ξ 
increases anticlockwise. The horizontal line marks the density function 1/π of the uniform 
direction distribution.

Table 7. Means (μD(ξ), μD(ξ+π/2)) and variances (σD(ξ)2, σD(ξ+π/2)2) of Bitterlich diameters (D(ξ) 
taken parallel and D(ξ+π/2) taken perpendicular to plot radius direction) in relation to 
the same characteristics computed over the uniform direction distribution (μD, σD2) 
for five of the six example shapes in Fig. 10 (the orbiform B with constant diameter in 
every direction is omitted). The direction distributions of the Bitterlich diameters were 
determined with the viewing angles α=1° and α=30° (in parentheses).

Shape
A C D E F

μD(ξ)/μD (%) 98.79
(98.95)

99.61
(99.66)

99.70
(99.71)

100.00
(99.88)

100.39
(100.19)

μD(ξ+π/2)/μD (%) 101.21
(101.05)

100.39
(100.34)

100.50
(100.39)

100.65
(100.44)

100.39
(100.19)

σD(ξ)2/σD2 (%) 98.20
(98.66)

99.32
(99.44)

97.08
(96.55)

99.76
(99.80)

99.32
(99.74)

σD(ξ+π/2)2/σD2 (%) 96.98
(97.61)

99.32
(99.44)

106.71
(104.99)

99.11
(99.52)

99.32
(99.74)
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Fig. 21. (Approximated) cumulative distribution functions of the Bitterlich diameters taken 
parallel (FD(ξ)(d) , black) or perpendicular (FD(ξ+π/2)(d), grey) to plot radius for the six 
example shapes in Fig. 10. The distributions were determined with viewing angles α=1° 
(continuous line) and α=30° (dashed line). For reference, the cumulative distribution 
function of the diameter with uniformly distributed direction within [0, π) is also shown 
(thin black line).

of the shapes, whereas the Bitterlich diameters perpendicular to plot radius are on average 
larger in all the shapes. Interestingly, in all the shapes but one, both types of the Bitterlich 
diameters seem to have a smaller variance than the diameters with the uniform direction 
distribution. The correlations between the Bitterlich diameters are the same (up to the third 
decimal) as the correlations between perpendicular diameters over the uniform direction 
distribution (Table 1; note that the shape B in this table is not the orbiform in Fig. 10 but 
the ellipse-like shape in Fig. 5).

From the direction distribution, we get the diameter distribution in a general manner: 
FD(ξ)(d) = Pr{D(ξ)≤d; α}, where Pr{D(ξ)≤d; α} is the probability mass of directions in which 
diameter is not larger than d. For the example shapes of Fig. 10, the Bitterlich diameter 
distributions are shown in Fig. 21.

4.2.2 Estimation of Cross-Section Area by Bitterlich Diameters and Circle Area 
Formula

As mentioned above, Bitterlich diameters (i.e., the diameters measured parallel or perpen-
dicular to plot radius in Bitterlich sampling) are often used as if they were random diameters 
with the uniform direction distribution. As the direction distributions of the Bitterlich diam-
eters are actually not uniform if the breast height cross-sections of trees are non-circular, 
we consider the cross-section area estimators similar to Â1–Â5 discussed in Section 3.3.2 
but now involving Bitterlich diameters. The estimators are of the form

Â = π
4

D(⋅)2  ,
 

(93)
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where D(·) is
1ξ. diameter D(ξ) taken parallel to plot radius direction, ξ~Fξ(ξ; α) (Â1ξ)
2ξ. arithmetic mean of diameters D(ξ) and D(ξ+π/2) taken parallel and perpendicular to plot radius 

direction (Â2ξ)
3ξ. geometric mean of D(ξ) and D(ξ+π/2) (Â3ξ)
4ξ. arithmetic mean of D(ξ) and an independent random diameter D(θ), ξ~Fξ(ξ; α), θ~Uniform(0, π) 

(Â4ξ)
5ξ. geometric mean of D(ξ) and D(θ) (Â5ξ)

Hardly surprisingly, the within-cross-section expectations, variances and variance approxi-
mations of these estimators closely resemble those of the random estimators Â1–Â5 (Eqs. 
22–26 and 30–37 in Section 3.3.2). If we denote the expectations of D(ξ) and D(ξ+π/2) taken 
over the distribution Fξ(ξ; α) by μD(ξ) and μD(ξ+π/2), the variances by σD(ξ)2 and σD(ξ+π/2)2, 
and the correlation by ρD(ξ)(π/2) (note that for brevity, the viewing angle α affecting the 
distribution is omitted in the notation) — and recall that μD and σD2 stand for the expecta-
tion and the variance of D(θ) over the uniform distribution of θ — the expectations of the 
estimators become as follows:

E(Â1ξ ) =
π
4
µD(ξ )
2 + π

4
σD(ξ )
2 ,

 
(94)

E(Â2ξ ) = π
4

µD(ξ ) + µD(ξ+π/2)

2
⎛

⎝
⎜

⎞

⎠
⎟

2

 + π
16

σD(ξ )
2 + σD(ξ+π/2)

2 + 2σD(ξ ) σD(ξ+π/2) ρD(ξ )

π
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ,  

(95)

  E(Â3ξ ) = π
4
µD(ξ ) µD(ξ+π/2) +

π
4
σD(ξ+π/2) σD(ξ ) ρD(ξ )

π
2

⎛
⎝⎜

⎞
⎠⎟

 ,
 (96)

E(Â4ξ ) = π
4

µD(ξ ) + µD

2
⎛

⎝
⎜

⎞

⎠
⎟

2

+ π
16

σD(ξ )
2 + σD

2( ) ,
 

(97)

and

E(Â5ξ ) = π
4
µD(ξ ) µD  .

 
(98)

Unlike with the expectations of the random estimators Â1–Â5, it is not easy to see whether 
these expectations overestimate or underestimate the convex area of a cross-section (because 
the relationship between πμD(ξ)2/4, or πμD(ξ+π/2)2/4, and AC is not straightforward to derive 
with no assumptions about cross-section shape; cf. Eq. 20 in Section 3.3.2). The exact 
variances are given by

Var(Â1ξ ) = π2

16
E[D(ξ)4]− µD(ξ )

2 + σD(ξ )
2( )2{ } ,  (99)
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Var(Â2ξ ) = π2
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Var(Â3ξ ) = π2
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Var(Â4ξ ) = π2
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and

Var(Â5ξ ) = π2

16
µD(ξ )

2 + σD(ξ )
2( ) µD

2 + σD
2( )−µD(ξ )

2 µD
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⎣
⎤
⎦ .

 (103)

Finally, the variance approximations by the delta method become

Var(Â1ξ ) =
π2

4
µD(ξ )
2 σD(ξ )

2 ,  (104)

Var(Â2ξ ) = π2
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Var(Â3ξ ) = π2
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Var(Â4ξ ) = π2
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µD(ξ ) + µD
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⎝
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⎠
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σD(ξ )
2 + σD

2( ) ,  
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and

Var(Â5ξ ) = π2

16
µD

2 σD(ξ )
2 + µD(ξ )

2 σD
2( ) .

 
(108)

Note that these variance approximations depend not only on the way of selecting the diam-
eters — as with the estimators Â1–Â5 — but also on the type of mean employed in the 
estimator. For the estimator Â5ξ, the approximate variance is easily seen to underestimate 
the true variance, exactly as was the case with the estimator Â5 involving two diameters 
with the uniform direction distribution (cf. Eq. 38 in Section 3.3.2).

In practice, it is often more convenient to measure the (first) diameter perpendicular 
to plot radius than parallel to it. This practice results in three more area estimators of the 
form above to be considered: the modifications Â1ξ90, Â4ξ90 and Â5ξ90 of Â1ξ, Â4ξ and Â5ξ 
involving D(ξ+π/2) instead of D(ξ). The within-cross-section expectations and variances 
of the these estimators are obtained from those of Â1ξ, Â4ξ and Â5ξ by substituting the 
moments of D(ξ+π/2) for the moments of D(ξ).

In Tables 8 and 9, the expectations, variances and approximate variances of the estima-
tors Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 are given for the example shapes in Fig. 10; the dis-
tributions of ξ (and ξ+π/2) were determined with viewing angles 1° and 30°. None of the 

Table 8. Expectations of the area estimators Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 (Eqs. 94–98) for 
the example shapes in Fig. 10 (the orbiform B with constant diameter in every direction 
is omitted, because in it all the estimators yield the same estimate, 1.042 times the true 
area), expressed in permille of true area. The distributions of the directions ξ and ξ+π/2 
of the Bitterlich diameters were determined with the viewing angles α=1° and α=30° 
(in parentheses).

Shape
A C D E F

E(Â1ξ)/A (‰) 1000
(1003)

1016
(1017)

1014
(1014)

1034
(1031)

1040
(1036)

E(Â2ξ)/A (‰) 1019
(1019)

1022
(1022)

1019
(1018)

1037
(1034)

1038
(1034)

E(Â3ξ)/A (‰) 1013
(1013)

1020
(1020)

1018
(1017)

1037
(1034)

1040
(1036)

E(Â4ξ)/A (‰) 1010
(1011)

1019
(1020)

1016
(1016)

1032
(1031)

1035
(1033)

E(Â5ξ)/A (‰) 1006
(1008)

1018
(1019)

1014
(1014)

1030
(1029)

1034
(1032)

E(Â1ξ90)/A (‰) 1050
(1046)

1032
(1031)

1030
(1028)

1047
(1043)

1040
(1036)

E(Â4ξ90)/A (‰) 1034
(1033)

1027
(1026)

1024
(1023)

1039
(1037)

1035
(1033)

E(Â5ξ90)/A (‰) 1031
(1029)

1026
(1025)

1022
(1021)

1037
(1035)

1034
(1032)
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estimators systematically underestimates the true area. As could be expected on the basis 
of diameter means (Table 7), the estimators involving the Bitterlich diameter parallel to 
plot radius (Â1ξ, Â4ξ and Â5ξ) yield smaller overestimating biases than those involving the 
Bitterlich diameter perpendicular to plot radius (Â1ξ90, Â4ξ90 and Â5ξ90). In all the shapes 
but F, the former estimators perform better, in terms of bias, than the estimators that were 
earlier found to be the best (Â0 and Â3; Table 8 vs. Table 2). As to the estimator variance, 
the type of the Bitterlich diameter involved in the estimator appears to have practically no 
effect (Table 9). The approximated variances virtually equal the true variances, which in 
turn hardly deviate from the variances obtained with the diameters with the uniform direc-
tion distribution (Table 9 vs. Table 3).

Table 9. Square roots of the variances (Eqs. 99–103; Sd) and approximate 
variances (Eqs. 104–108; S d̃) of the area estimators Â1ξ–Â5ξ, Â1ξ90, 
Â4ξ90 and Â5ξ90 for the example shapes in Fig. 10 (the orbiform B 
with constant diameter in every direction is omitted, because in it the 
variances are identically zero), expressed in permille of true area. The 
distributions of the directions ξ and ξ+π/2 of the Bitterlich diameters 
were determined with the viewing angle α=1°; with α=30° the results 
were the same (up to a difference of 1 permille in a handful of cases).

 Shape
 A C D E F

Sd(Â1ξ)/A (‰) 157  90 101 118 91
S d̃(Â1ξ)/A (‰) 156 90 99 118 91
Sd(Â2ξ)/A (‰) 4 0 45 83 91
S d̃(Â2ξ)/A (‰) 4 0 45 83 91
Sd(Â3ξ)/A (‰) 9 1 44 83 91
S d̃(Â3ξ)/A (‰) 5 0 45 83 91
Sd(Â4ξ)/A (‰) 112 64 71 83 64
S d̃(Â4ξ)/A (‰) 112 64 70 83 64
Sd(Â5ξ)/A (‰) 112 64 71 83 64
S d̃(Â5ξ)/A (‰) 112 64 70 83 64
Sd(Â1ξ90)/A (‰) 157 90 106 118 91
S d̃(Â1ξ90)/A (‰) 159 90 104 118 91
Sd(Â4ξ90)/A (‰) 112 64 73 83 64
S d̃(Â4ξ90)/A (‰) 113 64 72 83 64
Sd(Â5ξ90)/A (‰) 113 64 72 83 64
S d̃(Â5ξ90)/A (‰) 113 64 72 83 64
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5 Estimation of Stem Volume
Analogously to the previous discussion on cross-section area estimation in Chapter 3, we 
now want to explore how diameter variation in non-circular cross-sections is reflected, via 
different diameter selection methods, to stem volume estimates or predictions. We consider 
three volume estimation methods — a volume equation, a theoretical general estimator (a 
definite integral of a cross-section area estimation function), and a definite integral of a 
non-parametric stem curve (a special case of the general estimator) — in which the input 
consists of tree height and diameters taken at two or more known (non-random) heights. 
Our interest is in the application of the volume estimation methods: we want to quantify 
how much of the estimation bias and error variance is attributable to uncertainty in the 
explanatory variables (diameters) and therefore seek to distinguish the error component due 
to diameter variation from the components related to other sources of uncertainty, such as 
model specification, parameter estimation and residual variation. The theoretical discussion 
in this chapter is a preliminary to the empirical part of the study, where the three types of 
volume estimators are investigated with real stems.

5.1 Practical Volume Estimator: Laasasenaho Volume Equation

The volume equations constructed by Laasasenaho (1982) are commonly used in Finland 
for predicting stem volume of standing trees from basic field measurements. We consider 
here the three-variable equation, with which the volumes of the sample trees are predicted 
for example in the Finnish national forest inventory (Tomppo et al. 1997). The model is 
of the form

V = β1D(⋅, 1.3)2 + β2D(⋅, 1.3)2 H + β3D(⋅, 1.3)3H + β4D(⋅, 1.3)2 H2

 + β5 D(⋅, 1.3)2 + D(⋅, 1.3)D(⋅, 6)+ D(⋅, 6)2⎡⎣ ⎤⎦ + β6D(⋅, 6)2(H − 6) + εL  ,  
(109)

where V denotes the stem volume, D(·, 1.3) is the breast height diameter, D(·, 6) is the 
upper diameter taken at the height of 6 m, H stands for the stem height, and εL is a random 
error with certain properties discussed in more detail below. As indicated by the denotations 
D(·, 1.3) and D(·, 6), the diameters in the model have not been explicitly specified (in which 
direction they should be measured, whether they should be computed as a mean of two or 
more diameters etc.). We fix them here as those yielding the true cross-section areas when 
substituted in the circle area formula, denoted by DA(1.3) and DA(6):

V = β1DA (1.3)2 + β2DA (1.3)2 H + β3DA (1.3)3H + β4DA (1.3)2 H2

 + β5 DA (1.3)2 + DA (1.3)DA (6)+ DA (6)2⎡⎣ ⎤⎦ + β6DA (6)2(H − 6) + εL  .  
(110)

This specification, albeit not very feasible in practice, is well motivated by the geometrical 
background of the model (see Laasasenaho 1982, p. 35–39) and also serves our purpose of 
extracting the effect of non-circularity on prediction error.

The model was constructed on the basis of data on 5053 trees sampled from all over 
Finland (Laasasenaho 1982), and hence it may be considered to express the dependence 
of stem volume on diameters and height in the Finnish tree population, with different 
parameter values β1, ..., β6 for different species. This population is finite but so large that 
sampling from it more or less corresponds to sampling from a theoretical infinite population. 



809

Pulkkinen On Non-Circularity of Tree Stem Cross-Sections: Effect of Diameter Selection …

Randomness arises from choosing a tree in the population, and both the response variable 
and the explanatory variables may be regarded as random variables, the joint distribution 
of which is generated by repeated independent samplings from the population. As usual 
with random explanatory variables, the distributional properties of the error term εL are 
defined conditional on the explanatory variables: given any possible combination of values 
of DA(1.3), DA(6) and H in the population, εL is assumed to have zero expectation and vari-
ance proportional to DA(1.3)4H2 (Laasasenaho 1982, p. 36 and p. 43–44); further, εL’s of 
separate trees are assumed to be independent. From the zero conditional expectation of εL it 
follows that the expectation of εL is zero also marginally, that is, over the joint distribution 
of DA(1.3), DA(6) and H in the population.

We assume the equation to express the relation correctly, that is, the functional form as 
well as the values of the coefficients β1, ..., β6 to be true in the population of our interest, 
and wish to use it to predict the volume of a (randomly selected) tree in this population, 
when the two diameters and the height of the tree are known. The best predictor is the model 
without the error term, that is, the conditional expectation of the volume:

VL = E[V | DA (1.3), DA (6), H]

 = β1DA (1.3)2 + β2DA (1.3)2 H + β3DA (1.3)3H + β4DA (1.3)2 H2

 +β5 DA (1.3)2 + DA (1.3)DA (6)+ DA (6)2⎡⎣ ⎤⎦ + β6DA (6)2(H − 6) .
 

(111)

As there is no estimation error in the parameter values, the prediction error V–ṼL naturally equals 
the random error εL and follows the assumptions made on εL (i.e., E[V–ṼL | DA(1.3), DA(6), H]= 
E[V–ṼL]=0 and Var[V–VL | DA(1.3), DA(6), H] ∝ DA(1.3)4H2).

If we then view volume prediction within the tree of interest, the setting becomes very 
similar to that of cross-section area estimation in Chapter 3: volume is now a fixed property 
of the tree that we estimate by a fixed estimator ṼL, and the estimation error V–ṼL becomes 
a non-random scalar (a realisation of εL). We adopt this within-tree view for a while to deal 
with volume predictors involving random diameters.

Consider estimating the stem volume of the tree by using some diameters other than 
DA(1.3) and DA(6), measured without error at the heights of 1.3 m and 6 m. Denote these 
diameters by D(θ, 1.3) and D(θ, 6), θ referring here to the diameter direction selection 
method in general. As the height H is known, the estimator can now be written as a func-
tion of the diameters only:

V̂L(θ) = c1D(θ,1.3)2 + c2D(θ,1.3)3 + c3D(θ,1.3)D(θ,6) + c4D(θ,6)2  ,  (112)

where c1=β1+β2H+β4H2+β5, c2=β3H, c3=β5, and c4=β5+β6(H–6). If the selection of D(θ, 1.3) 
and D(θ, 6) involves randomness, the estimator becomes a random variable, the within-tree 
distribution of which is determined by the diameter selection method and the shape of the 
cross-sections at the heights of 1.3 m and 6 m. As with random area estimators (Section 
3.3.2), the random volume estimator can be thought to consist of a systematic part and a 
stochastic part — the within-tree expectation over the diameter direction distribution and 
a random sampling error with zero expectation over the same distribution:

V̂L(θ) = Eθ[V̂L(θ)]+ νL(θ) .  (113)

As the estimator is a linear combination of the second and third powers of diameters and 
their cross-product, its within-tree expectation and variance are obtained by means of the 
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corresponding diameter moments and product moments taken over the diameter direction 
distribution:

Eθ[V̂L(θ)] = c1Eθ[D(θ,1.3)2] + c2Eθ[D(θ,1.3)3]

 + c3Eθ[D(θ,1.3)D(θ,6)] + c4Eθ[D(θ,6)2] ,  
(114)

and

Varθ[νL(θ)] = Varθ[V̂L(θ)]

 = Eθ[V̂L(θ)2] − Eθ[V̂L(θ)]{ }2

 = c2
2Eθ[D(θ,1.3)6] + 2c1c2Eθ[D(θ,1.3)5] + c1

2Eθ[D(θ,1.3)4]

 + 2c2c3Eθ[D(θ,1.3)4 D(θ,6)] + 2c2c4Eθ[D(θ,1.3)3D(θ,6)2]

 + 2c1c3Eθ[D(θ,1.3)3D(θ,6)] + (c3
2 + 2c1c4 )Eθ[D(θ,1.3)2 D(θ,6)2]

 + 2c3c4Eθ[D(θ,1.3)D(θ,6)3] + c4
2Eθ[D(θ,6)4]

 − Eθ[V̂L(θ)]{ }2
 .

 

(115)

Each diameter selection method can in principle be applied either dependently or indepen-
dently at the two observation heights within the stem: in the former, the diameter direction 
is selected at breast height, and the upper diameter is then measured in the same direction; in 
the latter, the diameter directions at the two heights are selected independently. In Bitterlich 
sampling, however, the idea of selecting diameters parallel or perpendicular to plot radius 
independently at the two heights is unfeasible (the plot radius direction is determined only 
once, from one viewing point at the breast height level); therefore, only dependent selection 
can be considered with the methods involving Bitterlich diameters. In the above expressions 
of within-tree expectation and variance, independent and dependent selection differ from 
each other only in terms of the product moments E[D(θ, 1.3)kD(θ, 6)p], k, p∈Q+, which 
in the independent case reduce to the products of moments E[D(θ, 1.3)k]E[D(θ, 6)p]. In 
Appendices E and F, more elaborate method-specific versions of the above general expres-
sions of within-tree expectation and variance are given for the diameter selection methods 
involving randomness and considered previously in area estimation (methods 1–5 involving 
the uniform direction distribution, see Section 3.3.2; methods 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90 
involving Bitterlich diameter direction distribution, see Section 4.2.2).

No matter if we are viewing volume determination at the within-tree level (volume esti-
mation) or at the population level (volume prediction), the volume error V–V̂L(θ) may be 
thought to consist of two components — the error term inherent in the model (the differ-
ence between the true volume V and the best predictor/estimator ṼL) and the error due to 
diameter selection (the difference between the best predictor/estimator ṼL and the predic-
tor/estimator V̂L(θ) obtained with the particular diameter selection method θ); further, the 
error due to diameter selection can be divided into two components — the within-tree bias 
ṼL–Eθ[V̂L(θ)] taken with respect to the best predictor/estimator and a random sampling 
error νL(θ):
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V − V̂L(θ) = (V − VL ) + VL − V̂L(θ)⎡⎣ ⎤⎦

 = εL + VL − Eθ[V̂L(θ)]+ νL(θ){ }{ }
 = εL + VL − Eθ[V̂L(θ)]{ } − νL(θ) .

 

(116)

At the within-tree level (conditional on the selected tree), only the within-tree diameter sam-
pling error νL(θ) is a random variable (with zero expectation, variance Varθ[νL(θ)]=Var[V̂L(θ)], 
and the distribution determined by the diameter sampling method and the shapes of the 
cross-sections at 1.3 m and 6 m), whereas the model error εL and the within-tree systematic 
error due to diameter selection ṼL–Eθ[V̂L(θ)] are non-random scalars and may in princi-
ple be compared to each other. At the population level, however, all the prediction error 
components are random variables. Yet we have only made assumptions on the model error 
εL. In any event, the prediction bias E[V–V̂L(θ)] at the population level consists of only 
the between-trees expectation E{ṼL–Eθ[V̂L(θ)]} of the within-tree bias due to diameter 
selection, as E(εL)=0 by assumption and E[νL(θ)]=Etree{Eθ[νL(θ) | tree]}=0. The prediction 
error variance Var[V–V̂L(θ)], in turn, comprises the variances of all the error components 
(εL, ṼL–Eθ[V̂L(θ)] and νL(θ)) taken over their marginal distributions as well as double the 
pairwise covariances computed over their joint distribution.

Above we assumed the model (Eq. 110) to be true. If, however, the true values for the 
parameters β1, ..., β6 were unknown and we had to use estimates obtained from any sub-
population, the prediction error V–ṼL would also contain a component due to the parameter 
estimation error (see e.g. Fox 1984; cf. Gregoire and Williams 1992): even if the parameters 
were unbiasedly estimated, the prediction bias at the population level would be zero only 
when averaged over (infinitely many) repeated parameter estimations; furthermore, the 
prediction error variance would increase by a non-zero term depending on the variances 
and covariances of the parameter estimates and the values of the predicting variables.

5.2	 General	Volume	Estimator:	Definite	Integral	of	Cross-Section	Area	Estimation	
Function

The true volume of a stem is attained as a definite integral of the cross-section area function 
— a continuous and bounded function A:[0, H]→[0, ∞) expressing how the cross-section 
area perpendicular to the vertical stem axis changes along the position in the axis:

V = A
0

H

∫ (h)dh .
 (117)

Substituting for the area function an estimate Â(h; θ) (where θ just generally refers to the 
features of the function distinguishing it from other area estimation functions) results in a 
volume estimator of the form

V̂G (θ) = Â
0

H

∫ (h; θ)dh .  (118)

Estimators of this kind, where no presumptions (besides boundedness) are necessarily 
made on Â(h; θ), are here referred to as general volume estimators. (We can not require 
continuity of Â(h; θ), if we want to allow it to be constructed from random diameters 
selected independently of each other at all the heights h∈[0, H]; see the discussion below.) 
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Unlike with the volume equation earlier, we now choose to disregard the tree population 
level — although many population level models for the area estimation function (cross-
section area taper models) are to be found in the literature (for a statistical consideration 
of prediction by such models, without uncertainty in the explanatory variables, refer e.g. 
to Gregoire et al. 2000). Instead, we adopt the within-tree view and simply regard the stem 
volume as a fixed property of our tree of interest, which we then want to estimate by means 
of an estimated cross-section area function (typically derived from either fixed or random 
diameters taken at predetermined heights) and the tree height. Within-tree randomness in 
the volume estimator then arises from randomness in the estimated area function (typically 
stemming from the use of random diameters in the construction of the function).

If Â(h; θ) is a random function (θ now referring to the source of randomness, typically 
the selection method of random diameter directions), it can equivalently be regarded as a 
continuous parameter stochastic process {Â(h; θ), h∈[0, H]} within the tree (cf. Rao 1979, 
p. 2). We are interested in the definite integrals of this process (to get the volume estimator) 
and of its transformation, the area estimation error process {Â(h; θ)–A(h), h∈[0, H]} (to 
get the volume estimation error). The definite integrals are well-defined (as limits, in the 
sense of convergence in mean square, of the sequences of approximating sums (Riemann 
sums) over [0, H] or any of its sub-intervals), if the processes satisfy the following sufficient 
(but not necessary!) conditions (Parzen 1962, p. 78–79): First, the processes should have 
finite second moments. In our case, this is necessarily true, as both {Â(h; θ)} and {A(h)} 
are bounded. Second, the processes should have continuous mean and covariance functions 
μÂ(h; θ)=Eθ[Â(h; θ)], μΔÂ(h; θ)=Eθ[Â(h; θ)–A(h)] and γÂ(h, k; θ)=Covθ[Â(h; θ), Â(k; θ)]= 
Covθ[Â(h; θ)–A(h), Â(k; θ)–A(k)]=γΔÂ(h, k; θ). Although Â(h; θ) based on diameters taken 
in independent random directions at each height is not necessarily continuous, its mean and 
covariance functions are, as they consist of diameter means, variances and covariances that 
change with height within a stem smoothly, with no discontinuity. Hence, we can assume 
that our processes fulfil also the second condition.

For processes satisfying the above conditions, the expectation and variance of their 
definite integrals are given by the definite integrals of the mean and covariance functions 
(Parzen 1962, p. 79). Accordingly, for the area estimation process and the area estimation 
error process

Eθ[V̂G (θ)] = Eθ Â
0

H

∫ (h; θ)dh
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = µ
Â

0

H

∫ (h; θ)dh ,  

(119)

Eθ V̂G (θ)− V⎡⎣ ⎤⎦ = Eθ Â
0

H

∫ (h; θ)dh − A
0

H

∫ (h)dh
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = Eθ Â(h; θ)− A(h)⎡⎣ ⎤⎦dh
0

H

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 = µ
ΔÂ

0

H

∫ (h; θ)dh ,  

(120)

and
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Varθ[V̂G (θ)] = Varθ Â
0

H

∫ (h; θ)dh
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = γ
Â

0

H

∫
0

H

∫ (h,k; θ)dhdk

 = γ
ΔÂ

0

H

∫
0

H

∫ (h,k; θ)dhdk

 = Varθ Â(h; θ)− A(h)⎡⎣ ⎤⎦dh
0

H

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 = Varθ V̂G (θ)− V⎡⎣ ⎤⎦ .
 

(121)

In other words, the within-tree expectation and variance of a general volume estimator are 
attained by integrating the mean and covariance functions of the underlying area estima-
tion process; further, the within-tree bias is obtained by integrating the mean function of 
the area estimation error process.

A theoretical upper bound for the within-tree variance of a general volume estimator is 
attained by assuming that the elements of the area estimation process are fully positively 
correlated, that is, by assuming that ρÂ(h, k)=Corrθ[Â(h; θ), Â(k; θ)]=1 for all h and k in 
[0, H]. In this case, the covariance function of the area estimation process becomes

γ
Â

(h,k; θ) = σ
Â
2 (h; θ)σ

Â
2 (k; θ)  ,  (122)

where σÂ2:[0, H]→[0, ∞), σÂ2(h; θ)=Varθ[Â(h; θ)] is the variance function of the area 
estimation process, and this yields

Varθ[V̂G (θ) | ρÂ (h, k) = 1] = σ
Â
2 (h; θ)

0

H

∫ dh
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

 (123)

as the volume estimator variance.
An area estimation process with uncorrelated elements makes another interesting spe-

cial case. Envisage a process where the correlation between elements Â(h; θ) and Â(k; θ) 
decreases with an increasing distance between h and k, finally to vanish with distances larger 
than some threshold value. It can be shown that as the threshold distance is diminished 
toward zero, that is, as the correlations between elements nearer and nearer each other are 
made vanish, the variance of the corresponding volume estimator (the variance of the integral 
of the process) tends to zero. The “limiting process” with mutually uncorrelated elements, 
that is, with Corrθ[Â(h; θ), Â(k; θ)]=0 for all h≠k in [0, H], is necessarily discontinuous 
and possesses a discontinuous covariance function with non-zero values (σÂ2(h; θ)) only 
within the diagonal line k=h. In our tree stem context, this kind of process would arise, for 
example, if Â(h; θ) was based on diameters taken in independent random directions at all 
the heights h∈[0, H]. In practice, however, this process has no natural construction: we may 
well generate individual process elements (area estimators) that are uncorrelated with each 
other — by independent selection of random diameter directions, for example — but only 
sparsely, at a finite number of observation heights, not at the infinite number of all possible 
heights. To obtain a volume estimate, we need to know the values of the area estimation 
process at all the heights h∈[0, H], and these we attain by assuming continuity — and, thus, 
some degree of correlation — between our finite number of observed values. Ergo, from 



814

Silva Fennica 46(5B), 2012 research articles

a practical point of view, an area estimation process with uncorrelated elements is just an 
abstraction that cannot indeed exist in our tree stem context.

A natural practice would be to assume a model for the area estimation function Â(h; θ) 
in a tree and derive from it (empirical) approximations of μΔÂ(h; θ), γÂ(h, k; θ), and 
σÂ2(h; θ) (cf. Section 5.3). In the empirical part of this study, however, we will construct 
crude approximations of μΔÂ(h; θ), γÂ(h, k; θ), and σÂ2(h; θ) in a data-driven manner, 
without an explicit model for Â(h; θ): We will consider area estimation processes where 
the area estimator at each height is one of the area estimators discussed in Sections 3.3 
and 4.2.2. For each process, we will approximate μΔÂ(h; θ), γÂ(h, k; θ), and σÂ2(h; θ) by 
just interpolating between discrete observations of the process mean, covariance and vari-
ance in the stem — between the elements of a vector containing the within-cross-section 
biases (Eθ[Â(h; θ)]–A(h))h∈H, a matrix containing the between-cross-sections covariances 
(Covθ[Â(h; θ), Â(k; θ)])h, k∈H, and a vector containing the within-cross-section variances 
(Varθ[Â(h; θ)])h∈H of the area estimator observed at fixed heights H={h(1), h(2), ..., h(m)} 
in the stem. Evidently, a unique area estimation function Â(h; θ) that would exactly cor-
respond to the obtained μΔÂ(h; θ), γÂ(h, k; θ), and σÂ2(h; θ) may not even exist, whereas 
there are likely to be many whose mean, covariance and variance functions are reasonably 
adequately approximated by the obtained functions.

5.3	 Volume	Estimator	Based	on	Non-Parametric	Stem	Curve:	Definite	Integral	of	
Interpolating	Cubic	Splines

Irrespective of the variation in cross-section shape in the stem, the area estimation func-
tion in the integral expression of stem volume (Eq. 117) can equivalently be written as 
A(h)=πDA(h)2/4, where DA:[0, H]→[0, ∞) is a continuous and bounded function express-
ing the true area diameter (i.e., the diameter that yields the true cross-section area when 
substituted in the circle area formula) at height h. The true volume of a stem is thus given 
by

V = π
4

DA
0

H

∫ (h)2dh ,  (124)

and DA(·) is referred to as the true stem curve.
A plethora of methods have been suggested to predict or estimate DA(·) (see Sterba 1980, 

and, for instance, Laasasenaho 1982 and Lappi 1986). In this study, we consider cubic 
spline interpolation between diameters measured at several non-random heights in a stem: 
the stem curve is composed of piecewise defined 4th order (3rd degree) polynomials of 
height, one polynomial for each interval between two adjacent measurement heights; each 
polynomial is required to pass through the endpoints of its domain (the observed (height, 
diameter)-points), and the smoothness of the whole interpolant is ensured by requiring its 
first and second derivatives to be continuous over the whole domain [0, H], that is, also in 
every point of junction of the polynomials. The number of diameter measurements permit-
ting, this approach has quite commonly been used in Finland to estimate stem volume for 
research purposes (see e.g. Laasasenaho 1982, Lappi 1986, Ojansuu 1993, and Mäkinen 
et al. 2002).

We are now to examine how diameter selection within cross-sections at predetermined 
heights affects volume estimation by cubic-spline-interpolated stem curves. As with the 
family of general volume estimators in Section 5.2, the members of which these estimators 
patently are, we adopt the within-tree view: we regard the stem volume as a fixed property 
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of a tree and randomness in volume estimation as arising from diameter selection within 
the cross-sections at the non-random observation heights.

We omit discussing the potential difficulties in the practical use of interpolating cubic 
splines — how to determine the initial values optimally and how to avoid non-monotonicity 
or oscillation, for example, which aspirations manifest themselves in the empirical rules 
about the required number and distribution (along the vertical axis) of the measurement 
heights (see Lahtinen and Laasasenaho 1979, and Lahtinen 1988) — but simply assume 
that we have at our disposal an adequate set of error-free diameter measurements from an 
adequate set of fixed heights.

Let us denote by S3(h; D, H) the interpolating cubic spline based on a vector of diameters 
D=(D(h(1)), D(h(2)), ..., D(h(m))) taken (by some selection method) at predetermined heights 
H=(h(1), h(2), ..., h(m)). Presumably the best stem volume estimate is given by the stem 
curve obtained from the observed true area diameters DA=(DA(h(1)), DA(h(2)), ..., DA(h(m))):

VS =
π
4

S3
0

H

∫ (h; DA , H)2dh .  (125)

The estimation error in ṼS now results from the interpolation procedure, that is, from the 
deviation of the estimated stem curve S3(· ; DA, H) from the true stem curve DA(·) in other 
points than those included in DA.

In practice, not knowing the cross-section areas at the observation heights, we have to 
do with other diameters than the true area ones; let us denote a vector of such diameters by 
D(θ)=(D(θ, h(1)), D(θ, h(2)), ..., D(θ, h(m))), θ referring to the diameter selection method. 
If the selection method involves randomness, D(θ) is a random vector and the interpolated 
stem curve S3[h; D(θ), H] becomes a random function. Naturally, the volume estimator

V̂S(θ) =
π
4
S3

0

H

∫ [h; D(θ), H]2dh  (126)

is then also a random variable. Following the theory presented in Section 5.2 for the family 
of general volume estimators, we could now attempt to estimate the within-tree expectation 
and variance of this estimator by integrating the mean and covariance functions μÂ(h; θ) 
and γÂ(h, k; θ) of the area estimation process {Â(h; θ), h∈[0, H]}={πS3[h; D(θ), H]2/4, 
h∈[0, H]} in a stem. However, the functions appear to be difficult to derive analytically, as 
the coefficients determining the values of S3[h; D(θ), H] between any two elements of H 
(the observation heights) are nonlinear functions of the elements of D(θ). Thus, instead of 
pursuing the mean and covariance functions of {πS3[h; D(θ), H]2/4, h∈[0, H]}, we con-
sider estimating the within-tree expectation and variance of V̂S(θ) by means of a number 
of repeated estimations (realisations of the volume estimator).

In principle, to obtain a realisation V̂S(θi) of the volume estimator, we draw a vector 
of diameter directions θi=(θi(h(1)), θi(h(2)), ..., θi(h(m))) from the joint distribution of the 
diameter directions at the fixed observation heights (the distribution is specific to the 
diameter selection method), measure the corresponding diameters D(θi)=(D[θi(h(1)), h(1)],  
D[θi(h(2)), h(2)], ..., D[θi(h(m)), h(m)]) at different heights, interpolate between the diameters, 
and integrate the square of the resulting stem curve realisation S3[h; D(θi), H].

If the diameter selection method involves such dependence between the diameters that 
the measurement direction chosen at one height determines the measurement directions at 
the other heights, that is, if all the elements of the direction vector θi are transformations 
of the direction θi(h(k)) associated to one observation height h(k)∈H, the multidimensional 
direction distribution reduces into a one-dimensional one. This is the case, for example, 
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when the diameters at different heights are measured in the same direction decided upon at 
breast height (cf. the dependent selection in Section 5.1). The expectation and variance of 
the volume estimator are then obtained by numerical integration over the one-dimensional 
direction distribution: we select values for θi(h(k)), i=1, ..., n, equidistantly within [0, π), 
estimate from the direction distribution a weight wi associated to each θi(h(k)) as the prob-
ability of selecting a direction not farther than half the equi-interval from θi(h(k)), derive 
from each θi(h(k)) the direction vector θi and determine the corresponding diameter vector 
D(θi), compute the volume estimator realisation V̂S(θi) associated to each D(θi), and then 
estimate the within-tree expectation and variance of the volume estimator as the weighted 
mean and variance of the n realisations:

Êθ[V̂S(θ)] = wiV̂S(θi )
i=1

n

∑ wi
i=1

n

∑

 = wi

π
4

S3
0

H

∫ [h; D(θi ), H]2dh
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

n

∑ wi
i=1

n

∑  ,
 

(127)

and

Vârθ[V̂S(θ)] = wi V̂S(θi )− Êθ[V̂S(θ)]{ }2

i=1

n

∑ wi
i=1

n

∑  .  (128)

Naturally, if the one-dimensional direction distribution is uniform, all the weights wi are 
equal and the expectation and variance can be estimated with simple (non-weighted) mean 
and variance.

If the diameter selection method involves no simplifying dependence between the 
diameters at the different heights, we resort to Monte Carlo integration, where the direc-
tion vectors θi, i=1, ..., n, are sampled independently from the multidimensional direction 
distribution. In this case, the within-tree expectation and variance of the volume estimator 
are then estimated simply with the mean and variance of the n realisations (Robert and 
Casella 2000):

Êθ[V̂S(θ)] = 1
n

V̂S
i=1

n

∑ (θi ) ,  (129)

and

Vârθ[V̂S(θ)] = 1
n

V̂S(θi )− Êθ[V̂S(θ)]{ }2

i=1

n

∑  .  (130)

Interestingly, there is a straightforward connection between these estimates (Eqs. 127–130) 
and the estimates obtained by integrating the mean and covariance functions μÂ(h; θ) 
and γÂ(h, k; θ) of the area estimation process {Â(h; θ), h∈[0, H]}={πS3[h; D(θ), H]2/4, 
h∈[0, H]} (Eqs. 119 and 121), namely, the above estimates imply certain approximations 
for μÂ(h; θ) and γÂ(h, k; θ): Estimating the expectation of V̂S(θ) as the (weighted) mean 
of the volume estimates computed from a sample of diameter vectors (Eqs. 127 and 129) 
corresponds to approximating μÂ(h; θ) at each h by the (weighted) mean of a sample of 
area estimation function realisations (stem curve realisations) Â(h; θi)=πS3[h; D(θi), H]2/4, 
i=1, ..., n:
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Êθ[V̂S(θ)] = wi
i=1

n

∑ V̂S(θi ) w i
i=1

n

∑

 = wi
i=1

n

∑ Â
0
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⎤
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⎣
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⎤

⎦
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0
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 ≡ µ̂
Â

0

H

∫ (h)dh

 ≈ µ
Â

0

H

∫ (h)dh

 = Eθ[V̂G (θ)] .
 

(131)

Similarly, estimating the variance of V̂S(θ) as the (weighted) variance of the volume 
estimates computed from a sample of diameter vectors (Eqs. 128 and 130) corresponds 
to approximating γÂ(h, k; θ) by the (weighted) covariance computed at each (h, k) from a 
sample of area estimation function realisations (stem curve realisations):

Vârθ[V̂S(θ)] = wi
i=1

n

∑ V̂S(θi )− Êθ[V̂S(θ)]{ }2
wi

i=1

n

∑

 = wi Â
0

H

∫ (h; θi )dh − µ̂
Â

0

H
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⎧
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⎫
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In other words, at each point (h, k), the definite integrals in μÂ(h; θ)=Eθ[Â(h; θ)] and 
 γÂ(h, k; θ)=Covθ[Â(h; θ), Â(k; θ)] taken over the multidimensional direction distribution (the 
joint distribution of the diameter directions at the fixed observation heights) are approximated 
with sums, sums of the squares or sums of the products of n area estimates Â(h; θi)= 
πS3[h; D(θi), H]2/4 based on n direction vector realisations θi drawn from the distribution.
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In Section 5.2 we discovered that as the elements of a stochastic area estimation process 
become uncorrelated, the within-tree variance of the corresponding generalised volume 
estimator becomes zero; moreover, we noted that such a discontinuous process is an abstrac-
tion that cannot really be generated in a tree stem context (by e.g. independent diameter 
selection at a finite number of observation heights). Evidently, cubic spline interpolation 
between uncorrelated (independently selected) random diameters at the observation heights 
does not result in a volume estimator with zero variance, often quite the contrary: the area 
estimators at the observation heights are of course mutually independent, but the interpo-
lated curve imposes continuity and induces short-distance dependence (non-zero covariance 
between heights close to each other) for the area estimators at the heights in between (via 
spline coefficients involving common diameters), thus making the integral of the resulting 
covariance function deviate from zero.

As with the volume equation in Section 5.1, the volume estimation error V–V̂S(θ) can be 
divided into the two distinct additive components — the error V–ṼS=εS inherent in the best 
estimator ṼS and the error ṼS–V̂S(θ) attributable to diameter selection by method θ — the 
latter of which further consists of two components — the within-tree bias ṼS–Eθ[V̂S(θ)] 
with respect to the best estimator and a random sampling error νS(θ):

V − V̂S(θ) = (V − VS ) + [ VS − V̂S(θ)]

 = εS + VS − Eθ[V̂S(θ)]+ νS(θ){ }{ }
 = εS + VS − Eθ[V̂S(θ)]{ } − νS(θ) .  

(133)

At the within-tree level only νS(θ) is a random variable (with zero expectation and variance 
Varθ[νS(θ)]=Varθ[V̂S(θ)]), whereas at the population level all the estimation error compo-
nents are random variables. The interpretation of the error εS contained in the best non-
parametric estimator ṼS, however, does not straightforwardly parallel that of the model error 
term εL of the parametric volume equation: In our “model” V=ṼS+εS, we have incorporated 
no distributional assumptions on εS that would then have governed the estimation of ṼS. 
In particular, the population expectation of εS may well deviate from zero, whereupon the 
estimation bias E[V–V̂S(θ)] at the population level may involve not only the between-trees 
expectation E{ṼS–Eθ[V̂S(θ)]} of the within-tree bias due to diameter selection but also the 
population expectation E(εS).
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6 Material
The material of the study consists of a small subset of the sample trees felled and measured 
in 1991 for the nationwide tree quality investigation (VAPU) of the Finnish Forest Research 
Institute. In the investigation, the forest stand population of Finland was divided into the 
strata of Scots pine, Norway spruce and silver/pubescent birch dominated stands, in each 
of which the following four-stage sampling was then performed: First, a subset of 20 clus-
ters were systematically chosen among the clusters of plots placed systematically all over 
Finland in the 7th National Forest Inventory (for the sampling design of the inventory, see 
Kuusela and Salminen 1980 and Kuusela et al. 1986). Second, two plots among the total 
of 28 in each cluster were systematically selected for tree sampling. Third, 20 tally trees 
were picked in each selected plot (first the four trees growing closest to the plot centre, 
and then the 16 dominant or codominant trees next closest to the centre); the trees had to 
fulfill certain selection criteria (living trees of species Scots pine, Norway spruce or silver/
pubescent birch with no visible biotic or abiotic defects and with breast height diameter 
not less than 7 cm). Fourth, six sample trees to be felled in each plot were randomly chosen 
among the 20 tally trees (three trees among all the tally trees and three trees among the 
tally trees of dominant species and dominant crown class). Among the sample trees taken 
from the stratum of the Scots pine dominated stands, a judgement sample was then drawn 
for this study, resulting in a total of 81 trees from 16 plots in 11 clusters (Fig. 22, Table 10).

The geographical distribution of the selected trees was somewhat uneven in both the 
north–south and east–west directions, in which some noteworthy variation in stem form is 
known to occur in Finland (e.g. Lappi 1986): in Southern Finland (Fig. 22) 26 stems were 
measured on six plots, while in Northern Finland 55 stems were taken on ten plots; further, 
east of the centre meridian 27° of the Finnish national uniform co-ordinate system, only 14 
stems were measured on three plots, whereas west of it 67 stems were taken on 13 plots.

All the 16 plots were located in naturally regenerated one-storey stands; while ten of 
these were pure Scots pine stands, four contained some Norwegian spruce mixture and two 
silver/pubescent birch mixture. A majority of the stands grew on mineral soil (Table 10); of 

Fig. 22. Locations of the 11 clusters of plots in which the 
81 trees investigated in this study were felled (degrees 
east longitude and north latitude). The line across the 
country marks the division between Southern Finland 
and Northern Finland. For the information of the plots 
in the clusters, see Table 10.
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the seven stands located in peatland, five were drained — in two of these the drainage had 
been completed so recently that the drainage effect could not yet be discovered in ground 
vegetation or in trees, whereas in the other three the drainage effect was clearly visible 
although the ground vegetation was still characterised by the original peatland type. The 
sites were mainly of the two fertility classes — medium or quite poor — that are the most 
typical of Scots pine stands in Finland; the three deviating stands grew on rich sites (Table 
10). Except for two advanced stands, where one or two thinnings had been carried out, the 
stands were young stands or advanced seedling stands, where no silvicultural treatments 
had been applied or cuttings performed since the regeneration (Table 10).

Naturally, given the stage of development of the stands, pulpwood-size trees dominated 
in the size distribution of the trees (Fig. 23): a total of 72 trees fell into that category (breast 
height diameter ≤ 17 cm, height ≤ 13 m), whereas only eight trees could be considered 
sawlog-size (breast height diameter ≥ 22 cm, height ≥ 20 m). Further, one tree (from the 
plot 304 in the northernmost cluster) appeared to be a slight anomaly with its breast height 
diameter of 20 cm and height of 13 m; however, this tree was included only in the exami-
nation of cross-section shape and cross-section area estimation (and not in the examina-
tion of stem volume estimation or Bitterlich sampling), as not more than two discs were 
measured from it.

Of the large number of characteristics (on stem dimensions, stem quality, growth, crown 
structure and biomass; Valtakunnallisen puututkimuksen (VAPU) ja kasvunvaihtelutut-
kimuksen maastotyöohjeet 1991) measured in the field on each felled sample tree, only the 
following were employed in this study: plot radius direction with respect to N–S direction 

Table 10. Some site and stand characteristics of the plots in which the 81 investigated trees were felled 
(G is basal area, Hdom dominant height, and DgM diameter of the basal area median tree). For the 
locations of the clusters, see Fig. 22.

Plot Cluster Ground Site Stand development G Hdom DgM Number of
   class1 fertility2 stage3 (m2/ha) (m) (cm) felled trees

301 1 3 4 3 6 6.0 11 6
303 2 3 4 3 2 7.0 11 6
304 2 3 4 4 6 9.5 13 6
305 3 3 4 4 2 5.5 10 5
306 3 3 4 3 1 4.3 8 3
307 4 1 4 4 14 12.0 15 6
308 4 1 4 3 4 4.8 9 6
310 5 3 3 4 9 9.0 12 6
311 6 1 4 4 13 9.5 13 5
312 6 1 4 4 8 8.5 10 6
313 7 2 4 4 5 9.0 13 2
316 8 1 2 3 1 6.6 8 5
317 8 1 2 4 12 9.0 12 6
318 9 1 2 5 24 24.0 25 4
321 10 1 3 5 22 22.0 21 4
322 11 1 4 4 8 9.5 12 5

1 1 mineral soil 2 1 very rich 3 1 open regeneration site
 2 spruce/hardwoods peatland  2 rich  2 young seedling stand
 3 pine peatland  3 medium  3 advanced seedling stand
 4 open bog  4 quite poor  4 young (thinning) stand
     5 poor  5 advanced (thinning) stand
     6 very poor  6 mature stand
       7 shelterwood stand
       8 seedtree stand
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at breast height (i.e., compass bearing of the tree taken from the plot centre to the assumed 
pith of the tree at breast height), tree height determined with respect to the ground level, 
and stump height ditto.

In each of the 81 stems, discs of thickness of 3 cm were sawn at two fixed — 1.3 m and 
6 m — and eight relative — 1%, 2.5%, 7.5%, 15%, 30%, 50%, 70% and 85% — heights in 
the way that the lower surface of the disc was located at the cutting height determined from 
the ground level; were there branches at the proposed height, the cutting height was shifted 
to the nearest location where a disc free from branches could be obtained, and this new 
height was recorded. On each disc, a mark indicating the plot radius direction was painted. 
A complete set of ten discs could not, even in theory, be obtained in every stem: 16 trees 
were shorter than 6 m, and no disc at the height of 6 m hence existed in them; in two trees, 
a relative height (15% or 30%) also coincided with a fixed one (1.3 m). Besides, a number 

Fig. 23. Frequency distributions of breast height diameter (taken perpendicu-
lar to plot radius direction; A) and tree height (B) in the data of the 81 
trees investigated in this study.
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Table 11. Distribution of the 81 stems of this study according to the number of discs obtained 
in the stem.

    Number of discs obtained in the stem
 1 2 3 4 5 6 7 8 9 10

Number of stems 0 1 0 0 0 1 3 25 30 21

Table 12. Number of discs obtained at each observation height in the 81 stems of this study (cf. 
the diagonal of the Table 13).

     Height
 1% 2.5% 7.5% 15% 30% 50% 70% 85% 1.3 m 6 m

Number of discs 28 75 77 79 80 79 81 81 80 51
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of discs, especially those taken at 1% height, were broken when sawing or transporting to 
the laboratory or had to be discarded due to inadequate identification information. In all, a 
total of 709 cross-sections representing 711 observation heights were included in the study; 
see Tables 11, 12 and 13 for the summaries of the distribution of the discs between the stems 
and Fig. 24 for the disc size distributions at the relative observation heights.

The discs were photographed, and the photographs were turned into vectorised digital 
images, from which the characteristics of the cross-sections were then computed (cf. e.g. 

Table 13. Number of stems, among the 81 stems of this study, in which discs were obtained at both 
the observation heights in each combination of observation heights.

Height 2     Height 1
 1% 2.5% 7.5% 15% 30% 50% 70% 85% 1.3 m 6 m

1% 28 28 28 28 28 28 28 28 28 21
2.5% 28 75 74 75 75 74 75 75 75 47
7.5% 28 74 77 77 77 76 77 77 77 49
15% 28 75 77 79 79 78 79 79 79 50
30% 28 75 77 79 80 79 80 80 80 51
50% 28 74 76 78 79 79 79 79 79 50
70% 28 75 77 79 80 79 81 81 80 51
85% 28 75 77 79 80 79 81 81 80 51
1.3 m 28 75 77 79 80 79 80 80 80 51
6 m 21 47 49 50 51 50 51 51 51 51

Fig. 24. Summarised distributions, at the eight relative observation heights, of 
the mean diameter (μD) in the discs of the 81 trees of this study. The box 
depicts the inter-quartile range bisected by the median, and the whiskers 
reach out to the minimum and maximum values in the data; the solid line 
denotes the arithmetic mean, whereas the dashed and dotted lines below 
and above the mean indicate the sample standard deviation and twice the 
standard error of the mean (i.e., twice the sample standard deviation divided 
by the square root of the number of observations, see Table 12), respectively.
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Thies and Harvey 1979, Biging and Wensel 1984, Drake et al. 1988, Jonsson 1992, Saint-
André 1998, and Saint-André and Leban 2000). This approach enabled us to exploit shape 
information to as large an extent as we ever desired and helped us eliminate measurement 
errors, which could badly confound the possibly subtle influences of non-circularity. Before 
photographing, the discs were debarked up to the cambium layer in order to eliminate 
the problems that bark irregularities could cause in the computational extraction of the 
characteristics from the images. Thus, all the characteristics computed from the images 
are under-bark.

The discs were photographed in a laboratory with fixed lighting by using an ordinary 
25-mm film camera with a 50-mm objective and panchromatic black-and-white film of 
the sensitivity of 100 ASA; in addition to the flashlight attached to the camera, three extra 
flashlights with “slave switches” (i.e., flashlights that react, with a marginal delay, to the 
actual camera flashlight) were employed to increase the contrast between the disc and the 
background (Fig. 25). A ruler showing the scale and a slip of paper with a mark indicating 
the plot radius direction were placed on the same plane as the lower surface of the disc 
(Fig. 26 A). Two fixed distances between the camera lens and the plane under the disc were 
applied — 60 cm for the discs with the diameter up to 15 cm, and 100 cm for the discs larger 
than that. In order to take into account the possible variation in disc thickness, which would 
affect the distance between the camera lens and the upper surface of the disc (Fig. 25) later 
needed in scale determination, thickness was measured (in mm) in four points at the edge of 
each disc (at regular rotation angle intervals of 90° starting from the plot radius direction).

The film negatives were developed and printed to photographs (Fig. 26 A) with some 
extra contrasting between the disc edge and the light background (i.e., with some artificial 
increase in tone value differences). The photographs were transformed into grey-scale 
digital raster images with an optical scanner of the resolution of 300 dpi; it was expressly 
owing to the low resolution of the apparatus available that the scanning was performed 
on the prints instead of the negatives. In each raster image, the length of a 10-cm piece of 
the ruler beside the disc (Fig. 26 A) was measured (with pixel edge length as the unit) for 
scale computation, after which the image was manually cropped to contain only the disc 
and the mark indicating the plot radius direction (Fig. 26 A). In order to facilitate the com-
putational feature extraction, the grey-scale pixels were then classified into two categories 
— the “information” (black) and the “background” (white) (Fig. 26 B): in each image, the 
threshold for the intensity values of the information class pixels was set by visual assess-

Fig. 25. System with which the discs were photo-
graphed: disc (A), camera (B), flashlight with a 
“slave switch” (C), and plexiglass plate dispersing 
light evenly (D).
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ment with the aim of locating the edge of the cross-section correctly and forming connected 
sets of pixels; due to the high and homogeneous contrasts in the photographs, very little 
adjustment in the threshold value was needed between the images. Unfortunately, the pith 
locations were not recorded in the procedure.

From each classifi ed raster image, the boundary pixels of the cross-section and of the 
mark indicating the plot radius direction were extracted, and the image consisting of these 
pixels was vectorised (i.e., transformed into a set of co-ordinates of discrete contour points) 
with smoothing: at each change in direction, the two midpoints of the outer edge of the 
corner pixel were taken, and the line segment connecting the points was used to outline 
the corner in the resultant vector image (Fig. 27, Fig. 26 C). Further, the vector image of 
the convex closure of the cross-section was computed as the convex hull of the discrete 
contour points of the cross-section.

From the vector image of a cross-section, the following characteristics were determined: 
centres of gravity of the cross-section (as a substitute for the pith) and the mark indicating 
the plot radius direction; area of the cross-section; 360 radii from the centre of gravity of 
the cross-section at regular rotation angle intervals of 1° starting from the N–S direction; 
and 180 breadths ditto. (To check the effect of the smoothing in vectorisation, the centre 
of gravity and the area of the cross-section were also computed from the non-vectorised 
classifi ed raster image: the differences were negligible in all the cross-sections.) From the 
vector image of the convex closure, in turn, the following properties were computed: area 

Fig. 26. An example of the photograph of a disc (A) with the area of the cropped digital image 
demarcated by broken line — note the ruler showing the scale, and the piece of paper contain-
ing, in addition to the identifi cation information, the mark indicating the plot radius direction; 
the one-bit raster image obtained by classifying the pixels of the scanned photograph (B); and 
the vectorised image of the contour of the disc and the mark indicating the plot radius direction, 
with co-ordinate axes (C).
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of the convex closure; convex perimeter (girth); 360 radii from the centre of gravity of 
the cross-section at regular rotation angle intervals of 1° starting from the N–S direction; 
180 breadths ditto; 180 diameters ditto; and, with viewing angles 1.146°, 1.621°, 2.292° 
and 3.624° (corresponding in circular cross-sections to the basal area factors 1, 2, 4 and 
10 m2/ha), the contour of the inclusion region in a discretised form consisting of 3600 points; 
the areas of the 360 sectors of the inclusion region, of angular width 1° and with the first 
sector midline in the N–S direction; and the total area of the inclusion region.

The boundary pixel identification and extraction, the vectorisation and the computation 
of centres of gravity, convex perimeter, and true and convex area were performed with 
the GRASS 4.1 and Mathematica 2.2 software (GRASS User’s Reference Manual 1993, 
Guide to Standard Mathematica Packages 1993). For the computation of radii, breadths, 
diameters, and inclusion area, Fortran code was written, the basic ideas of which are pre-
sented in Appendices G and H.

In the computation of the characteristics from the images, the pixel edge length was used 
as a natural measurement unit. While this unit was fully appropriate for the examination of 
the relative quantities related to the shape of cross-sections and the errors of various area 
estimation methods, the true scale was needed for the investigation of volume estimation 
errors. The scale was computed for each cross-section by means of the basic lens formula 
in optics, the four thickness measurements taken on each disc, and the length measurement 
of a 10-cm piece of the ruler in the unclassified raster image. See Appendix I for a detailed 
account of the scale computation.

Fig. 27. Principle of the smoothing applied in the vectorisation of the 
raster image of the cross-section contour pixels: the circles indicate 
the discrete vertex points that determine the vector image. (Note 
that this coarse raster figure was created for illustration only; in the 
actual raster images, the pixel size was much smaller in relation to 
the cross-section size.)
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7 Methods
With the 709 cross-sections from the 81 Scots pine stems in the data, we empirically inves-
tigated (i) the variation in cross-section shape, (ii) the effect of the within-cross-section 
variation in diameter on cross-section area estimates given by the estimators discussed in 
Sections 3.3 and 4.2.2, (iii) the influence of the within-cross-section variation in diameter 
on stem volume estimates given by Laasasenaho volume equation, cubic-spline-interpolated 
stem curve and generalised volume estimator considered in Chapter 5, and (iv) the bias 
inflicted by non-circular cross-section shape on stand total estimators in Bitterlich sampling 
as discussed in Section 4.1.2.

As the stems in the data were few in number and did not make up any actual probability 
sample (the sampling design was not probabilistic in the last stage of subsampling among 
the trees felled for the nationwide tree quality investigation; see Chapter 6), the data did 
not really permit confirmatory analysis (hypothesis testing, model building) concerning any 
meaningful Scots pine population. Instead, we contented ourselves with explorative analy-
sis, considering the empirical distributions of relevant within-cross-section and within-tree 
characteristics in our data. To enable meaningful, size-independent comparisons between 
cross-sections or stems, the characteristics were usually turned relative (expressed as per-
centages). The hierarchical structure of the data resulting from the multi-stage sampling in 
the data collection (cross-sections being interdependent within a stem, stems interdependent 
within a plot, plots interdependent within a cluster) was largely disregarded in these con-
siderations: the distributions of the within-cross-section characteristics were examined in 
the subsets formed by height classes as well as in the set of all the cross-sections, whereas 
the distributions of the within-tree characteristics were studied in the set of all the stems.

As already pointed out in Chapter 6, the discs were debarked before photographing, and, 
hence, all our empirical examinations pertain to cross-sections and stems without bark.

7.1 Cross-Section Shape

Variation in cross-section shape was examined in three aspects: (i) variation in shape of 
convex closure, (ii) amount and directional location of non-convexity, and (iii) variation 
in true shape. The interest in the shape of convex closure was motivated by our interest in 
area and volume estimation based on measurements made from the outside of a tree: with 
caliper, tape and height meter, no non-convexity can be registered but only the convex 
closure of a tree cross-section is observed.

The scalar and functional characteristics (shape indices) computed for each cross-section 
to analyse shape are summarised in Tables 14 and 15, respectively.

Table 14. Scalar shape indices computed for each cross-section.

Index Meaning

Dmin/Dmax Ratio between minimum and maximum diameters
CVD Diameter coefficient of variation
ρD(π/2) Correlation between perpendicular diameters
be/ae Girth-area ellipse ratio
|θDmin–θDmax| Absolute angle between minimum and maximum diameters
(AC–A)/AC Relative convex deficit
(Â0–AC)/AC Relative isoperimetric deficit; relative bias of estimator Â0 based on girth 

diameter C/π=μD with respect to convex cross-section area
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7.1.1 Shape of Convex Closure

Shape Indices

Mainly for comparison with previous empirical studies (especially that by Matérn in 1990), 
we investigated the shapes of the convex closures of the cross-sections by means of the 
following three simple diameter-based indices (which are invariant of scale, translations 
and rotations, i.e., independent of the size as well as the position and the orientation of the 
cross-section in the chosen rectangular co-ordinate system): the ratio Dmin/Dmax between 
the minimum and the maximum diameters, with which the deviation of cross-section shape 
from a circle has mostly been examined in previous empirical studies; the coefficient of vari-
ation of diameter CVD=σD/μD (the ratio of diameter standard deviation to diameter mean), 
which better than the extreme diameters describe the magnitude of diameter variation in a 
cross-section and help detect the possible orbiforms in the data; and the correlation ρD(π/2) 
between perpendicular diameters (the diameter autocorrelation at angle π/2), which gives 
information on possible ellipticity or square-shapedness of cross-sections (see Chapter 2).

These indices were estimated from the 180 diameters computed systematically (at regular 
rotation angle intervals of 1° and starting from the N–S direction) in each cross-section (see 
Chapter 6). Dmin and Dmax were determined as the minimum and the maximum of these 
diameters. In CVD, the exact value for the mean diameter μD was attained by dividing the 
convex perimeter C by π, whereas the standard deviation σD was estimated as the square 
root of the variance of the 180 diameters:

σ̂D
2 =  1

180
D( j ⋅1°)−µD⎡⎣ ⎤⎦

2

j=0

179

∑  
(134)

(for unbiasedness, the denominator n=180 instead of the usual n–1=179 was used in this 
sample variance, as the population mean was not estimated by a sample mean but known 
exactly). Further, the correlation between perpendicular diameters was estimated as

ρ̂D

π
2

⎛
⎝⎜

⎞
⎠⎟
= 1
σ̂D

2 ⋅ 1
90

D( j ⋅1°)−µD⎡⎣ ⎤⎦ D[( j+ 90) ⋅1°]−µD{ }
j=0

89

∑  .
 

(135)

An ellipse has often been assumed to approximate cross-section shape better than a circle, 
with the ratio Dmin/Dmax as a simple estimate for the ellipse axis ratio. We tried also another 
axis ratio estimate, that of an ellipse with the perimeter and area equal to the convex 

Table 15. Functional shape indices computed for each cross-section from the discretely observed 
diameter, breadth, and radius functions.

Characteristic Meaning

[D(j·1°)–DAc]/DAc, j=0, ..., 179 Variation in diameter around convex area diameter; “diam-
eter measurement error” with respect to direction

[BC(j·1°)–B(j·1°)]/B̅, j=0, ..., 179 Relative difference between breadths of convex closure 
and cross-section; occurrence of non-convexity with 
respect to direction

[R(j·1°)–R̅q]/R̅q=R*(j·1°)–1, 
j=0, ..., 359

Relative variation in cross-section radius around its 
quadratic mean; deviation of pre-shape radii from 1 with 
respect to direction
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perimeter C and convex area AC of the cross-section: since C≈π[3(ae+be)/2–(aebe)1/2] and 
AC=πaebe for an ellipse with ae and be as the lengths of the long and the short semi-axes, 
the axis ratio estimate, here referred to as the girth-area ellipse ratio, became

be

ae

=
AC

πae
2  ,

 
(136)

where
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1
3
C
π
+
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(137)

(Stoyan and Stoyan 1994); it is not difficult to see that for a circle be/ae=1. (Note that there are 
of course many other alternatives for estimating the axis ratio of the approximating ellipse; 
these include e.g. the ratio of Dmax and the diameter perpendicular to it, AC/(πDmax2/4) 
derived from Dmax and AC via the ellipse area formula, the ratio of the semi-axis lengths 
estimated by a least squares fitting of the ellipse contour equation to the discretely observed 
contour co-ordinates, and the ratio of the semi-axis lengths estimated by a least squares fit-
ting of the ellipse radius autocovariance function to the sample autocovariances computed 
from the discretely observed radii; see e.g. Stoyan and Stoyan 1994, Skatter and Høibø 
1998, Saint-André and Leban 2000)

Estimating the ellipse ratio with Dmin/Dmax or be/ae disregards the requirement that the 
principal axes be at right angles to each other. To find out whether the extreme diameters 
would be perpendicular to each other in our cross-sections, we computed the absolute angle 
|θDmin–θDmax| (∈[0, 90°]) between Dmin and Dmax. In addition, we examined the change 
in the orientation of the extreme diameters along with height in a stem by comparing the 
directions of Dmin and Dmax at each height to those at the lowest observed height in the stem.

The association between the size and shape of convex closure was examined by ordinary 
product moment correlations and accompanying scatterplots between the mean diameter 
μD and the shape indices. Also the interrelations of the indices were examined by pairwise 
correlations and scatterplots.

Since an ellipse has been much used as a model for cross-section shape, we finally 
compared the values of the shape indices in the cross-sections with their values in ellipses. 
This with keeping in mind that the indices impart by no means unique or unambiguous 
information on shape, but visually quite dissimilar shapes may assume very similar index 
values (for instance, think of a rhombus and an ellipse with the same Dmin/Dmax, or consider 
the shapes C and F with the same CVD in Fig. 5 in Chapter 2). Hence, the information 
given by the indices can only evidence against the ellipticity hypothesis but not for it (for 
an extensive discussion on some indices and their philosophy, see e.g. Exner 1987 and 
Stoyan and Stoyan 1994).

Directional Variation in Diameter

Diameter variation with respect to direction within a cross-section was studied by means of 
the relative deviation [D(·)–DAc]/DAc of the discretely observed diameter function D(j·1°), 
j=0, ..., 179, from the convex area diameter DAc=2(AC/π)1/2 yielding the convex area when 
substituted in the circle area formula. The choice of DAc, instead of, say, the mean diameter 
μD, as the reference was motivated by the idea that error in area estimation might be equated 
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with error in diameter selection: besides diameter variation, the relative differences would 
then provide information on the preferable choice of diameter direction in area estimation.

The diameter direction was expressed with respect to the N–S direction or with respect 
to the direction of Dmax and set to increase anticlockwise. With the N–S direction as the 
reference direction, the idea was to study whether large-scale exogenous factors (prevail-
ing winds, amount of solar radiation etc.) could affect trees in a somewhat uniform way 
regardless of the very local growing conditions and thus beget any pattern in the diameter 
variation. With the direction of Dmax (which was considered more stable than the other 
natural option, the direction of Dmin) as the reference direction, in turn, the idea was to 
examine if the diameter variation would show an internal pattern reflecting a degree of 
similarity in reactions of trees to their varying local conditions.

The empirical distribution of the discretely observed functionals [D(·)–DAc]/DAc in 
each height class was summed up simply with the mean, median and variance functions 
(Ramsay and Silverman 1997): these were estimated with the pointwise averages, medians 
and variances across the cross-sections in the height class (i.e., with the averages, medians 
and variances of the cross-sectionwise [D(j·1°)–DAc]/DAc at every observed direction j·1°, 
j=0, 1, ..., 179).

7.1.2 Non-Convexity

Convex Deficit

As a measure of the amount of non-convexity, the relative convex deficit [AC–A]/AC, where 
A is the true area and AC is the convex area of the cross-section, was computed in each 
cross-section. Sometimes this characteristic has also been regarded as a shape index (for 
instance, it is referred to as “convexity ratio” in Stoyan and Stoyan 1994 and as “roundness” 
in Glasbey and Horgan 1995). Its relation to the scalar shape indices discussed above on 
one hand, and to the size of a cross-section (the mean diameter μD) on the other hand, were 
examined by pairwise correlations and accompanying scatterplots.

Directional Variation in Breadth

In each cross-section, the occurrence of non-convexity with respect to direction was inves-
tigated by means of the relative difference [BC(·)–B(·)]/B̅ between the discretely observed 
breadth function of the convex closure BC(j·1°), j=0, ..., 179, and that of the cross-section 
B(j·1°), j=0, ..., 179, with the mean breadth B̅ of the cross-section as the denominator. The 
breadth functions were employed instead of radius functions in order to “encapsulate” the 
directional information, as in a standard measurement situation we would be interested in the 
non-convexity occurring in “both ends” of the diameter measurement. As in the examination 
of diameter variation, the direction was determined both with respect to the N–S direction 
and in respect of the direction of Dmax. Also similarly to the diameter variation case, the 
empirical distribution of the relative difference functions of individual cross-sections in 
each height class was summed up by the mean, median and variance functions computed 
pointwise over the cross-sections.
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7.1.3 True Shape

The true shapes of cross-sections were studied by means of the discretely observed radius 
functions R(j·1°), j=0, ..., 359; in other words, the (discretely, but more densely) observed 
contour of each cross-section was reduced to 360 equiangular points in polar coordinates. 
In shape analysis literature, such points are referred to as (pseudo)landmarks and the set 
of them depicting a figure as a landmark configuration (Stoyan and Stoyan 1994, Dryden 
and Mardia 1998). We denote the landmark configuration vector of cross-section i by 
Ri=(Ri(j·1°))j=0, 1, ..., 359.

Prior to estimating the average shape and examining the shape variability in our set of 
cross-sections, we rendered the landmark configurations with different locations, orienta-
tions and sizes commensurate by turning each configuration Ri into its centred pre-shape 
Ri*=(Ri*(j·1°))j=0, 1, ..., 359 (Dryden and Mardia 1998) with the Euclidian similarity trans-
formations (translations, rotations and scaling): First, the configuration was centred, that 
is, the origin of the Cartesian co-ordinate system was set into the centre of gravity of the 
configuration; actually, this involved no action, as (not surprisingly considering the large 
number of landmarks in the configuration) the centre of gravity of the configuration was 
found to virtually coincide with that of the cross-section (computed from all the contour 
points of the vector image; see Chapter 6) relative to which the radius function had been 
defined. Second, the configuration was rotated in the way that either the radius to the north 
of the origin or the maximum radius Rmax coincided with the positive y-axis; the advantage 
of fixing the reference axis along with Rmax was that similar or congruent shapes would be 
considered equal after the similarity transformations. Third, the configuration was scaled 
to constant size (centroid size) by dividing the landmarks (radii) by their quadratic average 
in the cross-section:

Ri
*( j⋅1°) =

Ri( j⋅1°)
Rq i

 ,
 

(138)

j=0, ..., 359, where

Rq i =
1

360
Ri

j=0

359

∑ ( j⋅1°)2  ;
 

(139)

in other words, the configuration of the cross-section i expressed in polar co-ordinates was 
dilated by the factor 1/R̅qi; as a result, in each cross-section, the square root of the sum 
of squared Euclidean distances from the dilated landmarks to the centre became constant 
3601/2 (this is how the centroid size is defined; Dryden and Mardia 1998).

The deviation of each centred pre-shape configuration from the unit circle was investi-
gated with the difference

Ri
*( j⋅1°)−1=

Ri( j⋅1°)− Rq i

Rq i

 ,  
(140)

j=0, ..., 359. The empirical distribution of these pre-shape deviations (discretely observed 
relative radius error functions with respect to the quadratic mean of the radii) in each height 
class was summarised with the mean, median and variance functions computed pointwise 
over the cross-sections in the height class.
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Mean Shape

In each height class, we estimated the mean configuration μR*=(μR*(j·1°))j=0, 1, ..., 359 with 
the pointwise mean of the pre-shape configurations of the n cross-sections in the class:

µ̂R*( j⋅1°) = 1
n

Ri
*( j⋅1°)

i=1

n

∑ = 1
n

Ri( j⋅1°)
Rq i

 
i=1

n

∑ ,
 

(141)

j=0, ..., 359. The deviation of this estimated mean configuration from the unit circle

µ̂R*( j⋅1°)−1=
1
n

Ri( j⋅1°)− Rqi
Rq ii=1

n

∑ ,  
(142)

j=0, ..., 359, corresponds to the pointwise mean function of the pre-shape deviations (Eq. 
140) in the particular height class.

By estimating the mean shape in this way, we assumed that the pre-shape configurations 
R* in each height class follow the model

R* = µR* + ε  ,  (143)

where ε=(ε(j·1°))j=0, 1, ..., 359 is the vector of independent random errors with zero mean 
(cf. Dryden and Mardia 1998, p. 88). The model implies that each pre-shape configuration 
be generated from the common mean by just random disturbance (measurement error) and 
not with any translations, rotations or rescaling.

(As opposed to full generalised Procrustes analysis, where several landmark configurations 
are matched to their mean shape with translation, rotation and scaling, and where this unknown 
mean shape is estimated as the configuration that minimises the sum of the so-called full 
Procrustes distances between it and the observed configurations (Dryden and Mardia 1998, 
p. 87–92), we performed here a restricted version, where we reduced translation into mere 
superimposition of centres of gravity and rotation into alignment of N–S or Rmax directions.) 

Shape Variability

In each height class, we explored shape variability around the estimated mean shape with a 
principal component analysis of the 360 residual variables R*( j⋅1°)− µ̂R*(j·1°), j=0, 1, ..., 
359 (cf. Stoyan and Stoyan 1994, Dryden and Mardia 1998; for the principal component 
analysis in general, refer e.g. to Dillon and Goldstein 1984, Jolliffe 1986, or Jackson 1991). 
The analysis involved estimating the covariance matrix of the variables and then extracting its 
positive eigenvalues and the corresponding eigenvectors. The use of the covariance matrix, 
as opposed to the correlation matrix, was justified by the variation in the variables being of 
the same order of magnitude. The elements of the covariance matrix were estimated with 
the sample covariances of the variables over the n cross-sections at the particular height; the 
estimation was based on considerably different numbers of observations, as the number of 
cross-sections in the height classes varied from 28 to 81 (see Table 12 in Chapter 6). The n–1 
positive eigenvalues of the estimated covariance matrix gave the variances Var(PC(k)) of the 
n–1 principal components PC(k), k=1, ..., n–1, and the corresponding eigenvectors gave the 
coefficients a(k)j of the 360 variables in the n–1 principal components, j=0, 1, ..., 359, k=1, ..., n–1. 

Each estimated principal component PC(k)=Σj[R*( j⋅1°)− µ̂R*(j·1°)]a(k)j, k=1, ..., n–1, 
was visualised in plane by drawing the following contours:
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µ̂R*( j⋅1°)+ c ⋅ a(k) j Var(PC(k) )  (144)

for c=±2, ±4, ±6 and j=0, 1, ..., 359. (Usually, the values for the coefficient c are selected 
in the way that they would cover the full potential range of the standardised principal 
component scores c(k)i=PC(k)i/Var(PC(k))1/2=Σj[R i

*( j⋅1°)− µ̂R*(j·1°)]a(k)j/Var(PC(k))1/2, k=1, 
..., n–1, i=1, ..., n, in the data: if the variables R*( j⋅1°)− µ̂R*(j·1°), j=0, 1, ..., 359, follow 
a multivariate normal distribution, the standardised principal component scores approxi-
mately follow the normal distribution with mean 0 and variance 1, for which 99.7% of the 
probability mass is within [–3, 3]; accordingly, c=±1, ±2, ±3 would be an adequate range. 
In our data, however, the shape variability was found to be so small that the range of c 
had to be magnified in order to easily visualise the effect of each principal component. 
See Dryden and Mardia 1998, p. 48–49 and p. 97, for a more detailed explanation of the 
rationale behind this common way of visualisation.) The idea was to illustrate the magnitude 
([Var(PC(k))1/2]) and the direction (coefficients a(k)j) of the variability around the mean shape 
in each principal component estimated from our set of cross-sections. Since the correlation 
of the jth variable with the kth principal component is known to be

Corr R*( j⋅1°)− µ̂R*( j⋅1°), PC(k)
⎡⎣ ⎤⎦ =

a(k) j Var(PC(k) )

Var R*( j⋅1°)− µ̂R*( j ⋅1°)⎡⎣ ⎤⎦
 ,

 

(145)

the visualisation contours can equivalently be written as

µ̂R*( j ⋅1°)+ c⋅ Var R*( j ⋅1°)− µ̂R*( j ⋅1°)⎡⎣ ⎤⎦ ⋅ Corr R*( j ⋅1°)− µ̂R*( j ⋅1°), PC(k)
⎡⎣ ⎤⎦ .  

(146)

Hence, another interpretation of the visualisation is that the contour portrays the correlations 
of the radius residual variables to the principal component, each correlation being weighted 
with c times the standard deviation of the pertinent radius residual variable.

In order to detect severely deviating cross-sections (outliers) and their effect on 
the shape analysis at each height, the standardised principal component scores c(k)i= 
PC(k)i/Var(PC(k))1/2 of the n cross-sections (i=1, ..., n) for each principal component (k=1, 
..., n–1) were examined; they were plotted against the within-cross-section means of the 360 
pre-shape residuals Σj[R i

*( j⋅1°)− µ̂R*(j·1°)]/360 (good indicators of within-cross-section 
radial variation and, thus, of non-circularity) as well as against the sizes of the cross-sections 
as indicated by the expected diameters μDi.

7.2 Estimation of Cross-Section Area

The effect of within-cross-section diameter variation on area estimation was examined with 
the area estimators for which the theoretical properties had previously been established (see 
Sections 3.3 and 4.2.2). The estimators were of the form

Â = π
4

D(⋅)2  ,  (147)

where D(·) was
0. girth diameter C/π=μD (mean diameter of over the uniform direction distribution) (Â0)
1. a random diameter with the uniform direction distribution within [0, π) (Â1)
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2. arithmetic mean of a random diameter and the diameter perpendicular to it (Â2)
3. geometric mean of a random diameter and the diameter perpendicular to it (Â3)
4. arithmetic mean of two independent random diameters (Â4)
5. geometric mean of two independent random diameters (Â5)
6. arithmetic mean of Dmin and Dmax (Â6)
7. geometric mean of Dmin and Dmax (Â7)
8. arithmetic mean of Dmin and the diameter perpendicular to it (Â8)
9. geometric mean of Dmin and the diameter perpendicular to it (Â9)
10. arithmetic mean of Dmax and the diameter perpendicular to it (Â10)
11. geometric mean of Dmax and the diameter perpendicular to it (Â11)
1ξ. diameter parallel to plot radius in Bitterlich sampling (Â1ξ)
2ξ. arithmetic mean of the diameters parallel and perpendicular to plot radius in Bitterlich sampling 

(Â2ξ)
3ξ. geometric mean of the diameters parallel and perpendicular to plot radius in Bitterlich sampling 

(Â3ξ)
4ξ. arithmetic mean of a random diameter and the diameter parallel to plot radius in Bitterlich 

sampling (Â4ξ)
5ξ. geometric mean of a random diameter and the diameter parallel to plot radius in Bitterlich 

sampling (Â5ξ)
1ξ90. diameter perpendicular to plot radius in Bitterlich sampling (Â1ξ90)
4ξ90. arithmetic mean of a random diameter and the diameter perpendicular to plot radius in Bitterlich 

sampling (Â4ξ90)
5ξ90. geometric mean of a random diameter and the diameter perpendicular to plot radius in Bitterlich 

sampling (Â5ξ90)
min. Dmin (Âmin)
max. Dmax (Âmax).

The comparison between the estimators actually meant a comparison between different 
ways of selecting diameter under the circularity assumption (estimators Â0, Â1, Â2, Â4, 
Â1ξ, Â2ξ, Â4ξ, Â1ξ90, Â4ξ90, Â6, Â8, Â10, Âmin, Âmax) and different ways of determining 
principal axes under the ellipticity assumption (estimators Â3, Â5, Â3ξ, Â5ξ, Â5ξ90 Â7, Â9, 
Â11,). Âmin and Âmax were included in the consideration mainly to obtain the lower and 
upper bounds for the estimates.

The estimators were compared by means of their estimated relative within-cross-section 
bias, standard deviation (the square root of the variance) and root mean squared error 
(RMSE, the square root of the sum of the variance and the squared bias; cf. Eq. 15 in Sec-
tion 3.1); these characteristics, computed in each cross-section, are summarised in Table 16. 
Whether the errors should be expressed relative to the true area or to the convex area is not a 
straightforward question: as many times pointed out, non-convexity cannot be discerned by 
caliper or tape and is thus a matter of indirect observation of cross-section shape rather than 
a question of diameter measurement error or diameter sampling error; hence, it may appear 
unjustifiable to include into the area estimation error the bias induced by non-convexity 
that is inherent in the diameter population and thus present in the population total however 
precisely all the members of the population were ever measured. We circumvented this 
problem by proportioning the estimation error both to the true area and to the convex area. 

For the fixed estimators (Â0, Â6–Â11, Âmin, and Âmax), the relative within-cross-section 
biases were directly given by the relative estimation errors [Â–A]/A and [Â–AC]/AC. The 
within-cross-section variances were naturally zero, and the relative root mean squared error 
thus equalled the absolute value of the relative bias. Dmin and Dmax were determined as the 
minimum and the maximum of the 180 diameters computed systematically (at regular rota-
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tion angle intervals of 1° and starting from the N–S direction) in each cross-section; also the 
diameters perpendicular to Dmin and Dmax were then taken among the 180 systematic diameters.

For the random estimators (Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, and Â5ξ90), the relative biases 
[E(Â)–A]/A and [E(Â)–AC]/AC, relative standard deviations Var(Â)1/2/A and Var(Â)1/2/AC, 
and relative approximate standard deviations Vã   r (Â)1/2/A and Vã   r (Â)1/2/AC were estimated 
by inserting the estimated diameter moments and product moments in the analytical expres-
sions of the within-cross-section expectations E(Â), variances Var(Â) and approximate 
variances Vã   r (Â) (Eqs. 22–26, 30–34 and 35–37 in Section 3.3.2; Eqs. 94–98, 99–103 and 
104–108 in Section 4.2.2). As for the approximate variances, the interest was in their devia-
tion from the true variances: in practice, we would prefer to use the approximate expressions 
for their simplicity (they only involve diameter means μD, μD(ξ) and μD(ξ+π/2), variances 
σD2, σD(ξ)2 and σD(ξ+π/2)2, and correlations ρD(π/2) and ρD(ξ)(π/2) between perpendicular 
diameters), if only they do not deviate too much from the true variances.

For the random estimators involving only diameters with the uniform direction distribution 
(Â1–Â5), the mean diameter μD was obtained from the convex perimeter as C/π, whereas 
the other moments and product moments were estimated as simple means from the 180 
systematic diameters in each cross-section: σD2 and ρD(π/2) were obtained with Eqs. 134 
and 135, and the other (product) moments generally from

Ê D(θ)k D θ+ π
2

⎛
⎝⎜

⎞
⎠⎟

p⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

180 j=0

179

∑D( j ⋅1°)k D[( j+ 90) ⋅1°]p  ,
 

(148)

k=0, ..., 4, p=0, ..., 4. (Note that for j+90≥180, D[(j+90)·1°]=D[(j–90)·1°].)
For the random estimators involving Bitterlich diameters (diameters parallel or perpendic-

ular to plot radius in Bitterlich sampling; Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, and Â5ξ90), the non-uniform 
direction distributions were determined for each cross-section using (i) the inclusion region 
of the individual cross-section or (ii) the inclusion region of the breast height cross-section 

Table 16. Characteristics estimated for each cross-section to examine the performance of different 
area estimators (combinations of the circle area formula and a diameter selection method).

Characteristic Meaning

[E(Âj)–A]/A,
[E(Âj)–AC]/AC,
j=0–11, 1ξ–5ξ,
1ξ90, 4ξ90, 5ξ90

Relative within-cross-section bias of estimator Âj (circle area formula and 
diameter selection method j) with respect to true or convex cross-section 
area

Var(Âj)1/2/A,
Var(Âj)1/2/AC,
j=1–5, 1ξ–5ξ,
1ξ90, 4ξ90, 5ξ90

Within-cross-section standard deviation of estimator Âj relative to true or 
convex cross-section area

Vã  r(Âj)1/2/A,
Vã  r(Âj)1/2/AC,
j=1–5, 1ξ–5ξ,
1ξ90, 4ξ90, 5ξ90

Delta method approximation of within-cross-section standard deviation of 
estimator Âj relative to true or convex cross-section area

RMSE(Âj, A)/A,
RMSE(Âj, AC)/AC,
j=0–11, 1ξ–5ξ,
1ξ90, 4ξ90, 5ξ90

Relative within-cross-section root mean squared error of estimator Âj with 
respect to true or convex cross-section area; 
RMSE(Âj, A)/A = {[E(Âj)–A]2/A2 + Var(Âj)/A2}1/2
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of the tree in which the cross-section was located. The first approach is naturally unfeasible 
in practice (plot radius direction in Bitterlich sampling cannot be determined separately for 
different observation heights), and it was considered mainly as a “thinking experiment” 
— to examine area estimation errors in the case that all the 709 cross-sections of the data 
had been taken at breast height. The inclusion regions were determined with the viewing 
angles 1.146°, 1.621°, 2.292° and 3.624° (corresponding, with circular cross-sections, to 
the basal area factors 1, 2, 4, and 10 m2/ha, respectively). The direction distributions were 
estimated in a discretised form, with a point probability (probability mass) associated to 
each of the 180 systematic diameter directions starting from the N–S direction: for each 
direction j·1°, j=0, ..., 179, the probability mass w(j·1°) was estimated as the summed area 
of the two sectors, of angular width 1°, around the directions j·1° and (j+180)·1° divided 
by the total inclusion area (see Appendix H, Fig. H2). The expectations of the Bitterlich 
diameters were then estimated as weighted means

µ̂D(ξ ) = w( j ⋅1°)D( j ⋅1°)
j=0

179

∑ ,

µ̂D(ξ+π/2) = w( j ⋅1°)D[( j+ 90) ⋅1°]
j=0

179

∑  ,
 

(149)

the variances as weighted variances

σ̂D(ξ )
2 = w( j ⋅1°) D( j ⋅1°)− µ̂D(ξ )

⎡⎣ ⎤⎦
2

j=0

179

∑ ,

σ̂D(ξ+π/2)
2 = w( j ⋅1°) D[( j+ 90) ⋅1°]− µ̂D(ξ+π/2){ }2

j=0

179

∑  ,
 

(150)

the correlation as

ρ̂D(ξ )

π
2

⎛
⎝⎜

⎞
⎠⎟

= 1

σ̂D(ξ )
2

1

σ̂D(ξ+π/2)
2

⋅

 w
j=0

89

∑ ( j ⋅1°) D( j ⋅1°)− µ̂D(ξ )
⎡⎣ ⎤⎦ D[( j+ 90) ⋅1°]− µ̂D(ξ+π/2){ } ,

 

(151)

and the other moments generally as

Ê D(ξ)k D ξ + π
2

⎛
⎝⎜

⎞
⎠⎟

p⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= w( j ⋅1°)D( j ⋅1°)k D[( j+ 90) ⋅1°]p

j=0

179

∑  ,
 

(152)

k=0, ..., 4, p=0, ..., 4. (Note that the probability masses w(j·1°), j=0, ..., 179, sum to one, 
and that for j+90≥180, D[(j+90)·1°]=D[(j–90)·1°].)

The distributions of the relative within-cross-section biases, standard deviations and 
RMSEs were examined in the whole set of the cross-sections and in the subsets determined 
by height classes. Whether the performance of an area estimator was related to cross-
section size was examined by computing the correlations of the cross-section areas with 
the biases, standard deviations and RMSEs of each estimator. Since the relative bias of 
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the reference estimator Â0 with respect to the convex area (i.e., the relative isoperimetric 
deficit [Â0–AC]/AC) may also be regarded as a shape index (as e.g. in Stoyan and Stoyan 
1994, where it is referred to as “area-perimeter ratio”), its correlations with the scalar shape 
indices of Section 7.1 (Table 14) and with the cross-section size indicated by the mean 
diameter μD were examined.

7.3 Estimation of Stem Volume

The effect of diameter selection on volume estimation was investigated by applying the 
22 diameter selection methods listed in Section 7.2 to the three volume estimation meth-
ods (Laasasenaho volume equation, cubic-spline-interpolated stem curve and generalised 
volume estimator) discussed in Chapter 5. The diameter selection methods were applied 
both dependently and independently at the separate observation heights within a stem: in 
the former, the diameter direction was selected at breast height, and the diameters at the 
other heights were then measured in the same direction; in the latter, the diameter directions 
were selected at each height independently of the other heights. However, with Bitterlich 
diameters (diameter selection methods 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90) only dependent selec-
tion was applied, as independent selection could not be considered realistic: in Bitterlich 
sampling, it is not feasible to think of viewing a tree from different viewing points at 
different heights. The direction distributions of the Bitterlich diameters in each tree were 
then naturally determined from the inclusion region of the breast height cross-section (i.e., 
the distribution obtained at breast height was applied also to the cross-sections at the other 
heights in the tree). The inclusion regions of the trees were determined with the viewing 
angles 1.146°, 1.621°, 2.292° and 3.624° (corresponding, with circular cross-sections, to 
the basal area factors of 1, 2, 4, and 10 m2/ha, respectively).

For each resulting volume estimator V̂Xj (a combination of the volume estimation method 
X and the diameter selection method j), the within-tree expectation E(V̂Xj) and variance 
Var(V̂Xj) were estimated. From these, the relative within-tree mean squared error (MSE), 
consisting of the squared relative within-tree bias and the relative within-tree variance, 
was computed with respect to a volume-estimation-method-specific reference volume ṼX:

E (V̂Xj − VX )2⎡⎣ ⎤⎦
VX

2 =
E(V̂Xj)− VX

VX

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+
Var(V̂Xj)
VX

2  .
 

(153)

(Note that for the Laasasenaho volume equation, the prediction errors were now defined 
as the opposite numbers of those in the theoretical considerations in Section 5.1; note also 
that for the general volume estimator, the within-tree bias was estimated “directly” without 
computing the within-tree expectation of the estimator.) The idea of varying the reference 
volume according to the volume estimation method was to separate out, in the best possible 
way, the diameter selection effect from the other sources of error in the volume estimator. 
The within-tree characteristics computed for each volume estimator in each tree are sum-
marised in Table 17; the variances and the MSEs were considered in the square root scale (as 
standard deviations and root mean squared errors, RMSEs), to make them easy to interpret.

The investigation was carried out on the 79 stems within which 7 or more cross-sections 
had been observed; this requirement was due to the method used for estimating the true 
stem volume (see Section 7.3.1). However, the Laasasenaho volume equation could be 
examined only with the 50 stems in which the discs at both the heights of 1.3 m and 6 m 
had been observed.
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L2 +

Va
r(

V̂
Lj

)/Ṽ
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The distributions of the relative within-tree biases, standard deviations and RMSEs pro-
duced by the different volume estimators were examined in the set of all the stems. Further, 
the associations of these characteristics with tree size (as expressed by the estimated true 
stem volume) as well as with growing site location (in terms of the cluster co-ordinates in 
N-S and E-W directions) were examined by computing their correlations and by plotting 
them with respect to each other.

7.3.1 True Volume

The true stem volume V between the stump height hs and the total height H (both measured 
in the field with respect to the ground level, see Chapter 6) was estimated for each tree with 
the method that was regarded as the most accurate among those available: from the true 
area diameters DA=(DA(h))h∈H=(2[A(h)/π]1/2)h∈H observed at heights H=(h(1), ..., h(m), H), 
a stem curve S3(h; DA, H) was estimated with interpolating cubic splines, and the volume 
was then obtained as the solid of revolution of the curve as

V = π
4

S3
hs

H

∫ (h; DA , H)2dh .
 

(154)

(Instead of the symbol ṼS used in Eq. 125 in Section 5.3, the volume estimate is here denoted 
as Ṽ, because it will serve as the reference volume not only for the cubic-spline-interpolated 
stem curve method but also for the generalised volume estimator and be used to assess 
the model error component independent of diameter selection in the Laasasenaho volume 
equation). The computations were performed with the Fortran 77 subroutines written by 
Mr Carl-Gustaf Snellman in the Finnish Forest Research Institute and based on the work 
of Lahtinen and Laasasenaho (1979).

By their empirical experience, Lahtinen and Laasasenaho (1979, p. 54) recommended 
that the stem curve estimation be based on not fewer than 7 observation points along the 
stem. In the 79 trees included in the volume investigation, the number of observation heights 
varied between 7 and 10, and thus, with the tree height H and the assumed top diameter 
DA(H)=0.4 cm included, the interpolation was based on 8–11 observation points. The initial 
values (required for a unique solution of the system of the spline equations) were determined 
via estimated second derivatives of the stem curve at the lowest and highest observation 
heights (cf. Lahtinen and Laasasenaho 1979, p. 19, 31); the derivatives were estimated by 
approximating the stem curve at both ends of the stem with interpolating parabolas passing 
through the three lowermost and uppermost observation points.

As the squared cubic splines consist of piecewise polynomials of the observation heights, 
the squared stem curve could be integrated analytically. In addition to the total volume, the 
volume of the stem segment between the lowermost and the uppermost observation heights 
h(1) and h(m) was estimated; this partial volume, also denoted by Ṽ, was required as the 
reference volume for the general volume estimators. In the same way, the total and partial 
convex volumes, both denoted by ṼC, were estimated for each stem from the convex area 
diameters (DAc(h))h∈H=(2[AC(h)/π]1/2)h∈H.

In 11 stems of the total of 79, there were one or two intervals between adjacent observa-
tion heights where the true area was larger at the upper height than at the lower height; in 
10 of these 11 stems this was the case also with the convex area. Such non-monotonicity 
might result in an aberrant oscillation in a cubic spline function. However, the taper curves 
obtained for the said 11 stems were regarded as acceptable — the three worst ones are shown 
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in Fig. 28 — and thus none of the known improvements for the algorithm (Lahtinen 1988 
and 1993) were considered necessary to implement.

7.3.2 Laasasenaho Volume Equation

Stem volume estimation for standing trees was imitated by applying the 22 different diam-
eter selection methods (see Section 7.2) to the Laasasenaho (1982) three-variable volume 
equation where the originally unspecified diameters at the heights of 1.3 m and 6 m were 
fixed as the true area diameters (cf. the discussion in Section 5.1):

V = β1DA (1.3)2 + β2DA (1.3)2 H + β3DA (1.3)3H + β4DA (1.3)2 H2

 + β5 DA (1.3)2 + DA (1.3)DA (6)+ DA (6)2⎡⎣ ⎤⎦ + β6DA (6)2(H − 6) + εL  .  
(155)

In Laasasenaho’s original specification, the stem volume was defined to extend from the 
top of the tree either to the highest root collar affecting cutting, or, if the collar did not exist 
or was located below the height of 10 cm, to the height of 10 cm (Laasasenaho 1982). This 
is how the cutting point (stump height hs) of each tree was determined also in this study, 
and thus the estimated true volume in this study (see Section 7.3.1) agreed well with the 
definition of the stem volume in the original work.
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Fig. 28. The three worst cases of oscillating cubic-spline-interpolated stem curves 
among the 11 stems (of the total 79) in which the observed true area diameters 
increased upwards in one or more measurement intervals. The continuous 
line indicates the stem curve obtained from the observed true area diameters 
(filled circles) and employed for estimating the true volume; the dashed line 
shows the stem curve obtained by forcing monotonicity from below (i.e., 
by coercing the larger upper diameter to have the value of the smaller lower 
diameter; open circles); the percentage gives the relative difference between 
the volumes obtained with the two stem curves.
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Instead of employing Laasasenaho’s parameter estimates based on the data of 2326 Scots 
pine sample trees from all over Finland, we re-estimated the parameters from the 50 stems 
of our data in which the cross-section had been observed at both the heights of 1.3 m and 6 
m; this was to make the error inherent in the model (the random error term εL, also referred 
to as the model error) as small as possible. The estimation was performed both without and 
with the assumption of cross-section convexity: in the former, the estimated true volume 
Ṽ was employed as the response variable and the true area diameters DA(1.3) and DA(6) 
(as well as the height H) were used as the explanatory variables; in the latter, the response 
variable was the estimated true convex volume ṼC and the explanatory variables comprised 
the convex area diameters DAc(1.3) and DAc(6). As the error terms were assumed hetero-
scedastic (variance proportional to DA(1.3)4H2, or to DAc(1.3)4H2; refer to Section 5.1), a 
weighted least squares estimation was performed with 1/[DA(1.3)4H2], or 1/[DAc(1.3)4H2], 
as the weight of each observation (stem); this corresponds to the ordinary least squares 
estimation of a form factor model carried out in the original work (Laasasenaho 1982, p. 
43–44). As in the original study, the within-plot and within-cluster interdependencies of 
the stems, which at least in principle breached the model assumptions, were disregarded 
in the estimation. Judging from the residual plots, the models fitted well in the data; also, 
the relative root mean squared errors (the standard deviations of the relative residuals 
adjusted with the number of parameters) were in concordance with that in the original data 
(3.59% and 3.60% vs. 3.53%; Laasasenaho 1982, p. 43). The original and the re-estimated 
parameter values are given in Table 18. In the following, we will deal with the volume 
estimation without the convexity assumption; the particularities related to the estimation 
with the convexity assumption will be considered in the end of the section.

We assumed the re-estimated model to be correct and thus disregarded the effects of 
using estimated parameters instead of the true ones (cf. the discussion in Section 5.1). As 
the reference volume (to which the estimators by different diameter selection methods were 
to be compared) we used the best estimate

VL = β̂1DA (1.3)2 + β̂2DA (1.3)2 H + β̂3DA (1.3)3H + β̂4DA (1.3)2 H2

 + β̂5 DA (1.3)2 + DA (1.3)DA (6)+ DA (6)2⎡⎣ ⎤⎦ + β̂6DA (6)2(H − 6) ;  
(156)

this was because we wanted to distinguish the error component caused by diameter selection 
from the error component inherent in the model (the model error that is present even if the 

Table 18. Original parameter estimates of the Laasasenaho (1982) three-variable volume equation for 
Scots pine (Eq. 155), and the estimates used in this study (obtained from the 50 stems in the data 
with both the 1.3 m and 6 m cross-sections available).

Parameter Data

 2326 stems in the study Ṽ, DA(1.3), DA(6), H in 50 stems ṼC, DAc(1.3), DAc(6), H in 50 stems 
 by Laasasenaho (1982) of this study of this study

β1 0.268621 0.202318 0.201441
β2 –0.0145543 –0.0109918 –0.0108715
β3 –0.0000478628 –0.000279395 –0.000284556
β4 0.000334101 0.000831394 0.000844558
β5 0.0973148 0.115504 0.115359
β6 0.0440716 0.0294864 0.0291432
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diameters were measured “correctly”, i.e., even if the true area diameters at the heights of 
1.3 m and 6 m in the stem were known). The model error in each stem was then estimated as 
the relative error of this best estimate ṼL with respect to the estimated true volume Ṽ (i.e., 
as the relative residual (ṼL–Ṽ)/ṼL of the estimated model). The purpose of the diameter 
specification as true area diameters (to comply with the estimation of true volume) and the 
parameter re-estimation was expressly to make this error as small as possible, that is, to set 
the reference volume as close to our estimated true volume as possible.

Applying the different diameter selection methods to the volume equation resulted in the 
volume estimators (here written as a function of the diameters only)

V̂Lj = ĉ1Dj(1.3)2 + ĉ2Dj(1.3)3 + ĉ3Dj(1.3)Dj(6) + ĉ4Dj(6)2  ,  (157)

where ĉ1 = β̂1+ β̂2H+ β̂4H2 + β̂5 , ĉ2 = β̂3H, ĉ3 = β̂5, and ĉ4 = β̂5 + β̂6(H −6) , and where 
Dj(1.3) and Dj(6) are the diameters selected with method j at the heights of 1.3 m and 6 m. 

With the diameter selection methods involving only fixed diameters (methods 0, 6–11, 
min and max; independent and dependent selection), there was naturally no within-tree 
variation in the estimator values, whereby the within-tree expectation of the estimator 
equalled the constant estimate itself (i.e., E(V̂Lj)=V̂Lj and Var(V̂Lj)=0).

With the diameter selection methods involving random diameters (methods 1–5, independ-
ent and dependent selection; methods 1ξ–5ξ 1ξ90, 4ξ90 and 5ξ90, dependent selection), 
the within-tree expectation and variance of the volume estimator were estimated by means 
of estimated diameter moments and product moments:

Ê[V̂Lj] = ĉ1Ê[Dj(1.3)2] + ĉ2Ê[Dj(1.3)3]

 + ĉ3Ê[Dj(1.3)Dj(6)] + ĉ4Ê[Dj(6)2] ,  
(158)

and

Vâr[V̂Lj] = ĉ2
2Ê[Dj(1.3)6] + 2ĉ1ĉ2Ê[Dj(1.3)5] + ĉ1

2Ê[Dj(1.3)4]

 + 2ĉ2ĉ3Ê[Dj(1.3)4 Dj(6)] + 2ĉ2ĉ4Ê[Dj(1.3)3Dj(6)2]

 + 2ĉ1ĉ3Ê[Dj(1.3)3Dj(6)] + (ĉ3
2 + 2ĉ1ĉ4 )Ê[Dj(1.3)2 Dj(6)2]

 + 2ĉ3ĉ4Ê[Dj(1.3)Dj(6)3] + ĉ4
2Ê[Dj(6)4]

 − Ê[V̂Lj]{ }2
 ;

 

(159)

refer to Appendices E and F for the more detailed method-specific expressions. The diameter 
moments and product moments were estimated as explained in Section 7.2: With the meth-
ods 1–5 involving the uniform direction distribution, the moment estimates were obtained 
as simple means from the 180 systematic diameters in each cross-section. With methods 
1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90 involving the non-uniform direction distributions of the Bit-
terlich diameters, the moments were estimated as weighted means from the 180 systematic 
diameters, the weights being determined as the relative sector areas of the inclusion region 
of the breast height cross-section.

The assumption of cross-section convexity influenced the reference volume, the estimated 
model error, and the within-tree expectations and variances of the estimators: The convex 
reference volume ṼCL was obtained from the volume equation estimated with true convex 
volume ṼC and the convex area diameters, and the relative model error [ṼCL–ṼC]/ṼCL 
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was naturally determined as the relative residual of this model. Since the diameters of a 
non-convex cross-section and its convex closure coincide, the within-tree expectation and 
variance of the estimator V̂CLj produced by each diameter selection method j were obtained 
by using the same diameters and diameter moment estimates as in the non-convex case, 
but with the parameter estimates ĉ1, ĉ2, ĉ3 and ĉ4 of the volume equation estimated with 
the true convex volume and the convex area diameters.

7.3.3 Cubic-Spline-Interpolated Stem Curve

Stem volume estimation for a felled sample tree was mimicked by applying each of the 
22 diameter selection methods (see Section 7.2) at the 7–10 observation heights in a stem 
and constructing the cubic-spline-interpolated stem curves from the resulting diameter 
vectors (with the assumed diameter of 0.4 cm at the top of the tree added in them). Let us 
denote with Dj the diameter vector obtained with the diameter selection method j, with H 
the vector containing the observation heights (plus the tree height) and with S3[h; Dj, H] 
the interpolated stem curve. The volume estimate by each diameter selection method was 
then obtained as the solid of revolution of the stem curve from the recorded stump height 
hs to the height H of the tree:

V̂Sj =
π
4

S3
hs

H

∫ [h; D j, H]2dh .
 (160)

Technically the volume estimation was carried out in the same manner as the estimation of 
the true volume (see Section 7.3.1; however, potential oscillation in the stem curves due 
to diameter increase within short distances upward was not controlled here). All the 79 
stems with cross-sections observed at 7 or more heights were included in the investigation.

With the diameter selection methods involving fixed diameters (methods 0, 6–11, min 
and max; independent and dependent selection), there was no within-tree variation in the 
volume estimates (i.e., Var(V̂Sj)=0), and the within-tree expectation was given by the con-
stant volume estimate itself (i.e., E(V̂Sj)=V̂Sj).

With the diameter selection methods involving random diameters (methods 1–5, independ-
ent and dependent selection; methods 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90, dependent selection), 
the diameter vector selection was repeated several times in each stem in order to capture 
the within-tree variation in volume estimates. The “population” from which the diameter 
vectors were sampled varied according to the diameter selection method: it consisted of 
all the diameter vectors that could be formed by the diameter selection method in question 
from the systematically measured diameters, 180 at each observation height, in the stem.

The dependent selection of diameters at the different heights in a stem restricted the 
diameter vector population so that all the vectors therein could be included in the sample: 
with the methods where only one diameter direction within a cross-section was actually 
selected and where the other direction, if taken, was fully determined by the first one 
(methods 1–3, 1ξ–3ξ and 1ξ90), there were 180 possible diameter vectors; with methods 
where two diameter directions within a cross-section were selected independently of each 
other (methods 4, 5, 4ξ, 5ξ, 4ξ90 and 5ξ90), the number of possible diameter vectors 
was 1802, as for each first diameter direction selection there were 180 alternatives as the 
second choice. Using these 180 or 1802 diameter vectors meant selecting the one diameter 
direction or the pair of diameter directions equidistantly (by every 1°) within [0°, 180°) 
or [0°, 180°)×[0°, 180°). To each diameter vector, the estimated selection probability of 
the one diameter direction or the pair of diameter directions was associated as a weight. 
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The probability was determined by means of the diameter direction distribution(s): with 
one direction selection, the weight was the probability of selecting a direction within 0.5° 
from the chosen direction (the probability mass within 0.5° from the common direction of 
the diameters in the diameter vector); with two independent direction selections within a 
cross-section, the weight was the product of such probabilities related to the two chosen 
directions. The within-tree expectation and variance of each volume estimator (diameter 
selection method) were then estimated as the weighted mean and variance of the volume 
estimates obtained with the diameter vectors of the method (cf. Eqs. 127 and 128 and the 
discussion on numerical integration in Section 5.3). (Thus, with interrelated diameter selec-
tion methods (1, 1ξ and 1ξ90; 2, 2ξ and 2ξ90; 3, 3ξ and 3ξ90 etc.), the volume estimates 
were computed using the same diameter vectors, but the within-tree expectation and vari-
ance were estimated with different weights.) With only the uniform direction distribution 
involved (methods 1–5), the weights associated to each diameter vector became equal, 
and the weighted mean and variance of the volume estimates were simplified to the simple 
arithmetic mean and sample variance. With the non-uniform direction distributions of the 
Bitterlich diameters involved in the first direction selection (methods 1ξ–5ξ, 1ξ90, 4ξ90 
and 5ξ90), the weights became unequal and were obtained from the relative sector areas of 
the inclusion region of the breast height cross-section of the tree (cf. Section 7.2).

In the independent selection of diameters at the different heights in a stem (applied only 
to the diameter selection methods 1–5 involving the uniform direction distribution), the 
diameter vector population grew so large that all the vectors therein could not be used: 
with methods 1–3 the number of possible diameter vectors amounted to 180m and with 
methods 4–5 to1802m, m being the number of observation heights, total height excluded. 
Instead, we drew upon Monte Carlo integration where 1802 diameter direction vectors 
were to be sampled independently from the multidimensional direction distribution of each 
diameter selection method. With the uniform marginal distributions of the independent 
directions, the multidimensional direction distributions became also uniform, implying 
that all the diameter vectors of generated by the method had the same probability to be 
chosen. Therefore a simple random sample of 1802 vectors was drawn from the diameter 
vector population of each diameter selection method, with replacement for practical ease; 
in practice, the sampling was carried out by selecting randomly at each observation height 
the required one or two diameters among the 180 alternatives and by repeating this pro-
cedure 1802 times for each stem. The within-tree expectation and variance of the volume 
estimator were then estimated as the mean and sample variance of the volume estimates 
computed from the selected diameter vectors (cf. Eqs. 129 and 130 and the discussion on 
Monte Carlo integration in Section 5.3).

As the natural reference volume, we employed the estimated true volume Ṽ computed 
with the similar stem curve approach from the true area diameters (see Section 7.3.1). 
Unlike with the volume equation, the error contained in the reference volume could not 
now be quantified, as the true volumes of the stems were unknown and no more precise 
estimates were available. Consequently, the within-tree biases and variances produced 
by the different diameter selection methods could only be compared with each other; no 
notion about their magnitude with respect to the “error intrinsic in the volume estimation 
method” could be gained.

Since the diameters are the same for a non-convex cross-section and its convex closure, 
assuming cross-section convexity influenced only the reference volume: with the convexity 
assumption, we employed the convex volume estimate ṼC computed from the convex area 
diameters (see Section 7.3.1) as the reference.
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7.3.4 General Volume Estimator

Finally, we considered estimating the volume of the stem segment from the lowermost 
observation height h(1) to the uppermost one h(m) by means of general volume estimators 
that involved area estimation functions Âj(h)=πDj(h)2/4 arising from the application of each 
of the 22 diameter selection methods (see Section 7.2; j refers to the diameter selection 
method) and the circle area formula at a all the heights h∈[0, H] in a stem:

V̂Gj = Â j
h(1)

h( m )

∫ (h)dh = π
4

Dj
h(1)

h( m )

∫ (h)2dh .  (161)

We omitted to define explicitly the values of the area estimation functions between the 
observation heights (and to estimate the stem volumes actually) but focused on “direct” 
estimation of the bias, covariance and variance functions μΔÂj(h), γÂj(h, k) and σÂj2(h) of the 
area estimation process {Âj(h), h∈[0, H]}={πDj(h)2/4, h∈[0, H]} of each diameter selection 
method in each tree. As explained in Section 5.2, the within-tree bias and variance of each 
general volume estimator (diameter selection method) in each tree could then be estimated 
by integrating the estimated treewise bias end covariance functions:

Ê V̂Gj − V⎡⎣ ⎤⎦ = µ̂
ΔÂ j

h(1)

h( m )

∫ (h)dh

 = Ê Â j(h)− A(h)⎡⎣ ⎤⎦
h(1)

h( m )

∫ dh ,
 

(162)

and

Vâr(V̂Gj) = γ̂
Â j

h(1)

h( m )

∫
h(1)

h( m )

∫ (h, k)dhdk

 = Côv
h(1)

h( m )

∫
h(1)

h( m )

∫ [Â j(h), Â j(k)]dhdk .  

(163)

Further, an estimate for the theoretical upper bound of the within-tree variance (the variance 
conditional on fully correlated area estimation process) was given by the definite integral 
of the estimated variance function:

Vâr[V̂Gj |ρ
Â j

(h, k) = 1] = σ̂
Â j

2 (h)
h(1)

h( m )

∫ dh
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

 = Vâr[Â j(h)]
h(1)

h( m )

∫ dh
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

 .
 

(164)

As in the cubic-spline-interpolated stem curves before, all the 79 stems with 7 or more 
observed cross-sections were included in the examination. For each diameter selection 
method j in each stem, the bias, variance and covariance functions were estimated from the 
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discrete observations on the area estimator Âj(h)=πDj(h)2/4 along the stem, that is, from 
the vectors of the estimated within-cross-section biases (Ê[Âj(h)]–A(h))h∈H and variances 
(Vâ  r [Âj(h)])h∈H at the 7–10 observation heights H=(h(1), h(2), ..., h(m)) and from the matrix 
of the estimated between-cross-sections covariances (Cô  v[Âj(h), Âj(k)])h, k∈H at the 42–90 
two-height combinations H×H in the stem.

With the diameter selection methods involving only fixed diameters (methods 0, 6–11, 
min, max; independent and dependent selection), the variances and covariances of the area 
estimators at separate heights were naturally zero and the biases were given by the differ-
ences between the area estimates and the true area at each height.

With the diameter selection methods involving random diameters, only dependent selec-
tion was considered: With Bitterlich diameters (methods 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90), 
independent selection was not feasible, as noted before. With diameters having the uniform 
direction distribution (methods 1–5), independent selection was to result, by definition, 
in the same within-cross-section biases and variances of the area estimators as dependent 
selection, as well as in zero covariances between the area estimators at separate heights, 
thus providing no information for covariance function estimation (refer to the discussion 
on an area estimation process with uncorrelated elements in Section 5.2). In all the cross-
sections, the biases and the variances of the area estimators had already been estimated 
when considering cross-section area estimators (Section 7.2). Similarly, the covariances of 
the area estimators at different heights could be expressed in terms of diameter moments 
and product moments, which were then estimated from the 180 systematic diameters and 
their products in each cross-section (cf. Section 7.2): With the methods involving the uni-
form direction distribution, the moment estimates were obtained as simple means. With the 
methods involving the non-uniform direction distributions of the Bitterlich diameters, the 
moment estimates were obtained as weighted means, the weights being determined as the 
relative sector areas of the inclusion region of the breast height cross-section.

From the discrete estimated values, the bias, variance and covariance functions of the area 
estimation process in each tree were estimated by linear interpolation. Linear interpolation 
was employed for simplicity and for its assuredly reasonable behaviour: as there were 56 
functions to be estimated in each of the 79 stems (3 functions for each of the methods 1–5, 
1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90 with dependent selection; 1 function for the method 0; and 1 
function for each of the methods 6–11, min and max with both dependent and independ-
ent selection), the use of smoother higher order interpolating splines requiring control and 
adjustment for possible non-feasible oscillations was regarded as too laborious an approach.

The linear functions could be integrated analytically. The integration limits were set as 
the lowermost and the uppermost observation heights h(1) and h(m), because the functions 
could not be justifiably extrapolated to cover the whole stem from the stump height to the 
very top. Thus, unlike with the other volume estimation methods, the volume bias and 
variance were computed only for that part of the stem within which cross-sections had 
been observed. As the reference volume, the estimated true volume Ṽ of the stem segment 
between the lowermost and the uppermost observation heights (see Section 7.3.1) was 
used. 

The assumption of cross-section convexity did not influence the actual area estimation 
processes {Âj(h), h∈H} (based on diameters and the circle area formula, the area estimators 
Âj(h) were the same whether the cross-sections were assumed convex or not) but affected 
the area estimation error processes {Âj(h)–AC, h∈H}, where the errors were now taken 
with respect to the convex area AC. Consequently, with the convexity assumption, only 
the bias functions of the 30 area estimation processes (22 diameter selection methods with 
dependent selection, 8 methods with independent selection) needed to be re-estimated from 
the biases taken with respect to the convex area in each stem; the integrals of these functions 
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were then thought to yield the estimated biases Ê[V̂Gj–VC] of the general volume estima-
tors with respect to true (partial) convex volume VC. The reference volume, to which the 
estimated within-tree volume biases and variances were proportioned, was naturally also 
changed for the estimated partial convex volume ṼC (see Section 7.3.1).

7.4 Estimation of Stand Totals in Bitterlich Sampling

In Bitterlich sampling, applying circularity assumption to non-circular cross-sections was 
found to inflict potential bias in stand total estimators, due to two tree-specific faults in 
the estimated inclusion probabilities (see Eq. 69 in Section 4.1.2): (i) deviation of the true 
basal area factor of the tree κ(α)=AC/|M(α)| (the ratio of the convex area of the breast height 
cross-section to the inclusion area) from that of a circle sin2(α/2), and (ii) estimation of the 
convex area of the breast height cross-section with estimator Âj=πDj2/4 based on diameter 
Dj measured in the cross-section by some method j. With the viewing angle α values of 
1.146°, 1.621°, 2.292° and 3.624° (corresponding, with circular cross-sections, to the basal 
area factor values of 1, 2, 4, and 10 m2/ha, respectively), these errors were investigated in 
the 80 breast height cross-sections of the data. As a “thinking experiment”, the examination 
was then extended to all the 709 cross-sections, using their own inclusion regions as if they 
were all breast height cross-sections.

The deviation of the true basal area factor from that of a circle, expressed as the ratio 
sin2(α/2)/κ(α), was first computed separately in each cross-section. In the estimation of 
the relative basal area of a stand by Bitterlich sampling, sin2(α/2)/κ(α)–1 straightforwardly 
indicates the contribution of the tree to the bias of the basal area estimator, since

E(Ĝ)−G = 1
|L |

ACi
i∈I
∑ sin2(α / 2)

κ i (α)
−1

⎡

⎣
⎢

⎤

⎦
⎥

 
(165)

(cf. Eqs. 77 and 81 in Section 4.1.3). To check Matérn’s approximate theoretical result 
that, with viewing angle α of the magnitude 1°, this bias is the same as we would get by 
calipering every stem in the stand in a randomly chosen direction, that is,

E(Ĝ)−G ≈ 1
|L |

Eθ (Â1i )−ACi
⎡⎣ ⎤⎦

i∈I
∑  

(166)

(cf. Eq. 85 in Section 4.1.3), sin2(α/2)/κ(α)–1 in each cross-section was compared to the 
relative within-cross-section bias [Eθ(Â1)–AC]/AC of the area estimator Â1 based on one 
random diameter, computed already earlier (see Section 7.2).

The combined effect sin2(α/2)/κ(α)·AC/(πDj2/4) was computed with the 22 diameter 
selection methods (see Section 7.2) in each cross-section. With the methods involving 
randomness (1–5, 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90), the expectation of the effect
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⎦
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(167)

over the diameter direction distribution was considered. The fractional moments E[1/Dj2] 
were estimated in a similar way as moments and product moments in Section 7.2 (cf. Eqs. 
148, 149 and 152). With the methods involving the uniform direction distribution (1–5), 
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the moments were estimated as the simple means of the 180 or 1802 systematic diameters 
raised to the power of –2 in each cross-section:

Ê[D(θ)−2] =  1
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(Note that for j+90≥180, D[(j+90)·1°]=D[(j–90)·1°].) With the methods involving the non-
uniform direction distributions of the Bitterlich diameters (1ξ–3ξ, 1ξ90), the moments were 
estimated as the weighted means of the diameter powers, the weights being determined as 
the relative sector areas of the inclusion region:
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Ê D(ξ)D(ξ + π / 2)⎡
⎣

⎤
⎦
−2⎧

⎨
⎩

⎫
⎬
⎭
= w

j=0

179

∑ ( j ⋅1°)D( j ⋅1°)−1D[( j+ 90) ⋅1°]−1  ,
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(169)

(Note that the weights w(j·1°), j=0, ..., 179, sum to one.) And with the methods involving 
both types of diameters (4ξ–5ξ, 4ξ90–5ξ90), the moments were estimated as the simple 
means of the weighted means (which in the case of the geometric mean of independent 
diameters turned into the product of the weighted and the simple mean):
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The distributions of sin2(α/2)/κ(α) and E[sin2(α/2)/κ(α)·AC/(πDj2/4)] were viewed in the 
set of the breast height cross-sections and in the set of all the cross-sections. The relation 
between sin2(α/2)/κ(α) and cross-section shape, as expressed by the scalar shape indices 
(see Table 14 in Section 7.1), was studied with pairwise correlations and accompanying 
scatterplots.
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8 Results with Discussion
8.1 Caveats on Data

As pointed out before (see Chapters 6 and 7), the trees examined in this study did not 
make up a proper probability sample, as the last stage of subsampling among the trees 
felled for the nationwide tree quality investigation was not probabilistic but subjective. 
This subjectivity manifested itself in the geographically uneven distribution of the plots 
over Finland (Fig. 22 in Chapter 6), as well as in the largely skewed size distribution of 
the stems (Fig. 23 in Chapter 6). Consequently, the empirical results reported here cannot 
really be generalised to the Scots pine population in Finland, but they rather illustrate the 
ideas of the theoretical part of the study (Chapters 2–5) and give a notion of the magnitude 
of the effects of non-circularity on cross-section area and stem volume estimation, as well 
as on stand total estimation from a Bitterlich sample, in Scots pine in Finland.

In comparison to the majority of previous empirical studies, however, our data made a 
somewhat novel combination of fairly detailed information on a relatively large number of 
observation units (709 disc contours at 8 relative and 2 fixed heights in 81 stems). Matérn´s 
(1990) data, presented a bit farther below, compare with our data in terms of the elaborate 
measurements but involve a considerably smaller number of stems and discs. Otherwise, 
non-circularity and its effects have typically been studied with simple diameter or radius 
measurements taken at breast height, or at one or more points in sawlogs, in data sets con-
taining some dozens up to thousands of stems.

In addition to the non-generalisability (and non-repeatability!) of the results due to non-
probabilistic sampling, three other, partly related, shortcomings in our data need be noted: 
First, as already mentioned above, the size distribution of the stems was largely skewed and 
bimodal, with only a small number of sawlog-size stems (8) and a modest size variation 
among the pulpwood-size stems. Due to this, the results on the large stems, which would 
be the most interesting economically, involve larger uncertainty than those on the small 
stems. Moreover, it was difficult to establish the effect of cross-section size or stem size 
on shape characteristics and on area and volume estimation errors; also, there was a risk 
to confound size effect with location effect, as all the sawlog-sized trees were growing in 
the two southernmost plots. Second, the number of observed cross-sections varied between 
the heights, with missing discs especially at the heights of 1% and 6 m (see Table 12 in 
Chapter 6). On this account, the means of cross-section characteristics (shape indices, 
area estimation errors etc.) became estimated with different precisions at different heights, 
and the comparisons between heights were based on slightly different sets of stems or on 
incomplete pairwise samples; clearly, the disc sets at different heights reflected the stem 
size distribution to different degrees, the height of 1% deviating particularly much from 
the other heights with its higher proportion (8/28) of the sawlog-size stems. With strongly 
height-dependent characteristics, in turn, the means and standard deviations taken over 
all the cross-sections might exhibit rather large biases, for instance because the weight 
of the 1% height was much lower than it should be due to the large number of missing 
observations. Also, in the 51 (=79–28) stems without the 1% disc available, the estimated 
true volume probably contained larger error than in the other stems, as in the butt of the 
tree the error in diameter has stronger influence on the stem volume estimate than at upper 
heights (true volume was obtained by integrating the cubic-spline-interpolated stem curve 
based on true area diameters, and between the stump height and the first observation height 
this stem curve was approximated with an interpolating parabola passing through the three 
lowermost observation points; see Section 7.3.1). At the same time, our results may give 
too optimistic a picture on the diameter selection effect with cubic-interpolated stem curve 
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and general volume estimator, as the diameter observations from the butt part that is the 
most irregular in shape were missing in 51 stems out of 79. Third, the dependence structure 
in the data (the cross-sections being interdependent within a stem, the stems interdepend-
ent within a plot, the plots interdependent within a cluster) complicated the assessment of 
the uncertainty in the means taken over cross-sections or stems: with positive correlations 
between cross-sections or stems, the standard errors of the means are likely to underestimate 
the true standard deviations of the means.

The measurements on the discs in the data can be considered practically free from meas-
urement errors, as they were computed from the digital images (instead of being measured 
by hand or being results from some relatively rough computational approximations, as in 
the majority of previous studies). The errors due to photographing, print-making of the 
photographs, scanning, vectorisation of the digital raster images and scale computation 
can be regarded as practically negligible, except perhaps in the smallest 85% height discs 
where the modest resolution of scanning (see Chapter 6) may have caused some artefactual 
roughness in shape. (Nowadays, naturally, the digital images would be taken directly with 
a digital camera or a scanner with a much higher resolution, thus omitting the laborious 
and potentially error-prone phases of print-making and scanning.)

The fact that our empirical results are based on debarked discs naturally impedes their 
application into practice. It is not straightforward to assess how over-bark results would 
differ from the under-bark ones in Scots pine (cf. the empirical results by Matérn (1990)): 
on one hand, bark may tend to smooth wood undulations, whereupon the effect of diameter 
selection on area and volume estimation might be less pronounced over bark than under 
bark; on the other hand, with its irregularities, bark is likely to increase cross-sectional 
non-convexity, which would increase overestimation error in area and volume estimation.

Before entering into our results, we briefly present the empirical study by Matérn (1990), 
which provides the best comparison regarding cross-section shape and area estimation. 
Matérn’s material consisted of 17 Scots pine and 22 Norway spruce stems, most of them 
sawlog-size, felled in 7 temporary plots in central Sweden. From the stems, discs of the 
thickness of 4 cm were sawn at breast height and at 6 relative heights (1%, 10%, 30%, 50%, 
70%, 90%). From a subset of the discs comprising the breast-height discs of all the trees and 
the relative-height discs of 5 pines and 6 spruces, contour drawings were made both outside 
and inside bark; in all, a total of 45 pine and 52 spruce under-bark contours, as well as 47 and 
58 over-bark contours, were included in the investigation. From each drawing, 36 radii of 
the cross-section and its convex closure, as well as 36 values of the support function of the 
cross-section (yielding 18 diameters), were measured in equidistant directions (with angle 
interval of 10°); as the maximum and the minimum diameter, the largest and the smallest of 
the 18 observed diameters were employed, whereas the true area, convex area, and convex 
perimeter were estimated by numerical integration from the observed radii and support function 
values (presumably by assuming linear course for the functions between the observations) . 
The shape of the convex closure of a cross-section was examined by means of ratio between 
the minimum and the maximum diameter Dmin/Dmax, diameter coefficient of variation CVD, 
and correlation between perpendicular diameters ρD(π/2) estimated from the 18 observed 
diameters, whereas the magnitude of non-convexity was assessed by means of the relative 
convex deficit in each cross-section. As to area estimation based on the circle area formula, 
Matérn already considered many of the diameter selection methods dealt with in this study 
(see Section 7.2); he compared the estimators in terms of average (over all cross-sections) 
relative bias defined with respect to the convex area. In addition to these traditional area 
estimators, he also considered estimators based on measurements obtained with some less 
common instruments (e.g. Biltmore stick and sector fork). However, he did not investigate 
the effect of cross-section shape variation (diameter selection) on stem volume estimation.
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8.2 Cross-Section Shape

8.2.1 Shape of Convex Closure

Shape Indices

As pointed out in the methods section (see Section 7.1.1), the five shape indices (diameter 
coefficient of variation CVD, ratio between the extreme diameters Dmin/Dmax, girth-area 
ellipse ratio be/ae, correlation between perpendicular diameters ρD(π/2), and angle between 
the extreme diameters |θDmax–θDmin|) computed on the convex closure of each cross-section 
do not provide unique or unambiguous information on shape, but very different shapes may 
have very similar index values. To give a flavour of the association between index values 
and shapes, examples of the convex closures of actual discs with the extreme index values 
are presented in Appendix K. In the following, we will summarise the distributions of the 
index values in the data. Since ellipse has been much used as a model for cross-section 
shape, we will also compare the values of CVD and ρD(π/2) observed in cross-sections to 
the values in the ellipses with the same axis ratio, realising, however, that due to the above-
mentioned ambiguity, the information from the shape indices can only give evidence against 
the ellipticity hypothesis but not for it.

Judging from the diameter coefficient of determination CVD, the within-cross-section 
variation in diameter was in general very moderate in the data (Table 19, Fig. 29); about 
16% (110/709) of the convex closures were almost circular (or orbiform) with CVD smaller 
than 1%. The observation height seemed to play a role in the diameter variation: in the 
butt of the stems, the convex closures tended to be more non-circular on average and vary 
more in shape than in the middle and upper parts of the stems, as indicated by the larger 
means, medians and standard deviations of CVD at the two lowest relative heights (Fig. 29 
A). This accords with previous findings based on other characteristics than CVD (e.g. Tii-
honen 1961 on Scots pine, Georgopoulos and Gofas 1966 on poplar species, Williamson 
1975 on Douglas fir, Mäkinen 1998 on Scots pine, and Saint-André and Leban 2000 on 
Norway spruce) that cross-sections are more non-circular in the butt, and sometimes also 
in the top of a stem, than in the middle parts, presumably due to the influence of root and 
branch formation. The convex closures at 6 m (of which many (20/51) were located higher 
than the 70% relative height in the small stems of the data) appeared to be more regular on 
average but also vary more in their shape than those at 1.3 m (Fig. 29 A).

Table 19. Summary statistics of the distributions of diameter coefficient of variation 
CVD, ratio between the minimum and the maximum diameter Dmin/Dmax, girth-
area ellipse ratio be/ae, absolute difference between the directions of the minimum 
and the maximum diameter |θDmin–θDmax|, and correlation between perpendicular 
diameters ρD(π/2) in the set of all the discs (n=709).

Statistic CVD (%) Dmin/Dmax (%) be/ae (%) |θDmax–θDmin| (°) ρD(π/2)

Mean 1.96 93.7 86.3 65 –0.56
Std. dev. 1.16 3.1 3.7 16 0.42
Minimum 0.37 73.4 67.8 17 –0.99
1st quartile 1.20 92.5 84.9 54 –0.87
Median 1.73 94.4 87.2 68 –0.71
3rd quartile 2.43 95.8 88.9 79 –0.34
Maximum 9.94 98.5 93.4 90 0.78
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Fig. 29. Summarised distributions of the estimated diameter coefficient of variation CVD (A), ratio 
between the minimum and the maximum diameter Dmin/Dmax (B), girth-area ellipse ratio 
be/ae (C), absolute difference between the directions of the minimum and the maximum diameter 
|θDmin–θDmax| (D), and correlation between perpendicular diameters ρD(π/2) (E) in the cross-
sections at the ten within-stem observation heights; the number of cross-sections varies between 
the heights (see Table 12 in Chapter 6). The box depicts the inter-quartile range bisected by the 
median, and the whiskers reach out to the extreme values in the data; the solid line denotes the 
arithmetic mean, whereas the dashed and thin grey lines below and above the mean indicate 
the magnitude of the sample standard deviation and twice the standard error of the mean (i.e., 
twice the sample standard deviation divided by the square root of the number of observations), 
respectively. The thick grey line in B gives the arithmetic means in the study by Matérn (1990).
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The distribution of Dmin/Dmax (Table 19, Fig. 29 B) echoed the impression given by 
CVD on the diameter variation. The difference between Dmin and Dmax appeared in general 
fairly small, being less than 10% in 89% (632/709) of the cross-sections. With respect to 
relative height, Dmin/Dmax behaved like a reflection of CVD, although in a different scale 
(Fig. 29 B). This behaviour agreed with the results reported by Matérn (1990) on the basis 
of 45 cross-sections (Fig. 29 B): from the 30% relative height upwards, our mean values of 
Dmin/Dmax were strikingly similar to those of his, whereas at the lower heights he reported 
considerably smaller values, indicating more pronounced non-circularity in the lower parts 
of his 15 Scots pine stems (which were on average larger in size than our stems).

The generally high values of Dmin/Dmax would point to rather a modest ellipticity. The 
clearly lower values of the alternative axis ratio, the girth-area ellipse ratio be/ae (Table 19, 
Fig. 29 C), however, imply that the non-circularity of the convex closures be more complex 
than just the ellipticity indicated by the difference in the extreme diameters: judging from 
their girth and area, the convex closures should be much flatter ellipses than what Dmin/Dmax 
suggest. Plotting be/ae against Dmin/Dmax showed that the relationship between these two 
axis ratios was not simple (Fig. 30): particularly “triangular” cross-sections tended to have 
low be/ae with high Dmin/Dmax. With the relatively larger inter-quartile range and standard 
deviation (Fig. 29 C), be/ae also indicated larger variation in shape at the height of 1% than 
what Dmin/Dmax and CVD relying solely on diameter information would suggest.

The distribution of the angle |θDmin–θDmax| between Dmin and Dmax (Table 19, Fig. 29 
D) did not support the ellipse model either: in only 10% (73/709) of the cross-sec-
tions, |θDmin–θDmax| was within (85°, 90°], and irrespective of the observation height, the 
median and the mean of |θDmin–θDmax| lay between 60° and 70°, with a pronounced vari-

Fig. 30. Two alternative ways of determining ellipse axis ratio — as the ratio 
between the extreme diameters Dmin/Dmax, or as the girth-area ellipse ratio 
be/ae — yielded very different values in the 709 cross-sections (A); the 
solid line denotes the regression relationship between the ratios, with the 
95% prediction band (assuming normality) given by the dashed lines. The 
cross-sections with the largest difference between the ratios were charac-
terised by some (tri)angularity (B); diameter coefficients of variation CVD 
in these cross-sections were (a) 3.35%, (b) 3.94%, (c) 2.16%, (d) 1.94% 
and (e) 1.97%, and correlations between perpendicular diameters ρD(π/2) 
(a) 0.11, (b) 0.77, (c) 0.69, (d) 0.62 and (e) 0.78; relative to the other discs, 
the disc in (a) is portrayed in half size.
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ation between the cross-sections (Fig. 29 D). Some earlier studies (e.g. Müller 1958b on 
Norway spruce, and Kärkkäinen 1975a on silver birch, pubescent birch and European aspen) 
have likewise established that Dmin and Dmax not be in general perpendicular to each other 
within a cross-section, whereas some other studies (e.g. Georgopoulos and Gofas 1966 on 
poplar species) have reported the reverse. If diameter varies little within a cross-section, 
Dmin and Dmax are not very distinct from other diameters and may be located very near 
each other (e.g. in this study |θDmin–θDmax| assumed its minimum value in the cross-section 
where Dmin/Dmax attained its maximum value; see Figs. K2 A and K4 C in Appendix K).

The orientation of Dmin and Dmax with respect to relative height showed no pattern: the 
means or the medians of the rotation angles with respect to the directions at the lowest 
observation height exhibited no particular trend, and the variability of the angles was large 
at all the observation heights. This is consistent with previous results (e.g. Williamson 
1975 on Douglas fir, and Kellogg and Barber 1981 on western hemlock) where no system 
in major axis rotation was found. Yet the sampling of the discs with respect to height may 
have been too sparse to detect regularity in orientation: the maximum distance between the 

Fig. 31. Comparison of the values of diameter coefficient of variation CVD (A) and cor-
relation between perpendicular diameters ρD(π/2) (B) in the 709 cross-sections to the 
values in an ellipse (thick black line), as a function of axis ratio; in the cross-sections, the 
axis ratio was determined either as the ratio between the extreme diameters Dmin/Dmax 
(black circles) or as the girth-area ellipse ratio be/ae (grey dots). The linear relation-
ship fitted between CVD and Dmin/Dmax in the data (dashed line in A, with equation 
CVD = 36 – 0.36 · Dmin/Dmax, RMSE = 0.228 (percentage unit) and R2 = 0.962) deviated 
from the actually curvilinear relationship in an ellipse, the smaller the axis ratio the 
larger the deviation. Note that in an ellipse ρD(π/2) is practically constant irrespective 
of the axis ratio (as axis ratio increases from 65% to 100%, ρD(π/2) decreases from 
–0.9945 to –1). 
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discs, 20% of the total height, typically involved several whorls of branches, which with 
their spiral phyllotaxis (known to characterise Scots pine) could cause spiral alternation 
in cross-section shape as well (e.g. through the formation of the water conduits sustaining 
the branches).

The within-cross-section correlation ρD(π/2) between perpendicular diameters appears 
to capture slightly other aspects of shape than what CVD and Dmin/Dmax reflecting mere 
diameter variation manage to seize (refer e.g. to Fig. 5 and Table 1 in Chapter 2, where 
the artificial shapes C and F with the same diameter variation assume strikingly different 
ρD(π/2) values, or to Fig. K5 in Appendix K, where are portrayed visually rather similar 
real convex closures with similar magnitude of diameter variation but extremely divergent 
values of ρD(π/2)). However, the distribution of ρD(π/2) in the data (Table 19, Fig. 29 E) 
did not endorse the use of the ellipse as a shape model either: in only 8% (56/709) of the 
cross-sections, ρD(π/2) assumed values within [–1, –0.95), and in 13% (89/709) of the 
cross-sections, ρD(π/2) was even positive, indicating some degree of squareness. With 
respect to height, no particular trend in ρD(π/2) could be discerned (Fig. 29 E); also, in the 
light of ρD(π/2), the shapes of the convex closures did not seem to vary more at the lowest 
relative heights than at the upper heights (Fig. 29 E), contrary to what the results on CVD, 
Dmin/Dmax and be/ae indicated.

An explicit comparison to ellipses with the same axis ratio (Fig. 31, cf. Table 6 in 
Matérn 1990), the ratio being determined as Dmin/Dmax, showed that while the diameter 
variation in the cross-sections in terms of CVD was of the same magnitude as in ellipses, 
the values of ρD(π/2) largely deviated from those of ellipses, particularly when the dif-
ference between Dmin and Dmax was small. If the axis ratio was determined as be/ae, also 
the CVD values in the cross-sections deviated substantially from the values in ellipses 
(Fig. 31). Eventually, few of the 709 cross-sections appeared truly elliptic, judging from 
these shape indices: the four most elliptic convex closures (selected by determining the 
axis ratio as Dmin/Dmax and by seeing that CVD be close to that of an ellipse with the same 
Dmin/Dmax (cf. Fig. 31 A), be/ae be close to Dmin/Dmax, and ρD(π/2) be close to –1) are 
portrayed in Fig. K8 in Appendix K.

A comparison to Matérn’s (1990) results (Table 20) showed that in his data (consisting 
of 45 under-bark cross-sections from 15 Scots pine stems of a larger size on average than 
those in this study), the within-cross-section variation in diameter, as characterised by 

Table 20. Comparison of the between-cross-sections means and standard deviations of three shape 
indices (diameter coefficient of variation CVD, ratio between the extreme diameters Dmin/Dmax, 
correlation of perpendicular diameters ρD(π/2)) to those reported by Matérn (1990). In the paren-
theses, Matérn’s results from over-bark observations are given; n is the number of observations.

This study Matérn (1990)
Height Height

1% 10–90% 1.3 m 1% 10–90% 1.3 m 

CVD 

(%)
Mean1

Std.dev.
3.85
1.71

1.88
0.86

2.01
0.84

4.66 (3.88)
2.02 (1.58)

2.24 (2.04)
1.16 (1.02)

2.60 (2.73)
1.17 (1.04)

Dmin/Dmax
(%)

Mean
Std.dev.

89.2
3.9

94.6
2.3

94.0
2.2

86.9 (89.2)
6.0 (4.6)

94.2 (94.4)
3.1 (2.8)

92.7 (91.9)
3.2 (2.8)

ρD(π/2) Mean
Std.dev.

–0.57
0.37

–0.56
0.42

–0.58
0.36

–0.61 (–0.72)
0.38 (0.17)

–0.60 (–0.52)
0.41 (0.45)

–0.63 (–0.39)
0.25 (0.38)

n 28 400 80 5 (5) 25 (25) 15 (17)
1 Quadratic mean
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CVD and Dmin/Dmax, was larger on average and varied more between the cross-sections, 
especially at the heights of 1% and 1.3 m. In Dmin/Dmax, the true difference between the 
studies was presumably even larger, as in Matérn’s study the ratio was in all likelihood 
overestimated (Dmin overestimated, Dmax underestimated) due to the sparse sampling of 
diameters (only 18 diameters measured in each cross-section). The shapes of the convex 
closures as characterised with ρD(π/2), however, were on average very similar in the stud-
ies, despite the considerable difference in the number of observed cross-sections and in the 
size of the stems. Interestingly, bark appeared to decrease shape irregularities in Matérn’s 
data, especially at the height of 1%; yet due to the small number of observations this result 
remains somewhat uncertain. (In Norway spruce, Matérn reported less within-cross-section 
variation in diameter than in Scots pine, except at the height of 1%, where the variation was 
clearly larger. At this height, with ρD(π/2) values closer to zero, the spruce cross-sections 
also appeared to be further from elliptic than pine cross-sections. In spruce, bark did not 
much influence the results.)

Besides Matérn’s work, quantitative results on CVD and ρD(π/2) seem scarce in literature; 
Matérn mentions Kinashi (1954) who reported a CVD of 2% for Japanese cedar, based on 
the observations on 10 stems, and Chacko (1961) who presented for four tree species some 
estimates of ρD(π/2), which later, however, proved to refer to the between-stems correla-
tions of the observations of perpendicular diameters. Dmin/Dmax, in turn, has been quite 
frequently quantified, especially in timber scaling studies; however, the measurements have 
usually been taken with caliper and are therefore likely to involve measurement errors. In 
general, the results collated by Matérn on Dmin/Dmax (see Table 7 in Matérn 1990) suggest 
that diameter variation be larger in deciduous trees than in coniferous trees; as to Scots pine, 
the results of this study appeared to agree with the previous results (our mean 93.7% vs. 
the weighted mean 94.7% of the studies concerning “pine” and listed in Table 7 in Matérn 
(1990), with the number of cross-sections as weights).

The main finding in the pairwise correlations between the shape indices (Table 21, 
Fig. 31 A) was that CVD and Dmin/Dmax correlated almost fully negatively, as they did also 
in Matérn’s (1990) data. Indeed, Dmin/Dmax may very well be used in these data to predict 

Table 21. Correlations between the five shape indices (diameter coefficient of variation CVD, ratio 
between the extreme diameters Dmin/Dmax, correlation of perpendicular diameters ρD(π/2), girth-
area ellipse ratio be/ae, and absolute difference between the directions of the extreme diameters 
|θDmin–θDmax|) and the expected diameter μD in this study (n=709) and in that of Matérn (1990) 
(n=45). In the parentheses, Matérn’s results based on over-bark observations (n=47) are given.

This study Matérn (1990)
CVD Dmin/

Dmax
ρD(π/2) μD be/ae |θDmax–

θDmin|
CVD Dmin/

Dmax
ρD(π/2) μD

CVD 1 1
Dmin/
Dmax

–0.98 1 –0.98
(–0.93)

1

ρD(π/2) –0.35 0.30 1 –0.14
(–0.45)

0.03
(0.28)

1

μD 0.20 –0.22 0.01 1 –0.51
(–0.33)

0.43
(0.14)

–0.05
(0.16)

1

be/ae –0.73 0.77 –0.04 –0.16 1
|θDmax–
θDmin|

0.19 –0.15 –0.60 0.01 0.12 1
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CVD linearly with CVD = 36 – 0.36 · Dmin/Dmax (Fig. 31 A); Matérn (1990, p. 15) obtained 
a very similar relationship CVD = 37 – 0.37 · Dmin/Dmax, although he computed CVD and 
Dmin/Dmax from only 18 diameters in each cross-section. Also be/ae exhibited moderate 
linear dependence on CVD and Dmin/Dmax, whereas ρD(π/2) did not; this backs up the idea 
that ρD(π/2) depicts such aspects of shape that are not attributable to mere diameter variation 
(interestingly, ρD(π/2) correlated very modestly with |θDmin–θDmax|, which would suggest 
that |θDmin–θDmax| might have some meaning as a shape index, even with a small within-
cross-section variation in diameter). None of the shape indices appeared to co-vary with 
the size of cross-section (as expressed with the mean diameter μD), as was the case also 
in Matérn’s (1990) data. Concerning Dmin/Dmax, this agrees with some earlier results (e.g. 
Tirén 1929 on over-bark cross-sections at breast height in Scots pine and Norway spruce), 
but contradicts with some others where a slight increase in diameter variation along with 
size was reported (e.g. Bøhmer 1935 and Kärkkäinen 1975b on Scots pine sawlogs, and 
Williamson 1975 on Douglas fir sawlogs) or where non-circularity in cross-sections was 
seen to increase with age (e.g. Saint-André and Leban 2000 on sawlog-size Norway spruce 
stems, based on data of interpolated tree rings). The correlations did not vary noteworthily 
along with the observation height.

Directional Variation in Diameter

Since the circle has the smallest perimeter among convex planar figures with area AC, its 
diameter DAc (perimeter divided by π) is smaller than the expected diameter (perimeter 
divided by π) of any non-circular convex figure with the same area. Therefore it was expected 
that the discretely observed relative diameter error function [D(θ)–DAc]/DAc, θ=j·1°, j=0, ..., 
179, would assume clearly more positive values (in magnitude or in number) than negative 
ones within a cross-section.

With the N–S direction as the reference direction, a clearly systematic directional pattern 
in diameter errors was observed at the height of 1% (Fig. 32): the diameter errors were 
on average negative in directions 45°–100° and attained their largest values in directions 
approximately perpendicular to these directions, that is, in directions 135°–190°. In other 
words, at this height, the diameters taken approximately between the NW–SE and W–E 
directions were on average the smallest in the cross-sections and would result in under-
estimates of the convex area of the magnitude 0–1.6% when substituted in the circle area 
formula ([D(θ)–DAc]/DAc=p ⇒ [Â(θ)–AC]/AC=[D(θ)2–DAc2]/DAc2=(p+1)2–1), whereas 
the diameters taken between the SW–NE and S–N directions were on average the largest 
and would yield overestimates of the magnitude 3.6–5.7%. Apparently, the phenomenon 
did not occur in some individual cross-sections only, as the behaviour of the mean curve 
was supported by the median curve. A similar directional pattern, although much feebler 
in magnitude, could be found at the height of 50%, and with a slight phase transition at the 
heights of 2.5% and 6 m (Fig. 32).

As the trees included in the study were felled in different parts of Finland (the 28 stems 
in which the discs at the height of 1% were observed grew in the clusters 1–10; see Fig. 22 
in Chapter 6), the phenomenon cannot be attributed to local factors such as site conditions 
and stand structure (resulting in asymmetric space available for growth around a tree) or 
small-scale topography. Instead, a plausible explanation might be provided by the south-
westerly winds prevailing in Finland, combined with the relatively flat topography of the 
country: the torsional moment caused by the wind stress results in asymmetric growth, 
possibly through formation of reaction wood, that strengthens the stem in the directions 
opposite to the pressure. Some previous studies give support for this explanation: Müller 
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(1958a) observed a striking similarity between the wind direction distribution and Dmax 
direction distribution in Douglas fir in several places in Germany, whereas Robertson (1990, 
1991) found a clear association between the prevailing wind direction and the directionality 
of compression wood zones, mean wood density, tree-ring width and stem eccentricity in 
balsam fir in Newfoundland. However, our results somewhat contradict with the obser-
vations of Heikkilä (1913), who reported the direction of Dmax in Scots pine to be most 
frequently parallel to NW–SE direction in Viitasaari (63°5′N 25°51′E, cf. Fig. 22) and to 
W–E direction in Evo-Vesijako (61°21′N 25°6′E, cf. Fig. 22); however, he also reported 
confounding factors (slope, clearcut borderline) affecting the results.

With the direction of Dmax as the reference direction, the average directional pattern in 
diameter errors quite predictably became U-shaped at all the observation heights (Fig. 33): 

Fig. 32. Mean (thick black line), median (thin black line), and mean ± its standard error 
(standard deviation divided by the square root of the number of observations; grey 
line) of the discretely observed diameter error functions [D(θ)–DAc]/DAc, θ=j·1°, 
j=0, ..., 179, at the ten observation heights. The diameter direction θ is determined 
with respect to the N–S direction and increasing anticlockwise.
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diameters located approximately within ±45° around Dmax would on average considerably 
overestimate convex area when substituted in the circle area formula, whereas diameters 
located 45°–135° anticlockwise from Dmax would then yield underestimates of far less pro-
nounced magnitude. The overestimation being far more peaked than the underestimation, 
especially at the low observation heights, would imply that the change in diameter be far 
more rapid around Dmax than around Dmin. The location of the minimum average diameter 
error was seen to deviate from 90° and vary with observation height, which well agreed 
with the results obtained on the angle |θDmin–θDmax| between Dmin and Dmax (cf. Fig. 29 D). 
At all the observation heights, the between-cross-sections variation of the diameter errors 
was of the same magnitude as above with the N–S direction as the reference direction (note 
the different scales in Figs. 32 and 33).

Fig. 33. As Fig. 32, but the diameter direction θ is determined with respect to the direc-
tion of the maximum diameter θDmax (and increasing anticlockwise).
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8.2.2 Non-Convexity

Convex Deficit

The amount of non-convexity was exiguous in the data (Table 22): in about 87% (614/709) 
of the cross-sections, the convex deficit was less than 1%. On the other hand, none of the 
cross-sections was exactly convex, the minimum convex deficit being 0.25%; at least a 
part of the observed non-convexity may thus be regarded as an artefact caused by the low 
resolution in the scanning of the photographs (see Chapter 6). Probably ascribable to root 
and branch formation, the convex deficit was on average larger in the base and in the top 
of the stems and less pronounced in the middle parts (Fig. 34); the variation between the 
cross-sections, however, was larger in the base than in the top. The observations at 1.3 m 
and 6 m parallelled this pattern (Fig. 34), as in many of the stems (20/51) 6 m was located 
higher than the 70% relative height. The largest convex deficit was found in the disc sawn 
at the height of 2.5% (see Fig. K6 A in Appendix K).

Compared to the discs of this study, the cross-sections examined by Matérn (1990) 
appeared on average more non-convex in the base of the stems and less non-convex in 
the upper parts; further, bark appeared to magnify non-convexity considerably (Table 23, 
Fig. 34). Recall, however, that Matérn did not measure the true and convex areas of the 
cross-sections but estimated them from 36 equiangular radii with numerical integration, 
which together with his small number of observations makes the actual difference between 
his and our study difficult to establish. (In Norway spruce under bark, Matérn reported 
similar amount of non-convexity as in Scots pine. In spruce, bark increased non-convexity 
only little.)

Besides Matérn’s work, rather few results on convex deficit appear in literature, here are 
some examples: Perkal (1948) reported an average value of 0.76% concerning 38 discs in 
22 trees (species not mentioned); Kärkkäinen (1975a), in turn, reported the convex deficit to 
be on average less than 1% in the end sections of 420 silver birch and 240 European aspen 
logs; Gregoire et al. (1990) found practically no non-convexity in 101 breast height cross-
sections of various species of which majority (65/101) were red spruce; finally, Loetsch et 
al. (1973) presented as an example a teak cross-section with the convex deficit increasing 
with age and ending up to 8.5% at the age of 120 years.

The amount of non-convexity in a cross-section exhibited no association with the size 
and shape of the convex closure, as indicated by the low correlations between the convex 
deficit and the size and shape indices (Table 24). The examination by observation height, 
however, revealed a slight negative dependence on the size (the larger the size, the smaller 

Table 22. Summary statistics of the distribution 
of relative convex deficit (AC–A)/AC in the 
set of all the discs (n=709).

Statistic (AC–A)/AC (%)

Mean 0.70
Std. dev. 0.29
Minimum 0.25
1st quartile 0.54
Median 0.63
3rd quartile 0.81
Maximum 2.88
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Fig. 34. Summarised distribution of relative convex deficit within a cross-section 
(AC–A)/AC at the ten within-stem observation heights. (For the explanation 
of the boxplot and the lines, refer to the caption of Fig. 29.) The thick grey 
lines give the arithmetic means in the study by Matérn (1990); the solid line 
denotes the results under bark and the dashed line over bark.
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Table 23. Comparison of the between-cross-sections means and standard deviations of relative convex 
deficit (AC–A)/AC to those reported by Matérn (1990). In the parentheses, Matérn’s results 
obtained from over-bark observations are given; n is the number of observations.

This study Matérn (1990)
Height Height

1% 10–90% 1.3 m 1% 10–90% 1.3 m 

(AC–A)/AC (%) Mean
Std.dev.

1.03
0.51

0.71
0.26

0.58
0.14

1.34 (4.83)
1.53 (0.93)

0.15 (1.14)
0.10 (1.08)

0.16 (3.18)
0.15 (1.07)

n 28 400 80 5 (5) 25 (25) 15 (17)

Table 24. Correlation of relative convex deficit (AC–A)/AC with the five shape indices depicting 
the convex closure of a cross-section (diameter coefficient of variation CVD, ratio between the 
extreme diameters Dmin/Dmax, correlation of perpendicular diameters ρD(π/2), girth-area ellipse 
ratio be/ae, and absolute difference between the directions of the extreme diameters |θDmin–θDmax|) 
and with the size of a cross-section (expected diameter μD) in this study (n=709) and in that 
of Matérn (1990) (n=45). In the parentheses, Matérn’s results based on over-bark observations 
(n=47) are given.

This study Matérn (1990)
CVD Dmin/

Dmax
ρD(π/2) μD be/ae |θDmax–

θDmin|
CVD Dmin/

Dmax
ρD(π/2) μD

(AC–A)/AC 0.17 –0.20 0.03 –0.39 –0.47 –0.08 0.57
(0.09)

–0.57
(–0.13)

0.26
(0.15)

–0.32
(0.65)
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the convex deficit) at the heights of 15%, 50%, 85% and 6 m, as well as a negative cor-
relation with the girth-area ellipse ratio at the height of 1% (Fig. 35). Matérn (1990) found 
no clear connection between the amount of non-convexity and the size and shape of the 
convex closure either (Table 24); yet the modest positive correlations he found between the 
under-bark convex deficit and the diameter variation on one hand (large diameter variation 
implying irregularity in under-bark shape and thus proneness to under-bark non-convexity), 
and between the over-bark convex deficit and the disc size on the other hand (the effect of 
bark being more pronounced in large trees), suggest that in larger stems such associations 
might exist.

Directional Variation in Breadth

Non-convexity evinced no general dependence on direction, no matter if the direction 
was taken with respect to the N–S direction or the direction of Dmax. At each observation 
height, the between-cross-sections median function of the discretely observed relative 
breadth difference functions [BC(θ)–B(θ)]/B̅, θ=j·1°, j=0, 1, ..., 179, ran fairly steadily at 
the level of 0.3–0.5% (higher in the base and in the top of the stems, lower in the middle 
parts) across the direction θ. The same held for the mean function at all other observation 
heights except the two lowest ones (at the heights of 1% and 2.5%, the mean function 
exhibited four peaks of the magnitude of 0.25–0.5% above the median level, but these 
were caused by few individual cross-sections, as also indicated by the large values of the 
standard deviation functions).
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Fig. 35. Correlation of relative convex deficit (AC–A)/AC with diameter 
coefficient of variation CVD, ratio between the extreme diameters 
Dmin/Dmax, girth-area ellipse ratio be/ae, and mean diameter μD at the 
ten observation heights. (Correlation of convex deficit with correlation 
between perpendicular diameters ρD(π/2) is not shown as it was close 
to 0 at all the observation heights.)
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8.2.3 True Shape

Mean Shape

When the radius direction was determined with respect to the N–S direction, the mean shape 
µ̂R*(θ) obtained as the average of the pre-shapes R*(θ)=R(θ)/R̅q of the cross-sections dif-
fered little from a circle: at all the observation heights except that of 1%, the mean function 
of the discretely observed relative radius error functions [R(θ)–R̅q]/R̅q=R(θ)/R̅q–1, θ=j·1°, 
j=0, 1, ..., 359, ran approximately within ±1% from the zero, that is, the 360 radii deviated 
on average less than 1% from their quadratic mean R̅q (Fig. 36). At the height of 1%, the 

Fig. 36. Mean (thick black line), median (thin black line), and mean ± its standard 
error (grey line) of the down-scaled pre-shape configurations R*(θ)–1, θ=j·1°, 
j=0, ..., 179 (i.e., the discretely observed radius error functions [R(θ)–R̅q]/R̅q, 
where R̅q is the quadratic mean of the radii R(θ) within the cross-section), at 
the ten observation heights. The radius direction θ is determined with respect 
to the N–S direction and increasing anticlockwise. The mean line equals the 
estimated mean shape µ̂R*(θ) from which 1 has been subtracted (cf. Fig. 38). 
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radii exhibited more than double that range of average relative deviation, but even at that 
height the mean shape was difficult to differentiate visually from a circle (Fig. 38 A). The 
directions of the hollows and bulges observed in the mean shape at the height of 1% agreed 
well with the directional pattern observed earlier in the diameters (cf. Fig. 32).

With the direction of Rmax as the reference direction, the mean shape simply appeared 
to reflect the placement of the centre of gravity (from which the radii to the contour were 
measured) within the discs: at almost all the observation heights, the mean shape stretched 
outwards from a circle approximately in the directions –30°–30° and 135°–240° anticlock-
wise from Rmax, and drew inwards in the intermediate directions, with the swelling being 
clearly steeper and more pronounced around the Rmax direction than in the approximately 
opposite directions (Fig. 37). The two local maxima of the mean function were not 180° 
from each other but their mutual locations varied with height (Fig. 37). These deviations 
from a circle, resulting in a slightly asymmetric oviform shape, were large enough to be 
also visually discerned at the heights of 1% and 2.5% (Fig. 38 B).
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Shape Variability

No matter if the radius direction was determined with respect to the N–S direction or with 
respect to the direction of Rmax, the variability of the cross-section pre-shapes R*(θ)=R(θ)/R̅q 
around the mean shape µ̂R*(θ) (i.e., the sum of the variances of the 360 residual variables 
R*(θ)–µ̂R*(θ), θ=j·1°, j=0, ..., 359, in the set of the cross-sections at the particular height) 
was manifestly the largest at the two lowest observation heights, decreased then along 
with height, to increase slightly again in the top of the stems (the variance of the pre-shape 
residuals was larger at the heights of 6 m and 85% than at the heights of 1.3 m and 70%, 
respectively; Figs. 39 and 40). These results accord well with our previous findings on 
the shape indices. Quite naturally, employing the Rmax direction as the reference direction 
yielded smaller shape variability, only 60–72% of that with the N–S direction as the refer-
ence direction (Figs. 39 and 40).

With the N–S direction as the reference direction, the first six principal components at 
each observation height explained 81–91% of the total variance of the residual variables 
(Fig. 39). At most of the heights, the first two components captured clearly the largest por-
tions of the variability, but their combined share did not amount to more than 48–61% of 
the total variance. The slightly dominating first component seemed to embody a regular 
variation around the SW–NE and NW–SE directions resembling the variation that was 
earlier found on diameter (cf. Fig. 32) and explained with the prevailing wind directions. 
The second component, in turn, appeared to include a similar kind of variation with a phase 
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Fig. 38. Estimated mean shape µ̂R*(θ) of the cross-sections (black 
line) illustrated in plane and compared to the unit circle (dashed 
line) at the two lowest observation heights: y-axis is parallel 
to the N–S direction (A) or to the direction of the maximum 
radius Rmax (B).
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Fig. 39. Visualisation of the first six principal components (PC) estimated from the covari-
ance matrix of the pre-shape residuals R*(θ)–µ̂R*(θ), θ=j·1°, j=0, ..., 359, at each of 
the ten observation heights, the radius direction θ being determined with respect to the 
N–S direction (y-axis is parallel to the N–S direction and the direction is increasing 
anticlockwise): around the mean shape (thick line), contours in the direction of the PC 
coefficient vector are drawn, the coefficients being weighted by 6, 4, 2 (thin line), –2, 
–4 and –6 (dotted line) standard deviations of the PC (see Eqs. 144 and 146 in Section 
7.1.3). The percentage gives the proportion explained by the principal component of 
the summed variance (Var) of the 360 residual variables at the particular height. The 
number of observations (n) varied with height.
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transition of approximately 30°–45° — except at the height of 1%, where the second com-
ponent comprised some strong shape irregularities between the N–S and E–W directions 
and where the third component then appeared to be the phase transition component. For 
the rest of the components, interpretations are difficult to give; apart from the heights of 
1% and 2.5%, the variability around the mean shape was so small that the visualisations 
of the components, even if heavily exaggerated as in our figures, were tricky to decipher.

With the Rmax direction as the reference direction, the first six principal components at 
each observation height explained 78–88% of the total variance (Fig. 40). The dominance 
of the first component was weaker than with the N–S direction as the reference direction, 
and the variability was in general slightly more evenly distributed between the components. 
No general variability patterns could be found in the components: at the height of 1%, the 

Fig. 40. As Fig. 39, but the radius direction θ is determined with respect to the direction of 
the maximum radius Rmax (y-axis is parallel to the direction of Rmax and the direction 
is increasing anticlockwise).
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visualisations of the first two components resembled strikingly those obtained with the N–S 
direction as the reference direction, with some phase transition only, as if the Rmax directions 
in the separate discs at the lowest height had been fairly close to each other (which was not 
the case); at many other heights, the first component appeared to reflect somewhat irregular 
ovality, resulting from radius variation around four main directions, these directions chang-
ing along with height but being at approximately 45° angle to each other.

The plots of the standardised principal component scores against each other and against 
the within-cross-section means of the pre-shape residuals revealed slightly deviating cross-
sections with somewhat divergent principal component scores (at the heights of 15%, 
85%, 1.3 m and 6 m with the N–S direction as the reference direction, and at the heights of 
15%, 30% , 70%, 85%, 1.3 m and 6 m with the Rmax direction as the reference direction); 
none of these, however, could be regarded as a true outlier. Cross-section size showed no 
association with the shape deviation or with the standardised scores.

8.3 Estimation of Cross-Section Area

In the theoretical part of this study (Section 3.3), we found that the area estimator Â0 
involving girth diameter (mean diameter over the uniform direction distribution, obtained 
by dividing convex perimeter by π) makes an adequate baseline estimator, with respect 
to which the biases of the estimators Â1–Â5 involving diameters with the uniform direc-
tion distribution can be expressed. Further, the relative error of Â0 with respect to convex 
area (relative isoperimetric deficit (Â0–AC)/AC) may also be regarded as a shape index, “a 
measure of the deviation from circular form” (Matérn 1990). Due to this special standing of 
Â0, we here first examine in more detail its relative errors and their relation to other shape 
indices, to amount of non-convexity and to cross-section size in our data. After this, we 
compare all our area estimators Â0, Â1–Â11, Â1ξ–Â5ξ, Â1ξ, Â4ξ, Â5ξ, Âmin and Âmax (the 
combinations of the 22 diameter selection methods and the circle area formula; see Sec-
tion 7.2) in terms the distributions of their estimated relative within-cross-section biases, 
standard deviations and RMSEs.

8.3.1 Reference Estimator Based on Girth Diameter

The relative error of the estimator Â0 with respect to convex area was of the same meagre 
magnitude as the amount of non-convexity in the data (Table 25; cf. Table 22): in 74% 
(528/709) of the cross-sections, the isoperimetric deficit was less than 1%, and only in three 
very non-circular cross-sections it amounted to more than 5% (see Fig. K7 in Appendix 
K). The behaviour of the isoperimetric deficit with respect to relative height reflected our 
previous finding that the convex closures were more non-circular on average and more 
variable in shape in the butt of the stems than in the middle and upper parts (Fig. 41 A). 
Between the absolute observation heights of 1.3 m and 6 m, however, the difference lay 
basically only in the maximum value (one individual cross-section), which caused the dif-
ference also in variance (Fig. 41 A).

The relative error of Â0 with respect to true area can be thought to stand for the combined 
effect of the convex and isoperimetric deficits (with the slight flaw of having true area 
instead of convex area in the denominator); indeed, the (first order) summary statistics of 
the distribution of this relative error (Table 25) equalled approximately the sum of the sum-
mary statistics of the deficits (Tables 22 and 25). As the deficits were in general small in the 
data, so was also their combined effect: in 82% (578/709) of the cross-sections, the relative 
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Table 25. Summary statistics of the distribution of the 
error of the girth diameter estimator Â0 with respect 
to convex area AC (isoperimetric deficit) or to true 
area A in the set of all the discs (n=709).

Statistic (Â0–AC)/AC (%) (Â0–A)/A (%)

Mean 0.90 1.62
Std. dev. 0.67 0.86
Minimum 0.18 0.46
1st quartile 0.52 1.14
Median 0.71 1.39
3rd quartile 1.01 1.84
Maximum 5.78 8.30
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Fig. 41. Summarised distributions of the relative errors of the girth 
diameter area estimator Â0 with respect to convex area AC (A; rela-
tive isoperimetric deficit) or true area A (B) at the ten observation 
heights; the maximum values at the heights of 1% and 2.5% that are 
not shown in B were 8.30% and 6.86%, respectively. The thick grey 
lines give the arithmetic means in the study by Matérn (1990): solid 
line under bark, dashed line over bark. (For the explanation of the 
boxplot and the lines, refer to the caption of Fig. 29.)
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error of Â0 with respect to true area was less than 2%. That the amount of non-convexity 
was on average larger in the base and in the top of the stems and less pronounced in the 
middle parts in our data was also mirrored in the behaviour of this relative error (Fig. 41 
B; cf. Fig. 34).

Compared to ellipses with the same axis ratios, the ratio being determined as the extreme 
diameter ratio Dmin/Dmax, the cross-sections in our data assumed clearly larger isoperimetric 
deficits (Fig. 42, cf. Table 6 in Matérn 1990); this further corroborates the understanding 
begotten by the shape indices that ellipse is not an adequate shape model for tree cross-
sections but that their non-circularity is of a more intricate kind. When the axis ratio was 
determined with the girth-area ellipse ratio be/ae, the isoperimetric deficits naturally coin-
cided with the ellipse values (because be/ae is by definition the axis ratio of the ellipse that 
has the same convex area AC and perimeter C as the cross-section and, thus, also the same 
isoperimetric deficit (Â0–AC)/AC =(C2/4π–AC)/AC ).

In his discs of somewhat larger size, Matérn (1990) reported on average slightly higher 
and more variable isoperimetric deficits than those in this study (Table 26); differences to 
our cross-sections appeared to be most pronounced in the base and in the top of the stems 
(Fig. 41 A). Bark tended to increase isoperimetric deficit, except at the lowermost and 
uppermost heights, but the difference was negligibly small. (In Norway spruce, Matérn 
reported similar isoperimetric deficits as in Scots pine, except at the height of 1% where 
the cross-sections exhibited clearly larger isoperimetric deficits over bark. Otherwise bark 
did not noteworthily increase isoperimetric deficit in spruce.)

Literature does not seem to abound with such results on isoperimetric deficit where the 
effect of measurement errors could be to a large extent excluded: Borowski (1960) reported 
an average value of 1.60% in a total of 564 cross-sections taken from 41 pines (exact spe-
cies not mentioned, contours drawn under bark); Kärkkäinen (1976), in turn, documented 
an average value of 1.7% in the debarked end sections of 174 European aspen logs; and 
Gregoire et al. (1990) studied 101 breast height cross-sections of various conifer species 
of which majority (65/101) were red spruces, and found the isoperimetric deficit to be on 
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Fig. 42. Comparison of the values of relative isoperimetric deficit (Â0–AC)/
AC in the 709 cross-sections to the values in an ellipse (thick black 
line), as a function of axis ratio; in the cross-sections, the axis ratio 
was determined either as the ratio between the extreme diameters Dmin/
Dmax (black circles) or as the girth-area ellipse ratio be/ae (grey dots).
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average 2.65% when girths were determined from digitised convex closure contours and 
3.10% when girths were measured in the field (in the latter case, the median was 3.20% 
and the between-cross-sections standard deviation 0.066%; actually, estimation errors were 
computed with respect to true area, but only four discs were reported to have a measurable 
convex deficit). As an extremity, Loetsch et al. (1973) cited an early Dutch work (by H.E. 
Wolff von Wülfing in 1929) on plantation teak in Indonesia, where the average combined 
effect of convex and isoperimetric deficits ((Â0–A)/A) was reported to increase with tree 
size, from 0.8% with breast heigh diameter of 30 cm to 14.9% with breast heigh diameter 
of 100 cm.

Isoperimetric deficit appeared to be independent of cross-section size and be associated 
with convex deficit only at the heights of 1% and 70% (Table 27, Fig. 43). Quite expectedly, 
however, it correlated almost fully negatively with girth-area ellipse ratio at all the obser-
vation heights (as mentioned before, both the characteristics are functions of the convex 
perimeter and convex area of a cross-section and have a slightly curvilinear relationship 
(Fig. 42), due to which the linear correlation is not exactly perfect) and moderately with the 
diameter variation within a cross-section at most observation heights (Table 27, Fig. 43). 
Matérn (1990) found stronger associations with cross-section size (negative correlation, 
i.e., the larger the cross-section the smaller the isoperimetric deficit) and with convex deficit 
(Table 27); interestingly, our under-bark results seemed to agree better with his over-bark 
results than with his under-bark ones.

Table 26. Comparison of the between-cross-sections means and standard deviations of isoperimetric 
deficit (Â0–AC)/AC to those reported by Matérn (1990). In the parentheses, Matérn’s results 
obtained from over-bark observations are given; n is the number of observations.

This study Matérn (1990)
Height Height

1% 10–90% 1.3 m 1% 10–90% 1.3 m 

(Â0–AC)/AC (%) Mean
Std.dev.

2.12
1.30

0.71
0.38

0.74
0.30

2.67 (2.46)
1.78 (0.96)

0.89 (0.94)
0.50 (0.48)

0.97 (1.74)
0.53 (0.57)

n 28 400 80 5 (5) 25 (25) 15 (17)

Table 27. Correlation of isoperimetric deficit (Â0–AC)/AC with shape indices depicting the convex 
closure of a cross-section (diameter coefficient of variation CVD, ratio between the extreme 
diameters Dmin/Dmax, girth-area ellipse ratio be/ae, correlation of perpendicular diameters ρD(π/2), 
and absolute difference between the directions of the extreme diameters |θDmax–θDmin|), with 
size of a cross-section (expected diameter μD), and with convex deficit (AC–A)/AC in this study 
(n=709) and in that of Matérn (1990) (n=45). In the parentheses, the Matérn’s results based on 
over-bark observations (n=47) are given.

This study Matérn (1990)
CVD Dmin/ 

Dmax
ρD(π/2) μD be/ae |θDmax– 

θDmin|
(AC–A)/ 

AC
CVD Dmin/ 

Dmax
ρD(π/2) μD (AC–A)/ 

AC

(Â0–AC)/ 
AC

0.72 –0.75 0.03 0.16 –0.96 –0.10 0.48 0.69
(0.45)

–0.68
(–0.46)

0.28
(0.06)

–0.51
(0.03)

0.74
(0.59)
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8.3.2 Comparison of Area Estimators

The area estimators were compared by means of their estimated within-cross-section biases, 
standard deviations (square roots of within-cross-section variances) and RMSEs (square 
roots of the sums of within-cross-section variances and squared biases), proportioned to true 
or convex cross-section areas and considered in the set of all the discs and in the subsets 
of height classes. If we were to estimate the total cross-section area of a stand, it would be 
reasonable to select area estimator primarily on the basis of its average behaviour, expressed 
by mean within-cross-section bias across trees, whereas variation in estimates within cross-
sections and between trees would be of lesser importance (although they affect the precision 
with which we can expect to be able to estimate the stand total). If, in turn, our interest was 
to estimate the cross-section area of an individual tree, also variation in estimates at both 
the levels would equally matter, and therefore not only mean within-cross-section bias and 
RMSE but also their standard deviations across trees would be useful measures of estimator 
performance. The smaller the within-cross-section and between-trees variation in estimates, 
the more feasible it would be to attempt to correct the systematic error of the estimator.

Before entering into the comparison of the estimators, we note that for the estimators 
involving Bitterlich diameters (diameters taken parallel or perpendicular to plot radius in 
Bitterlich sampling; estimators Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, and Â5ξ90) we only report the results 
obtained with viewing angle 1.146° (basal area factor 1 m2/ha with circular cross-sections). 
This is because within the studied range of 1.146°–3.624° (basal area factor range of 1–10 
m2/ha with circular cross-sections), viewing angle had practically no influence on the 
within-cross-section biases, variances and RMSEs. (This was not unexpected in the light of 
the findings on the example shapes in Fig. 10: see e.g. Fig. 21 where the viewing angles 1° 
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metric deficit with correlation between perpendicular diameters ρD(π/2) is 
not shown as it was close to 0 at all the observation heights.)
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and 30° were shown to produce almost identical Bitterlich diameter direction distributions 
in all the shapes, and Tables 8 and 9 where negligible differences in area estimation biases 
and standard deviations between the same viewing angles were reported). Furthermore, the 
“thinking experiment” where the Bitterlich direction distribution was determined individu-
ally for each cross-section using its own inclusion region (instead of using the inclusion 
region of the breast height cross-section for all the other cross-sections of a tree) made 
practically no difference either, except for a slight effect on the within-cross-section biases, 
which will be discussed in due course below.

Biases

In terms of relative within-cross-section bias, taking one or two random diameters with the 
uniform direction distribution, or one random diameter and its perpendicular, was as good an 
approach as measuring girth: the estimators Â1–Â5 produced bias distributions very similar 
to that of the girth diameter estimator Â0 (Table 28, Fig. 44), the average biases being about 
0.9% with respect to convex area and about 1.6% with respect to true area. This was hardly 
surprising considering the generally small diameter variation found earlier within our discs 
(see Section 8.2.1): in the bias formulae (Eqs. 22–26 in Section 3.3.2), the terms involving 
the within-cross-section variance of diameter became close to zero.

In area estimation in our data, Bitterlich diameters practically corresponded to random 
diameters with the uniform direction distribution: the estimators Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and 
Â5ξ90 yielded bias distributions similar to those of the estimators Â0 and Â1–Â5 (Fig. 44, 
Table 29). This was quite expected, as the breast height cross-sections (whose direction 
distributions were used for all the other cross-sections in the same tree) deviated rather little 
from circles and as the other cross-sections in the same tree did not necessarily repeat the 
shape of the breast height cross-section. In 70% (493/709) of the cross-sections, however, 
measuring the Bitterlich diameter perpendicular to plot radius resulted in larger bias than 
taking it parallel to plot radius (as we had found to be the case also with the example shapes 
of Fig. 10; see Table 8).

While all our random area estimators always yielded overestimating bias with respect 
to both true and convex area, the fixed area estimators involving Dmin, Dmax and their 

Table 28. Summarised distributions of the relative within-cross-section biases of the area estimators 
Â1–Â5 with respect to convex area AC and true area A in the set of all the cross-sections (n=709); 
for comparison, the results on the estimator Â0 are also given.

Relative bias Statistic Diameter selection method j
  0 1 2 3 4 5

[E(Âj)–AC]/AC (%) Mean 0.90 0.95 0.91 0.86 0.93 0.90
 Std. dev. 0.67 0.73 0.67 0.62 0.70 0.67
 Min. 0.18 0.18 0.18 0.17 0.18 0.18
 Median 0.71 0.74 0.71 0.67 0.72 0.71
 Max. 5.78 6.81 5.80 5.64 6.29 5.78
[E(Âj)–A]/A (%) Mean 1.62 1.67 1.62 1.58 1.64 1.62
 Std. dev. 0.86 0.92 0.87 0.82 0.89 0.86
 Min. 0.46 0.47 0.46 0.45 0.46 0.46
 Median 1.39 1.42 1.40 1.36 1.41 1.39
 Max. 8.30 9.36 8.33 7.30 8.83 8.30
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Fig. 44. Summarised distributions of the relative within-cross-section biases of the area estima-
tors Â0, Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, Â5ξ90 and Â6–Â11 with respect to convex area (A) or 
true area (B) in the set of all the discs (n=709). The Bitterlich diameter direction distribution 
was determined in the breast height cross-section in each tree with viewing angle 1.146° 
(basal area factor 1 m2/ha with circular cross-sections). The box depicts the inter-quartile 
range bisected by the median, and the whiskers reach out to the extreme values in the data; 
the filled circle denotes the arithmetic mean, whereas the short horizontal lines below and 
above the mean indicate the magnitude of the sample standard deviation.
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(Â

j)−
A

]
A

 (%
)

Diameter selection method j
0 1 2 3 4 5 6 7 8 9 10 111ξ 2ξ 3ξ 4ξ 5ξ 1ξ90 4ξ90 5ξ90

−4

0

4

8

12

−4

0

4

8

12B

Table 29. Summarised distributions of the relative within-cross-section biases of the area estimators 
Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 with respect to convex area AC and true area A in the set of all 
the cross-sections (n=709); for comparison, the results on the estimator Â0 are also given. The 
Bitterlich diameter direction distribution was determined in the breast height cross-section in each 
tree with viewing angle 1.146° (basal area factor 1 m2/ha with circular cross-sections).

Relative bias Statistic Diameter selection method j
  0 1ξ 2ξ 3ξ 4ξ 5ξ 1ξ90 4ξ90 5ξ90

[E(Âj)–AC]/AC  Mean 0.90 0.90 0.91 0.87 0.90 0.88 1.01 0.96 0.93
(%) Std. dev. 0.67 0.72 0.67 0.62 0.69 0.66 0.78 0.72 0.69
 Min. 0.18 0.07 0.18 0.18 0.16 0.16 0.22 0.20 0.20
 Median 0.71 0.69 0.71 0.67 0.70 0.68 0.78 0.75 0.73
 Max. 5.78 6.09 5.83 5.63 5.93 5.85 8.44 7.11 6.60
[E(Âj)–A]/A  Mean 1.62 1.62 1.63 1.58 1.62 1.59 1.73 1.67 1.65
(%) Std. dev. 0.86 0.91 0.87 0.82 0.88 0.85 0.96 0.90 0.87
 Min. 0.46 0.38 0.46 0.45 0.44 0.44 0.50 0.48 0.48
 Median 1.39 1.37 1.40 1.36 1.37 1.35 1.48 1.44 1.42
 Max. 8.30 7.73 8.35 7.33 8.01 7.48 11.03 9.67 9.14
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perpendiculars produced also underestimating biases (Fig. 44). Indeed, the best estimators 
in terms of average bias were found among these estimators, the actual “winner” varying 
according to the reference area (Fig. 44, Table 30): with respect to convex area, the estima-
tors Â6 and Â7 involving the mean of Dmin and Dmax yielded the smallest average bias of 
0.5–0.6%; with respect to true area, in turn, the estimators Â8 and Â9 involving the mean 
of Dmin and its perpendicular resulted in the smallest, this time negative, average bias of 
0.3–0.4% (also Â6 and Â7 yielded smaller average bias with respect to true area than the 
random estimators). However, these average-bias-optimal estimators were clearly more 
unstable (with larger between-cross-section variation of the biases) than the girth diameter 
estimator and the random estimators (Fig. 44, Tables 28–30).

In general, employing the geometric mean instead of the arithmetic one decreased the 
overestimation bias (or increased the underestimation bias) only little (Fig. 44, Tables 
28–30: Â2 vs. Â3, Â4 vs. Â5, Â2ξ vs. Â3ξ, Â4ξ vs. Â5ξ, Â4ξ90 vs. Â5ξ90, Â6 vs. Â7, Â8 vs. Â9, 
Â10 vs. Â11). Further, taking the second diameter perpendicular to the first one appeared to 
produce regularly smaller and less variable biases than taking it in a random direction (as 
would be expected on the basis of the prevalence of strong negative within-cross-section 
correlations between perpendicular diameters, see Section 8.2; cf. Eqs. 23–24 in Section 
3.3.2 and Eqs. 95–96 in Section 4.2.2), but again the effect was very small (Fig. 44, Tables 
28–30: Â2 vs. Â4, Â3 vs. Â5, Â2ξ vs. Â4ξ or Â4ξ90, Â3ξ vs. Â5ξ or Â5ξ90).

As could be expected from our results on the shapes of the convex closures, the relative 
within-cross-section biases were found to be larger on average and more variable in the 
very butt than in the middle and upper parts of the stems (Figs. 45 and 46); for almost all 
the estimators, the average bias at the height of 1% was double the bias in the other parts of 
the stems (even triple, when the bias was computed with respect to true area). By contrast, 
no association was found between cross-section size and relative bias in any area estimator.

A closer examination of the breast height cross-sections showed that Bitterlich diameters 
indeed deviated from random diameters with the uniform direction distribution (Fig. 47 A), 
even though the implications of this deviation to relative within-cross-section biases were 
then very small (as was seen above): If the estimator involved diameter taken perpendicular 
to plot radius in Bitterlich sampling (Â1ξ90, Â2ξ, Â3ξ, Â4ξ90 and Â5ξ90), the bias was in all the 
breast height cross-sections larger than if the diameter was taken in a uniformly distributed 

Table 30. Summarised distributions of the relative within-cross-section errors (biases) of the area 
estimators Â6–Â11, Âmin, and Âmax with respect to convex area AC and true area A in the set of 
all the cross-sections (n=709); for comparison, the results on the estimator Â0 are also given.

Relative bias Statistic Diameter selection method j
  0 6 7 8 9 10 11 min max

[E(Âj)–AC]/AC  Mean 0.90 0.62 0.48 –1.02 –1.11 2.47 2.38 –5.85 7.36
(%) Std. dev. 0.67 1.10 1.07 1.41 1.39 1.80 1.80 3.21 4.13
 Min. 0.18 –3.05 –3.86 –5.94 –5.95 –2.92 –3.71 –27.33 1.81
 Median 0.71 0.53 0.43 –0.91 –0.98 2.16 2.09 –5.15 6.33
 Max. 5.78 7.44 7.07 5.66 5.39 12.10 11.85 –0.94 34.78
[E(Âj)–A]/A  Mean 1.62 1.33 1.19 –0.32 –0.41 3.20 3.11 –5.19 8.13
(%) Std. dev. 0.86 1.21 1.17 1.44 1.42 1.92 1.91 3.21 4.26
 Min. 0.46 –2.48 –3.29 –5.23 –5.28 –2.34 –3.14 –26.50 2.22
 Median 1.39 1.21 1.09 –0.17 –0.24 2.87 2.78 –4.53 7.09
 Max. 8.30 8.55 8.17 6.75 6.47 13.98 13.72 –0.07 36.32
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random direction (Â1–Â5). If, in turn, the estimator involved diameter taken parallel to plot 
radius (Â1ξ, Â4ξ and Â5ξ), in over 90% (73/80) of the cross-sections the bias was smaller 
than with the random diameter with uniformly distributed direction. (In neither of the cases, 
however, the differences were statistically significant, not even at the 90% significance level, 
according to the paired t-tests where the biases of each estimator were assumed normally 
distributed.) Patently, taking diameter perpendicular to plot radius in Bitterlich sampling 
yielded larger (in all the breast height cross-sections) and more variable biases than taking 

Fig. 45. Means of the relative within-cross-section biases of the area estimators Â0, 
Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, Â5ξ90 and Â6–Â11 with respect to convex area at 
the ten observation heights. The Bitterlich diameter direction distribution was 
determined in the breast height cross-section in each tree with viewing angle 
1.146° (basal area factor 1 m2/ha with circular cross-sections). The results on 
the estimator Â0 are shown for comparison in all the panels.
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[E(Â3) − AC] AC
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it parallel, but the differences were small (at the largest, i.e., with Â1ξ90 vs. with Â1ξ, the 
difference was about 2.4 percentage units in an individual disc, 0.3 percentage units in 
average bias and 0.2 percentage units in bias standard deviation).

Extending this examination, as a “thinking experiment”, from the breast height cross-
sections to all the cross-sections (i.e., determining the Bitterlich diameter direction dis-
tributions separately for each cross-section, as if all the cross-sections were breast height 
cross-sections) produced qualitatively similar results (Fig. 47 B). The differences in biases 

Fig. 46. Standard deviations of the relative within-cross-section biases of the area 
estimators Â0, Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, Â5ξ90 and Â6–Â11 with respect 
to convex area at the ten observation heights. The Bitterlich diameter direction 
distribution was determined in the breast height cross-section in each tree with 
viewing angle 1.146° (basal area factor 1 m2/ha with circular cross-sections). 
The results on the estimator Â0 are shown for comparison in all the panels.
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[E(Â11) − AC] AC



878

Silva Fennica 46(5B), 2012 research articles

between the two ways of taking Bitterlich diameters were now slightly more pronounced 
(at the largest, i.e., with Â1ξ90 vs. with Â1ξ, the difference was about 7.9 percentage units 
in an individual disc, 0.4 percentage units in average bias and 0.4 percentage units in bias 
standard deviation).

In his somewhat larger discs, Matérn (1990) reported more variable and on average larger 
biases, especially at the height of 1% (Table 31). Interestingly, in his data the estimators Â6 
and Â7 involving the mean of Dmin and Dmax underestimated convex area at the height of 
1%; this may be due to the sparse sampling of diameters (Dmin and Dmax were determined 
as the minimum and the maximum of 18 diameters measured at regular angular intervals 
of 10°) that resulted in the underestimation of Dmax being larger than the overestimation 
of Dmin. While bark appeared to increase, particularly at breast height, the biases of the 
estimators Â1–Â3 involving a random diameter and its perpendicular, at the height of 1% 
the effect was opposite, there bark decreased and especially stabilised the biases (Table 31); 
this echoes the earlier findings in Matérn’s data on bark attenuating shape irregularities (cf. 
Table 20 of shape indices) as well as on bark decreasing and stabilising isoperimetric deficits 
(biases of the estimator Â0, cf. Table 26) at the lowermost height; as mentioned earlier, 
these results remain rather uncertain due to the small number of observations at the lowest 
observation height. (In Norway spruce, Matérn reported biases of similar magnitude as in 
Scots pine, but with reverse bark effects: at breast height bark did not markedly influence 
the biases, whereas at the height of 1% bark clearly reduced the biases.)

Fig. 47. Summarised distributions of the differences in the relative within-cross-section 
biases for eight pairs of area estimators in the sets of breast-height cross-sections (A, 
n=80) and all the cross-sections (B, n=709). The pairs were formed in the way that 
estimators involving Bitterlich diameters are compared to similar estimators involv-
ing random diameters with the uniform direction distribution. The Bitterlich diameter 
direction distribution was determined separately for each cross-section with viewing 
angle 1.146° (basal area factor 1 m2/ha with circular cross-sections). In the parentheses, 
the extreme values reaching out of the figure are given. (For the explanation of the 
boxplot, refer to the caption of Fig. 44.)

( −1.17 )

( 1.24 )

[E
(Â
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Besides Matérn’s (1990) work, literature does not seem to abound with empirical results 
on errors of different area estimators (Table 32). Specifically, no within-cross-section 
biases were available for the random estimators, but we had to content ourselves to area 
estimation errors (resulting from individual diameter samplings in cross-sections) and their 
between-cross-sections means (cf. the figures for the estimators Â1–Â3 in Table 32). For 
comparability with the previous studies, we included in our consideration the earlier work 
(Pulkkinen 1996) where the discs of this study (and 4 other discs) were subjected to random 
diameter sampling (taking one or two diameters in each disc) and where average estimation 
errors were then computed across the discs for the random area estimators. Generally, the 
geometric mean of diameters resulted in smaller average errors or biases than the arithmetic 
one (just as should be the case); a possible explanation for Chacko’s (1961) conflicting 
results is that he may have used not the same diameters in the estimators Â2 and Â3. As for 
the biases of the fixed estimators (Â6–Â11), the results of this study accorded finely with 
Kärkkäinen’s (1975a, 1976) findings on silver birch and European aspen logs. As for the 
average errors of the random estimators (Â1–Â3), the differences between the estimators 
were small in all the studies. However, the average errors did not always comply with the 
theory on the within-cross-section biases of the random estimators: Gregoire et al. (1990) 
reported that the estimators Â1–Â3 involving one random diameter and its perpendicular 
underestimated true area on average (whereas the girth diameter estimator Â0 produced an 
average overestimation of similar magnitude in their data, cf. Section 8.3.1); further, and 
similar to the results by Pulkkinen (1996), Â1 involving one diameter resulted in a smaller 
average error than Â2 and Â3 involving two diameters (whereas the between-cross-sections 
variation of the errors was then clearly larger for Â1 than for Â2 and Â3 in both the studies).

The last-mentioned phenomenon — that, with the area estimators involving one random 
diameter or one random diameter and its perpendicular (Â1 and Â2, rarely also Â3), the 
mean of the relative estimation errors across individual cross-sections (trees) does not 

Table 31. Comparison of the between-cross-sections means and standard deviations of the relative 
within-cross-section biases (with respect to convex area) of the area estimators Â1, Â2, Â3, Â6, 
Â7, Â9 and Â11 to those reported by Matérn (1990). In the parentheses, Matérn’s results from 
over-bark observations are given; n is the number of observations.

Diameter 
selection 
method j

Statistic of 
[E(Âj)–AC]/
AC

This study Matérn (1990)
Height Height

1% 10–90% 1.3 m 1% 10–90% 1.3 m 

1 Mean
Std.dev.

2.28
1.43

0.75
0.41

0.78
0.33

2.90 (2.62)
1.97 (1.06)

0.94 (0.98)
0.53 (0.52)

1.03 (1.82)
0.59 (0.60)

2 Mean
Std.dev.

2.14
1.31

0.72
0.38

0.74
0.31

2.71 (2.48)
1.92 (0.97)

0.89 (0.95)
0.50 (0.49)

0.98 (1.77)
0.54 (0.58)

3 Mean
Std.dev.

2.01
1.21

0.69
0.35

0.71
0.29

2.53 (2.34)
1.68 (0.88)

0.85 (0.91)
0.49 (0.47)

0.92 (1.70)
0.49 (0.56)

6 Mean
Std.dev.

1.66
1.71

0.50
0.91

0.45
0.89

–0.51 (1.67)
1.50 (1.86)

0.62 (0.88)
1.09 (0.94)

0.49 (1.77)
1.42 (1.34)

7 Mean
Std.dev.

1.27
1.62

0.41
0.88

0.34
0.88

–1.10 (1.28)
1.81 (2.04)

0.50 (0.77)
1.13 (0.92)

0.31 (1.57)
1.40 (1.36)

9 Mean
Std.dev.

–1.64
2.21

–0.98
1.16

–1.02
1.12

–2.60 (0.05)
2.68 (2.62)

–0.68 (–0.66)
1.33 (1.14)

–1.59 (–1.25)
1.42 (1.98)

11 Mean
Std.dev.

4.45
2.72

2.02
1.41

2.14
1.38

5.06 (4.93)
5.00 (2.53)

1.82 (2.34)
1.46 (1.18)

2.55 (5.04)
1.60 (2.28)

n 28 400 80 5 (5) 25 (25) 15 (17)
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necessarily behave as (the mean of) the relative within-cross-section biases, but that these 
estimators may produce smaller average errors than the girth diameter estimator (Â0) or 
even negative average errors — has been reported in many empirical studies (e.g. Müller 
1957, 1958a, 1958b, Kennel 1959, 1964; see also the discussion in Matérn 1990, p. 39–40). 
Referring to time before Matérn’s theoretical work (1956), Loetsch et al. (1973) even state 
it as “the formerly wide-spread opinion that in principle girth measurement yields larger 
values of cross-sectional area than diameter measurement”. The most popular explana-
tion for this puzzling “discrepancy between theory and field practice” (Matérn 1990) has 
been measurement errors due to handling of a caliper: the higher contact pressure that the 
caliper exerts on wood compared to a tape (Kennel 1964), or a measurer’s unconscious 
tendency to align the caliper arm with the longer axis of the stem cross-section (Gregoire 
et al. 1990) or to adjust the caliper direction to avoid protruding ridges in bark (Matérn 
1990). Another mensurational reason could be the difficulty in determining the direction 
of diameter measurement in the way that the direction is truly uniformly distributed: for 
convenience, diameters in the whole plot may have been taken in a fixed direction (compass 
direction; e.g. Kennel 1959, 1964, Gregoire et al. 1990), which, in the absence of blatantly 
eye-catching diameter directionality, has then been assumed to correspond to a uniformly 
distributed direction within each cross-section; alternatively, diameters may have been 
taken in the plot radius direction, which we found in the case of Bitterlich sampling and 
non-circular breast height cross-sections to result in non-uniform direction distributions 
(see Section 4.2). Yet the phenomenon can naturally occur even without any presence of 
measurement errors: this is because the mean of the relative area estimation errors resulting 
from one diameter sampling in each individual cross-section does not necessarily estimate 
accurately its own expectation over the uniform diameter direction distribution (i.e., the 
mean, across individual cross-sections, of the relative within-cross-section biases over the 
uniform diameter direction distribution). If all the n cross-sections in the plot are of the 
same non-circular shape and have the same orientation, in which case their relative within-
cross-section biases are the same and the mean of the biases equals this bias, the mean 
of the n relative area estimation errors estimates the bias defined over infinite number of 
diameter directions using a diameter direction sample of size n; the larger the sample size 
(the number of cross-sections), the narrower becomes the distribution of the mean around 
its expectation (the bias); with a small sample size and a large diameter variance within the 
cross-sections, the mean may deviate quite a bit from its expectation and even be negative. 
If the n cross-sections in the plot then vary in shape, which is the case in reality, the mean 
of the n relative area estimation errors is likely to vary even more around its expectation 
over the uniform diameter direction distribution; basically, the within-cross-section bias in 
each cross-section is in this case estimated with one single area estimation error, and the 
mean of the biases is then estimated with the mean of these presumably poor bias estimates.

Variances and Variance Approximations

For the area estimators involving randomness (Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90), 
the diameter sampling errors within the cross-sections were examined in the square root 
scale, in terms of the relative within-cross-section standard deviations of the estimators. 
Whether the standard deviations were proportioned with convex area or true area made 
practically no difference, and therefore in the following only the results with respect to 
convex area are given.

With the estimators involving only random diameters (and not their perpendiculars), the 
sampling errors quite notably surpassed the systematic errors: with one random diameter 
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Table 33. Summarised distributions of the relative within-cross-section standard devia-
tions of the area estimators Â1–Â5 with respect to convex area AC in the set of all 
the cross-sections (n=709).

Relative std. dev. Statistic Diameter selection method j
  1 2 3 4 5

Var(Âj)1/2/AC (%) Mean 3.96 1.47 1.47 2.80 2.80
 Std. dev. 2.38 0.90 0.90 1.69 1.69
 Min. 0.74 0.17 0.17 0.45 0.21
 Median 3.49 1.19 1.21 2.47 2.48
 Max. 20.64 6.68 6.74 14.69 14.81

Table 34. Summarised distributions of the relative within-cross-section standard deviations of the 
area estimators Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 with respect to convex area AC in the set of all 
the cross-sections (n=709). The Bitterlich diameter direction distribution was determined in the 
breast height cross-section in each tree with viewing angle 1.146° (basal area factor 1 m2/ha with 
circular cross-sections).

Relative std. dev. Statistic Diameter selection method j
  1ξ 2ξ 3ξ 4ξ 5ξ 1ξ90 4ξ90 5ξ90

Var(Âj)1/2/AC (%) Mean 3.96 1.46 1.47 2.80 2.80 3.96 2.80 2.80
 Std. dev. 2.38 0.90 0.90 1.69 1.69 2.38 1.69 1.69
 Min. 0.74 0.17 0.17 0.45 0.32 0.73 0.45 0.32
 Median 3.49 1.19 1.21 2.47 2.47 3.49 2.47 2.47
 Max. 20.60 6.68 6.74 14.65 14.74 20.60 14.65 14.80

Fig. 48. Summarised distributions of the relative within-cross-section standard devia-
tions of the area estimators Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 with respect 
to convex area in the set of all the discs (n=709). The Bitterlich diameter direction 
distribution was determined in the breast height cross-section in each tree with 
viewing angle 1.146° (basal area factor 1 m2/ha with circular cross-sections). (For 
the explanation of the boxplot, refer to the caption of Fig. 44.)
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involved (estimators Â1, Â1ξ, Â1ξ90), the average relative within-cross-section standard 
deviation was quadruple the average relative within-cross-section bias (with respect to 
convex area), whereas with two random diameters (estimators Â4, Â5, Â4ξ, Â5ξ, Â4ξ90, 
Â5ξ90) the standard deviation was triple the bias (Tables 33 and 34, Fig. 48; cf. Tables 28 
and 29, Fig. 44). It indeed seemed advisable to take the second diameter perpendicular to 
the first one (estimators Â2, Â3, Â2ξ, Â3ξ), as this reduced the average sampling error into 
half of that obtained by taking the second diameter in a random direction and substantially 
attenuated the sampling error variation between the cross-sections (Tables 33 and 34, 
Fig. 48). This can be seen as a reflection of the strong negative within-cross-section cor-
relations between perpendicular diameters that were observed in a clear majority of our 
discs (see Section 8.2.1): in the variance approximation formulae (Eq. 36 in Section 3.3.2, 
and Eqs. 105 and 106 in Section 4.2.2), the reducing effect of such correlation is obvious, 
and later we will see that in our data the approximate variances closely resembled the true 
ones. Whether the geometric or the arithmetic mean of diameters was employed in the 
estimator did not affect the sampling errors. Further, using Bitterlich diameters resulted in 
practically similar sampling errors as using random diameters with the uniform direction 
distribution (and determining the Bitterlich direction distribution with the inclusion region 
of each individual cross-section, instead of using the inclusion region of the breast height 
cross-section for all the cross-sections of the tree, made no practical difference either). 
With respect to relative height in a stem, the sampling errors behaved fairly similarly to 
the biases: the relative within-cross-section standard deviations were found to be larger on 
average and more variable at the lowest observation height than in the other parts of the 
stems (Figs. 49 and 50).

Noteworthily, as already hinted above, the approximate within-cross-section variances 
were found to be very close to the true variances with all the estimators (Fig. 51). This 
implies quite a facilitation in the sampling error estimation, since the much simpler approxi-
mate equations (Eqs. 35–37 in Section 3.3.2, Eqs. 104–108 in Section 4.2.2) may be used 
instead of the complex analytic ones (Eqs. 30–34 in Section 3.3.2, Eqs. 99–103 in Section 
4.2.2). Quite consonant with the theory (see Eq. 38 in Section 3.3.2, and Section 4.2.2), the 
approximate variances of the estimators Â5, Â5ξ and Â5ξ90 underestimated the true variances 
in all the cross-sections; with the other estimators, the approximate equations yielded both 
under- and overestimates of the true variances.

RMSEs

Relative within-cross-section RMSE combines the effects of relative within-cross-section 
bias and relative within-cross-section variance caused by diameter sampling, and there-
fore it is a particularly relevant measure of estimator performance in single tree estima-
tion. In RMSE, negative bias is not allowed to compensate for sampling variance, as bias 
is included in the squared form. For the fixed estimators, for which sampling variance 
is naturally always zero, RMSE equals the absolute value of the area estimation error 
within each cross-section. With its non-negativity, RMSE penalises equally for negative 
and positive bias, and therefore its average may give too pessimistic an impression about 
estimator performance in stand total estimation (where positive and negative errors in 
different cross-sections should be allowed to cancel out each other); here this is the case 
with fixed estimators producing both positive and negative estimation errors in different 
cross-sections. On the other hand, turning negative estimation errors into positive reduces 
variance, and therefore RMSE variance may give too optimistic an impression about error 
variation in single tree estimation.
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Fig. 49. Means of the relative within-cross-section standard deviations of the area 
estimators Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 with respect to convex 
area at the ten observation heights. The Bitterlich diameter direction distri-
bution was determined in the breast height cross-section in each tree with 
viewing angle 1.146° (basal area factor 1 m2/ha with circular cross-sections).
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B Var(Â1ξ) AC
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Fig. 50. Standard deviations of the relative within-cross-section standard devia-
tions of the area estimators Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 with 
respect to convex area at the ten observation heights. The Bitterlich diameter 
direction distribution was determined in the breast height cross-section in 
each tree with viewing angle 1.146° (basal area factor 1 m2/ha with circular 
cross-sections).
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Fig. 51. Summarised distributions of the relative differences between the true 
and the approximate within-cross-section standard deviations (A) and vari-
ances (B) of the area estimators Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 
with respect to convex area in the set of all the discs (n=709). The Bitterlich 
diameter direction distribution was determined in the breast height cross-
section in each tree with viewing angle 1.146° (basal area factor 1 m2/ha 
with circular cross-sections). (For the explanation of the boxplot, refer to the 
caption of Fig. 44; the means were not drawn, as they equalled the medians.)
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Table 35. Summarised distributions of the relative within-cross-section RMSEs of the area estimators 
Â0 and Â1–Â5 with respect to convex area AC and true area A in the set of all the cross-sections 
(n=709).

Relative RMSE Statistic Diameter selection method j
  0 1 2 3 4 5

E{[Âj–AC]2}1/2/AC (%) Mean 0.90 4.09 1.76 1.73 2.97 2.97
 Std. dev. 0.67 2.46 1.07 1.05 1.79 1.78
 Min. 0.18 0.81 0.38 0.37 0.62 0.52
 Median 0.71 3.59 1.42 1.40 2.59 2.58
 Max. 5.78 21.73 8.30 8.23 15.98 15.89
E{[Âj–A]2}1/2/A (%) Mean 1.62 4.38 2.25 2.22 3.32 3.31
 Std. dev. 0.86 2.48 1.15 1.13 1.82 1.81
 Min. 0.46 1.07 0.56 0.56 0.82 0.78
 Median 1.39 3.81 1.93 1.90 2.88 2.88
 Max. 8.30 23.11 9.53 9.43 17.44 17.28
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As is evident from the variance results above, the sampling error component dominated 
the within-cross-section RMSEs in our data. Consequently, the advantageousness of using 
the fixed estimators in single-tree area estimation became fairly obvious: the girth diameter 
estimator (Â0, for which the RMSE equalled the bias in each cross-section) produced gener-
ally small and the most stable RMSEs, and also the fixed area estimators involving Dmin, 
Dmax and the perpendicular of Dmin (Â6–Â9, which produced both negative and positive 
biases and the smallest average biases) performed well, on average sometimes even better 
than the girth diameter estimator (Fig. 52, Table 37). Among the random estimators, the 
ones involving one random diameter and its perpendicular (Â2, Â3, Â2ξ, Â3ξ) proved to 

Table 36. Summarised distributions of the relative within-cross-section RMSEs of the area estima-
tors Â1ξ–Â5ξ, Â1ξ90, Â4ξ90 and Â5ξ90 with respect to convex area AC and true area A in the set 
of all the cross-sections (n=709); for comparison, the results on the estimator Â0 are also given. 
The Bitterlich diameter direction distribution was determined in the breast height cross-section 
in each tree with viewing angle 1.146° (basal area factor 1 m2/ha with circular cross-sections).

Relative RMSE Statistic Diameter selection method j
 0 1ξ 2ξ 3ξ 4ξ 5ξ 1ξ90 4ξ90 5ξ90

E{[Âj–AC]2}1/2/AC  Mean 0.90 4.08 1.76 1.73 2.97 2.96 4.10 2.98 2.97
(%) Std. dev. 0.67 2.44 1.07 1.05 1.78 1.77 2.47 1.80 1.79
 Min. 0.18 0.81 0.38 0.37 0.57 0.47 0.80 0.56 0.46
 Median 0.71 3.56 1.42 1.40 2.58 2.57 3.59 2.59 2.59
 Max. 5.78 21.28 8.19 8.13 15.64 15.56 22.13 16.29 16.20
E{[Âj–A]2}1/2/A  Mean 1.62 4.36 2.25 2.22 3.31 3.30 4.39 3.34 3.32
(%) Std. dev. 0.86 2.47 1.15 1.13 1.81 1.79 2.50 1.83 1.82
 Min. 0.46 1.06 0.57 0.56 0.83 0.81 1.07 0.84 0.82
 Median 1.39 3.79 1.92 1.90 2.87 2.86 3.83 2.90 2.88
 Max. 8.30 22.44 9.40 9.30 17.00 16.84 23.68 17.85 17.70

Table 37. Summarised distributions of the relative within-cross-section RMSEs of the area estimators 
Â6–Â11 with respect to convex area AC and true area A in the set of all the cross-sections (n=709); 
for comparison, the results on the estimator Â0 are also given.

Relative RMSE Statistic Diameter selection method j
 0 6 7 8 9 10 11

E{[Âj–AC]2}1/2/AC (%) Mean 0.90 0.93 0.86 1.34 1.36 2.50 2.43
 Std. dev. 0.67 0.85 0.80 1.12 1.14 1.75 1.74
 Min. 0.18 0.00 0.00 0.00 0.00 0.01 0.04
 Median 0.71 0.72 0.66 1.03 1.06 2.16 2.10
 Max. 5.78 7.44 7.07 5.94 5.94 12.10 11.85
E{[Âj–A]2}1/2/A (%) Mean 1.62 1.43 1.32 1.11 1.11 3.21 3.13
 Std. dev. 0.86 1.09 1.02 0.97 0.97 1.90 1.89
 Min. 0.46 0.00 0.00 0.00 0.00 0.02 0.03
 Median 1.39 1.23 1.15 0.86 0.86 2.87 2.78
 Max. 8.30 8.55 8.17 6.75 6.47 13.98 13.72
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Fig. 52. Summarised distributions of the relative within-cross-section RMSEs of the area esti-
mators Â0, Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, Â5ξ90 and Â6–Â11 with respect to convex area 
(A) or true area (B) in the set of all the discs (n=709). The Bitterlich diameter direction 
distribution was determined in the breast height cross-section in each tree with viewing 
angle 1.146° (basal area factor 1 m2/ha with circular cross-sections). In the parentheses, 
the maximum values reaching out of the figure are given. (For the explanation of the 
boxplot, refer to the caption of Fig. 44.)

be preferred in single-tree estimation: they yielded patently the narrowest RMSE distri-
butions, comparable to the good fixed estimators (Â6–Â9) in terms of variation, yet with 
larger average values (Fig. 52, Tables 35 and 36). With respect to relative height in a stem, 
the within-cross-section RMSEs followed the patterns of the within-cross-section biases 
for the fixed estimators (Figs. 53 D and 54 D; cf. Figs. 45 D and 46 D) and the patterns of 
the within-cross-section sampling errors for the random estimators (Figs. 53 A–C and 54 
A–C; cf. Figs. 49 and 50).

8.4 Estimation of Stem Volume

The volume estimation results consist of the distributions of the estimated within-tree biases, 
standard deviations and RMSEs of the volume estimators — the combinations of the 22 
diameter selection methods (see Section 7.2) and the three volume estimation methods 
— proportioned to the reference volume specific for each volume estimation method (see 
Section 7.3, Table 17) and considered in the sets of 50 (Laasasenaho volume equation) or 
79 stems of the data. The different diameter selection methods were in principle applied 
both dependently and independently at the different observation heights within a stem (in 
dependent selection, the common diameter direction to be applied at all the observation 
heights was determined at breast height); independent selection, however, was not feasible 
with Bitterlich diameters and could not be meaningfully applied to the general volume 
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Fig. 53. Means of the relative within-cross-section RMSEs of the area estimators Â0, Â1–Â5, Â1ξ–
Â5ξ, Â1ξ90, Â4ξ90, Â5ξ90 and Â6–Â11 with respect to convex area at the ten observation heights. 
The Bitterlich diameter direction distribution was determined in the breast height cross-section 
in each tree with viewing angle 1.146° (basal area factor 1 m2/ha with circular cross-sections).
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Fig. 54. Standard deviations of the relative within-cross-section RMSEs of the area estimators 
Â0, Â1–Â5, Â1ξ–Â5ξ, Â1ξ90, Â4ξ90, Â5ξ90 and Â6–Â11 with respect to convex area at the ten 
observation heights. The Bitterlich diameter direction distribution was determined in the 
breast height cross-section in each tree with viewing angle 1.146° (basal area factor 1 m2/ha 
with circular cross-sections).
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estimator with random diameters either (see the discussion in the beginning of Section 7.3 
and in Section 7.3.4). As in the cross-section area estimation, girth diameter served as a 
“yardstick” to which the other diameter selection methods were compared.

As pointed out earlier (see the discussion on the area estimation in Section 8.3.2), if we 
wanted to estimate the total stem volume of a stand, it would be sensible to choose volume 
estimator by its average behaviour, as expressed by mean within-tree bias across trees; 
variation in estimates within and between trees would then be of lesser importance. If, in 
turn, we were to estimate the stem volume of an individual tree, also variation in volume 
estimates within and between trees would count, and therefore both mean within-tree bias 
and RMSE as well as their standard deviations across trees would be useful measures of 
estimator performance. The smaller the within-tree and between-trees variation in esti-
mates, the more feasible it would be to try to correct the systematic error of an estimator. 
For a volume estimator involving no randomness, within-tree RMSE equals the absolute 
value of the volume estimation error; if the estimator produces both positive and negative 
estimation errors, the mean and variance of RMSE across trees may then give an errone-
ous impression about the performance of the estimator in stand total estimation (positive 
and negative errors in different stems are not allowed to cancel out each other) or about 
its error variation in single tree estimation (turning negative estimation errors into positive 
decreases variance), respectively.

As in the area estimation, varying viewing angle within the range of 1.146°–3.624° (basal 
area factor, with circular cross-sections, within the range of 1–10 m2/ha) did not practi-
cally influence the results of any volume estimators involving Bitterlich diameters. Further, 
Bitterlich diameters yielded results very similar to those given by dependently selected 
random diameters with the uniform direction distribution; as pointed out earlier (see Section 
8.3.2), this was expected, as the breast height cross-sections deviated little from circles and 
as the other cross-sections in the same tree did not faithfully echo the shape of the breast 
height cross-section. Consequently, we present in the following only the results for random 
diameters with the uniform direction distribution (diameter selection methods 1–5), but 
remind that the results from dependent selection pertain to Bitterlich diameters (diameter 
selection methods 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90) with viewing angles 1.146°–3.624° (basal 
area factors 1–10 m2/ha with circular cross-sections) as well.

For the comparison between the different diameter selection methods within each volume 
estimation method, some questions of interest naturally arise from the theory and results 
on cross-section area estimation (Chapter 3, Section 4.2 and Section 8.3): we want to find 
out how the properties of the different diameter selection methods observed in area estima-
tion are reflected in volume estimation (e.g. whether the interrelationships of the methods 
are preserved in volume estimation, whether assuming cross-sections elliptic vs. circular 
makes any practical difference, whether the second diameter is advisable to be calipered 
crosswise rather than in a random direction to minimise bias and sampling error etc.). We 
also want to see whether the magnitude of error due to diameter selection is much larger or 
smaller in volume estimation than in area estimation, whether it differs between the different 
volume estimation methods (e.g. whether the error due to diameter selection is larger in 
a method where a larger number of diameters within a stem are involved), and whether it 
is related to the size and the growing site location of a stem; note, however, that although 
we strove to differentiate the error related to diameter selection from the error inherent in 
the volume estimation method by varying the reference volume with respect to which the 
estimator properties were computed, the resulting diameter selection effect may still not 
carry exactly the same meaning in each of the three volume estimation methods. For the 
comparison between dependent (the prevailing practice) and independent diameter selec-
tion within a stem, theory on volume estimation (Chapter 5) provides some anticipations: 
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we expect that dependence will affect the within-tree variances more than the within-tree 
biases of the volume estimators; particularly, dependent selection of random diameters 
should increase the within-tree variances due to the presumably positive correlation between 
parallel diameters at adjacent heights, whereas dependent selection of Dmin and/or Dmax and 
their perpendiculars should decrease the within-tree biases due to the fact that the directions 
of Dmin and Dmax vary very much between the heights (see Section 8.2.1). Finally, we are 
naturally interested in the effect of disregarding non-convexity of cross-sections (as the 
commonly used measurement equipment only give information on the convex closures of 
cross-sections); note, however, that the convexity assumption turns up somewhat differently 
in each of the three volume estimation methods and that its effect cannot thus be assessed 
fully commensurately in the different methods.

As pointed out earlier (see Section 8.1), the quality of our data sets certain limits to the 
interpretation of the volume estimation results: Due to the strongly skewed and bimodal 
stem size distribution with only 8 sawlog-size stems, it was difficult to establish the effect 
of stem size on volume estimation errors. Also, size effect might be confounded with 
location effect, as all the sawlog-size trees were growing in the two southernmost plots, 
where no pulpwood-size trees were taken (see Table 10, Fig. 22). Furthermore, in 51 stems 
out of 79, the true stem volume was probably estimated less precisely due to the missing 
discs at the height of 1% (the stem curve was approximated with an interpolating parabola 
between the stump height and the first observation height), which was then reflected as 
larger uncertainties both in the model error of the Laasasenaho volume equation and in the 
diameter selection effect with the cubic-spline-interpolated stem curve. At the same time, 
not having these 1% discs, which would probably have been more irregular in shape than 
the upper discs, may have resulted in unrealistically small diameter selection effects with 
the cubic-spline-interpolated stem curve and the general volume estimator.

The cubic-spline-interpolated stem curve and the general volume estimator could be 
applied to a larger set of stems than the Laasasenaho volume equation, since there were 
more stems with observations at seven or more heights (79) than stems with observations 
at both the heights of 1.3 m and 6 m (50). With all the diameter selection methods except 
those based on both Dmin and Dmax (methods 6 and 7), this difference in the application 
data slightly affected the results. The effect will be explained in more detail below, but we 
may conjecture that the results given below for the Laasasenaho volume equation may be 
slightly over-optimistic, as the within-tree biases and variances obtained with the other 
two volume estimators for the 50 stems proved to be slightly smaller than those obtained 
for the whole set of 79 stems.

8.4.1 Laasasenaho Volume Equation

With the Laasasenaho volume equation, the differences in the within-tree volume expecta-
tions and variances between the different diameter selection methods followed straightfor-
wardly from the differences in the diameters or the diameter moments between the methods 
(see Eqs. 158 and 159 in Section 7.3.2 and the method-specific equations in Appendices E 
and F); particularly, the effect of measuring the diameters at the two heights independently 
vs. taking them dependently manifested itself explicitly in the diameter product moments. 
However, as the coefficients ĉ1, ..., ĉ4 of the moments were functions of the tree height H 
and the regression coefficient estimates β̂1, ..., β̂6 (Fig. 55), similar differences in diameters 
or diameter moments produced dissimilar effects in trees of different sizes.

The effect of assuming tree cross-sections convex emerged through the very slightly 
different coefficient functions ĉ1, ..., ĉ4 resulting from the different regression coefficient 
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estimates β̂1, ..., β̂6 (Table 18, Fig. 55) and through the different reference volumes with 
respect to which the within-tree biases were computed and by which both the biases and 
the variances were proportioned (the best estimate ṼL vs. ṼCL based on true area diameters 
DA(1.3) and DA(6) vs. convex area diameters DAc(1.3) and DAc(6) for estimation without 
vs. with the convexity assumption; see Section 7.3.2).

We used the best estimate ṼL (or ṼCL; the fixed part of the model), instead of the estimated 
true volume Ṽ (or the estimated convex volume ṼC; the response variable of the model), 
as the reference volume because we strove to distinguish the diameter selection effect from 
the error inherent in the volume equation; this inherent model error is due to variation in 
stem tapering and would remain in the volume estimate even if the both the two observed 
cross-sections of a stem were circular and their diameters were measured without error (see 
Section 5.1 and Section 7.3.2). The relative model error was estimated in each stem with the 
relative residual (ṼL–Ṽ)/ṼL (or (ṼCL–ṼC)/ṼCL ). The distributions of these relative model 
errors among all the trees where both 1.3 m and 6 m discs were available, as well as in the 
subsets of pulpwood-size and sawlog-size trees, are summarised in Table 38. The model 
error was found to be unassociated with the diameter selection effect: the relative within-tree 
biases, variances and RMSEs produced by the different diameter selection methods (and 
computed with respect to the reference volume) did not correlate with the model errors (cf. 
the examples in Fig. 56). In other words, a large model error and a poor performance of 
any diameter selection method, or vice versa, did not systematically coincide in our trees.

Fig. 55. Coefficient functions employed in the stem volume estimators based on the 
Laasasenaho volume equation (Eq. 157 in Section 7.3.2). The functions consist of the 
parameter estimates (β̂1,…,β̂6) of the Laasasenaho equation and of tree height (H): 
ĉ1 = β̂1+ β̂2H+ β̂4H2 + β̂5, ĉ2 = β̂3H, ĉ3 = β̂5, and ĉ4 = β̂5 + β̂6(H −6). The parameters of 
the Laasasenaho equation were re-estimated in our data with (dashed line) and without 
(solid line) the assumption of convex cross-sections (for the parameter estimates refer 
to Table 18 in Section 7.3.2). The points indicate the 50 stems for which both 1.3 m and 
6 m discs were available and that could thus be included in the estimation.
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Fig. 56. Examples of the relationship between the relative model error ((ṼL–Ṽ)/ṼL, cf. Table 
38) and the performance of some diameter selection methods with the re-estimated 
Laasasenaho volume equation in the set of the stems for which both 1.3 m and 6 m discs 
were available (n=50): the relative within-tree biases obtained with (A) the arithmetic 
mean of Dmin and its perpendicular (diameter selection method 8, producing the smallest 
average within-tree bias among all the methods), (B) girth diameter (method 0, “yard-
stick method”), and (C) the arithmetic mean of Dmax and its perpendicular (method 10, 
producing the largest average within-tree bias among all the methods), as well as (D) the 
relative within-tree RMSEs obtained with one random diameter (method 1, producing 
the largest within-tree variance among all the methods). Sawlog-size trees (cf. Table 38) 
are denoted with filled circles. Here the volume equation re-estimated without assum-
ing stem cross-sections convex was used; the equation re-estimated with the convexity 
assumption gave practically similar relationships.

Biases

With random diameters (diameter selection methods 1–5), dependent and independent 
selection produced practically similar relative within-tree biases (the differences in the 
distribution statistics were less than one hundredth of percentage unit). This was hardly 
astonishing, as the bias formulae with dependent and independent selection deviated from 
each other only in terms of one product moment term (Eq. 158 in Section 7.3.2, Appendix 
E). Hence, for these diameter selection methods, we here only present the results obtained 
with dependent selection.

As in the area estimation, employing girth diameter (method 0) and random diameters 
(methods 1–5) in the volume equation resulted in systematic overestimation and produced 
practically similar bias distributions (Table 39, Fig. 57); compared with the area estimation, 
the distributions had slightly smaller means (1.2% vs. 1.6% without the convexity assump-
tion, and 0.6% vs. 0.9% with the convexity assumption) and medians and considerably 
narrower ranges and inter-quartile ranges (cf. Table 28 and Fig. 44). In other words, as in 
the area estimation, measuring a second diameter, either in a random direction (methods 4 
and 5) or crosswise (methods 2 and 3), hardly reduced within-tree prediction bias compared 
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Table 38. Summarised distributions of the relative model errors (relative residuals) of 
the two re-estimated Laasasenaho volume equations among all the trees where 
both 1.3 m and 6 m discs were available (n=50) and in the subsets of small (14 
dm3 ≤ Ṽ ≤ 127 dm3; n=42) and large (318 dm3 ≤ Ṽ ≤ 756 dm3; n=8) trees. The 
equations were re-estimated (i) with estimated true volume Ṽ and true area diam-
eters DA(1.3) and DA(6) as the response and explanatory variables (i.e., without 
convexity assumption on the cross-sections) and (ii) with estimated convex 
volume ṼC and convex area diameters DAc(1.3) and DAc(6) as the response and 
explanatory variables (i.e., with convexity assumption on the cross-sections). ṼL 
and ṼCL stand for the volume estimates given by the fixed parts of the models.

Statistic  (ṼL–Ṽ)/ṼL (%) (ṼCL–ṼC)/ṼCL (%)
 All trees Small trees Large trees All trees Small trees Large trees

Mean 0.00 0.10 –0.51  0.00 0.10 –0.51
Std. dev.1 3.22 3.07 4.14  3.23 3.09 4.12
Std. dev.2 3.59    3.60  
Minimum –9.07 –9.07 –6.78  –9.06 –9.06 –6.07
1st quartile –1.92 –1.61 –3.35  –1.95 –1.63 –3.44
Median 0.52 0.78 –0.27  0.52 0.78 –0.26
3rd quartile 1.75 1.75 1.52  1.75 1.75 1.58
Maximum 5.59 5.05 5.59  5.46 5.14 5.46

1 (n–1) as the denominator
2 (n–p), p=6, as the denominator

Table 39. Summarised distributions of the relative within-tree biases of the volume estimators based 
on the re-estimated Laasasenaho volume equations and girth or dependently selected random 
diameters with the uniform direction distribution (measurement direction determined at the height 
of 1.3 m for both the heights of 1.3 m and 6 m), among the trees where both the 1.3 m and 6 m 
discs were available (n=50). The biases were determined with respect to the best volume estimate 
ṼL or the best convex volume estimate ṼCL. Selecting random diameters independently at both 
the observation heights produced practically similar results.

Relative bias Statistic Diameter selection method j
  Dependent selection
  0 1 2 3 4 5

[E(V̂Lj)–ṼL]/ṼL (%) Mean 1.19 1.21 1.19 1.16 1.20 1.18
 Std. dev. 0.27 0.27 0.27 0.27 0.27 0.27
 Min. 0.61 0.63 0.61 0.59 0.62 0.61
 Median 1.16 1.18 1.17 1.15 1.18 1.16
 Max. 1.79 1.81 1.80 1.78 1.80 1.79
[E(V̂CLj)–ṼCL]/ṼCL (%) Mean 0.63 0.66 0.64 0.61 0.64 0.63
 Std. dev. 0.19 0.19 0.19 0.18 0.19 0.19
 Min. 0.34 0.35 0.34 0.33 0.34 0.34
 Median 0.58 0.60 0.59 0.55 0.59 0.58
 Max. 1.09 1.11 1.10 1.08 1.10 1.09
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to using only one random diameter (method 1), and the benefit of using the geometric 
mean instead of the arithmetic one (method 3 vs. 2, 5 vs. 4) was also negligible. Assuming 
cross-sections convex (disregarding non-convexity) shifted the bias distributions about 
0.6 percentage units closer to zero and clearly shortened the ranges, but failed to decrease 
the variances and narrow the inter-quartile ranges to the same extent (Fig. 57 A vs. B, 
Table 39). Judging from inter-quartile ranges and the between-trees standard deviations, 
the systematic error due to diameter selection appeared relatively small compared to the 
model error (Table 39 vs. Table 38, Fig. 57).

The fact that girth diameter (mean diameter over the uniform direction distribution) 
resulted in similar biases as random diameters indicates that the second and third moments 
and the product moment of random diameters were very close to the second and the third 
powers and the product of mean diameters at the heights of 1.3 and 6 m (cf. Eq. 158 in 
Section 7.3.2, Appendix E).

Employing fixed diameters (methods 6–11) in the volume equation yielded far more 
variable biases than using girth and random diameters, in terms of both the between-trees 
variances (Table 40 vs. Table 39) and the ranges and inter-quartile ranges reaching frequently 
also to negative values (Fig. 58 vs. Fig. 57). Yet also with these methods, the error due 
to diameter selection seemed clearly smaller than the model error (Table 40 vs. Table 38, 
Fig. 58). The same methods that performed well in terms of average bias in the area estima-
tion did well with the volume equation as well: Dmin and its perpendicular (methods 8 and 
9), especially with dependent selection (the upper diameter taken in the same direction as 
the breast height diameter), yielded on average no additional bias on top of the model error 
when no convexity was assumed in the equation estimation (Fig. 58 B, Table 40); similarly, 
Dmin together with Dmax (methods 6 and 7) produced on average smaller bias than girth or 
random diameters, be the diameters selected independently or dependently or the equations 
estimated with or without the convexity assumption (Table 40, Fig. 58). Generally, dependent 

Fig. 57. Summarised distributions of the relative within-
tree biases of the volume estimators based on the re-
estimated Laasasenaho volume equation and girth 
(diameter selection method 0) or random diameters 
(diameter selection methods 1–5) in the set of the stems 
for which both 1.3 m and 6 m discs were available 
(n=50). The equation was estimated without (A) or 
with (B) the assumption of convex cross-sections, and 
the diameters were selected dependently within a stem 
with breast height diameter determining the common 
diameter direction (independent selection gave practi-
cally similar results). The box depicts the inter-quartile 
range bisected by the median, and the whiskers reach out 
to the extreme points of the data; the filled circle denotes 
the arithmetic mean, whereas the short horizontal line 
segments below and above it indicate the magnitude 
of the sample standard deviation. For comparison, the 
distribution summary of the relative model errors (rela-
tive residuals) in the data are given (to the extent that it 
fits in the figure, see Table 38): median and 3rd quartile 
(continuous grey line).
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Table 40. Summarised distributions of the relative within-tree biases of the volume estimators based 
on the re-estimated Laasasenaho volume equations and independently (measurement directions 
determined independently for the heights of 1.3 m and 6 m) or dependently (measurement direc-
tion determined for both the heights at the height of 1.3 m) selected fixed diameters, among the 
trees where both 1.3 m and 6 m discs were available (n=50). For comparison, the results of the 
estimator based on girth diameter (diameter selection method 0) are also given.

Relative bias Statistic Diameter selection method j
  Independent selection
 0 6 7 8 9 10 11 min max

[E(V̂Lj)–ṼL]/ṼL  Mean 1.19 0.98 0.89 –0.33 –0.39 2.48 2.42 –4.56 6.67
(%) Std. dev. 0.27 0.67 0.68 0.81 0.81 0.98 0.99 1.72 1.67
 Min. 0.61 –1.40 –1.54 –2.03 –2.12 0.21 0.13 –9.34 2.69
 Median 1.16 1.16 1.02 –0.15 –0.20 2.47 2.43 –4.38 6.60
 Max. 1.79 2.02 1.91 1.14 1.05 4.81 4.75 –1.54 10.37
[E(V̂CLj)–ṼCL]/ṼCL Mean 0.63 0.43 0.33 –0.87 –0.94 1.92 1.86 –5.08 6.09
(%) Std. dev. 0.19 0.66 0.66 0.82 0.81 0.94 0.95 1.69 1.68
 Min. 0.34 –1.89 –2.08 –2.52 –2.61 –0.50 –0.58 –9.86 2.05
 Median 0.58 0.59 0.48 –0.77 –0.81 1.88 1.83 –4.99 6.03
 Max. 1.09 1.46 1.35 0.72 0.64 4.02 3.97 –2.15 9.84
 Dependent selection
 6 7 8 9 10 11 min max

[E(V̂Lj)–ṼL]/Ṽ Mean  1.08 1.01 0.02 –0.03 2.24 2.19 –3.52 5.80
(%) Std. dev.  0.87 0.89 0.86 0.86 1.00 1.00 2.26 1.96
 Min.  –1.48 –1.68 –2.19 –2.35 0.26 0.18 –9.31 2.12
 Median  1.16 1.05 0.15 0.10 2.15 2.11 –3.36 5.85
 Max.  3.15 3.09 1.38 1.37 4.81 4.76 2.46 10.26
[E(V̂CLj)–ṼCL]/ṼCL Mean  0.53 0.45 –0.53 –0.58 1.68 1.63 –4.05 5.23
(%) Std. dev.  0.85 0.87 0.86 0.86 0.95 0.96 2.22 1.96
 Min.  –2.04 –2.23 –2.75 –2.91 –0.46 –0.53 –9.83 1.45
 Median  0.62 0.51 –0.42 –0.45 1.48 1.45 –3.86 5.37
 Max.  2.48 2.42 0.80 0.79 4.05 4.04 1.77 9.73

and independent diameter selection resulted in fairly similar interrelationships between the 
different diameter selection methods (Fig. 58 A vs. B, C vs. D); dependent selection tended 
to shift the distributions slightly toward zero, which was expected, as with this approach the 
true Dmin or Dmax at the height of 6 m were not employed. Finally, the effect of assuming 
convexity parallelled that observed with random diameters: the assumption shifted the bias 
distributions downwards by some 0.5–0.6 percentage units but did not practically influence 
the variability (Fig. 58 A vs. C, B vs. D, Table 40).

Tree size appeared to be moderately associated with relative within-tree bias, when girth 
or random diameters (methods 0 and 1–5; independent and dependent selection) were used 
— the correlations between the estimated true stem volumes and the relative biases were 
around –0.5, and the relative biases in the pulpwood-size stems were on average 1.5-fold 
compared to those in the sawlog-size stems — but only when cross-section non-convexity 
was taken into account. In other words, the convexity assumption diminished the bias caused 
by girth or random diameter selection relatively more in the small trees than in the large 
ones. The volume equations estimated with and without the convexity assumption, however, 
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gave very similar within-tree volume expectations with the same diameter moments (as the 
differences in the regression coefficients were small), and hence the size effect was largely 
attributable to the use of the different reference volumes (with respect to which the relative 
biases were taken): the breast height and upper cross-sections of the sawlog-size trees in 
the data were slightly less non-convex than those of the pulpwood-size ones (cf. Fig. 35 
in Section 8.2.2, where negative correlation is shown between the convex deficit and the 
cross-section size particularly at the height of 6 m but also at the height of 1.3 m), which 
caused the best estimates (reference volumes ṼL and ṼCL) to be closer to each other in the 
sawlog-size trees (as the convex area diameters deviated less from the true area diameters). 
With other fixed diameters than the girth diameter, no such size effect was found; evidently, 
the large variation in diameters between the stems of approximately the same size masked 
the influence of the reference volume.

Geographical location of growing site did not have influence on relative within-tree 
bias. The seeming beneficiality of growing in the south, resulting in smaller biases with 
girth or random diameters but not with other methods, proved to be a size-related artefact: 
the two southernmost plots only involved the 8 sawlog-size trees, and the pulpwood-size 

Fig. 58. Summarised distributions of the relative within-tree biases of the volume estima-
tors based on the re-estimated Laasasenaho volume equation and fixed diameters 
(diameter selection methods 6–11) in the set of the stems for which both 1.3 m and 6 
m discs were available (n=50); for comparison, results obtained with girth (diameter 
selection method 0) are also given. The equation was estimated without (A, B) or 
with (C, D) the assumption of convex cross-sections, and the diameters were selected 
independently (A, C) or dependently (B, D) within a stem. For comparison, the 
distribution summary of the relative model errors (relative residuals) in the data are 
given (see Table 38): 1st quartile, median and 3rd quartile (continuous grey line), 
and mean (0) ± standard deviation (dashed grey line). (For the explanation of the 
boxplot, refer to the caption of Fig. 57.)
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trees taken from the third southernmost plot yielded quite contrasting results. On the basis 
of the observations made on larger variability in stem tapering in Lapland (Laasasenaho 
1982), we would have expected larger variability in within-tree biases in the north than in 
the south, but this was not found.

The combined effect of diameter selection and model error is given by the bias taken with 
respect to the estimated true volume (i.e., [E(V̂Lj)–Ṽ]/ṼL, or [E(V̂CLj)–ṼC]/ṼCL, where j 
stands for the diameter selection method). The first-order summary characteristics (mean, 
median, quartiles) of the distributions of these biases are approximately obtained by sum-
ming the characteristics of the distributions of the two components, that is, of the biases 
with respect to the best estimate (Tables 39 and 40) and of the model errors (Table 38). 
In this way, however, the minimums become underestimated and the maximums overes-
timated, by less than half a percentage unit with random diameters (methods 1–5), but by 
several percentage units at worst with fixed diameters (methods 6–11, min, max). As for the 
second-order characteristics (variance, standard deviation), the case is more complicated: 
With random diameters, the sum of the variances of the two components underestimates the 
variance of the combined effect, as the positive (although very small) covariance between 
the components is not taken into account, whereas the sum of the standard deviations of 
the components very slightly overestimates the standard deviation of the combined effect. 
With fixed diameters, the variance becomes either underestimated or overestimated (the 
small covariance between the components can be either positive or negative), but the sum 
of the standard deviations of the components always overestimates the standard deviation 
of the combined effect, yet not more than one percentage unit (except for the min and max 
methods).

Variances

With random diameters (diameter selection methods 1–5), the convexity assumption had 
no practical influence on the sampling errors in the volume estimates (with and without the 
assumption, the distribution statistics of the relative within-tree standard deviations were 
equal up to one hundredth of percentage unit). Therefore we here present only the results 
obtained without the convexity assumption.

As in the area estimation, the different random diameter selection methods entailed 
manifestly different sampling errors (Table 41, Fig. 59); the distributions of the sampling 
errors were fairly similar to those in the area estimation, although with slightly smaller 
means and medians and considerably less variation between the trees (cf. Table 33 and 
Fig. 48). Again, using a random diameter and its perpendicular (methods 2 and 3) resulted 
in the least variable sampling errors with clearly the smallest average (1.0% — smaller 
than the average within-tree bias without the convexity assumption), whereas the other 
methods entailed double or triple that magnitude of average sampling error and much 
larger between-trees variation. Indeed, the benefit of taking the second diameter crosswise 
instead of measuring it in a random direction (method 2 vs. 4, 3 vs. 5) was greater than 
that gained by measuring two random diameters instead of only one (methods 4 and 5 
vs. 1). Behind the superiority of perpendicular diameters lies their negative correlation 
observed earlier within a majority of the cross-sections (see Section 8.2.1): the correlation 
manifests itself more clearly in the within-tree variances than in the biases simply because 
the terms of the form E[D(θ, 1.3)mD(θ+π/2, 1.3)n] and E[D(θ, 6)mD(θ+π/2, 6)n], m, n ∈R+, 
involving products of the perpendicular diameters are more numerous in the variance 
expressions (Eq. 159 in Section 7.3.2, Appendix F) than in the bias expressions (Eq. 158 
in Section 7.3.2, Appendix E). (Negative correlation between D(θ) and D(θ+π/2) implies 
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that E[D(θ)D(θ+π/2)]<E[D(θ)]E[D(θ+π/2)], which can presumably be generalised into 
E[D(θ)mD(θ+π/2)n]<E[D(θ)m]E[D(θ+π/2)n], m, n ∈R+.) Whether the geometric or the arith-
metic mean of diameters was employed in the estimator did not affect the sampling errors.

Unlike in the biases, dependence in diameter selection within a stem mattered, although 
only to a very slight extent, in the sampling errors: dependent selection produced slightly 
larger means and standard deviations as well as wider ranges and inter-quartile ranges than 
independent selection, except for crosswise calipered diameters, with which the variation 
increased only marginally and with which the means even slightly decreased (Fig. 59 A vs. 
B, Table 41). The variance-increasing effect of dependent selection is probably attributable 
to the positive correlation of breast height diameter and upper diameter taken in the same 

Table 41. Summarised distributions of the relative within-tree standard deviations of the volume estima-
tors based on the Laasasenaho volume equation re-estimated without convexity assumption and on 
independently or dependently selected random diameters with the uniform direction distribution, 
among the trees where both the 1.3 m and 6 m discs were available (n=50). The volume equation 
re-estimated with the convexity assumption gave practically similar results.

Relative std. dev. Statistic Diameter selection method j
 Independent selection Dependent selection
  1 2 3 4 5 1 2 3 4 5

Var(V̂Lj)1/2/ṼL (%) Mean 2.79 1.01 1.01 1.97 1.97 2.94 0.96 0.97 2.08 2.08
 Std. dev. 1.05 0.44 0.45 0.74 0.75 1.19 0.49 0.49 0.84 0.85
 Min. 0.88 0.34 0.35 0.62 0.60 0.85 0.35 0.36 0.60 0.60
 Median 2.65 0.92 0.92 1.88 1.89 2.81 0.90 0.91 1.99 2.01
 Max. 5.44 2.28 2.29 3.84 3.83 5.42 2.33 2.33 3.83 3.84

Fig. 59. Summarised distributions of the relative within-tree standard deviations of the 
volume estimators based on the re-estimated Laasasenaho volume equation and 
random diameters (diameter selection methods 1–5) in the set of the stems for which 
both 1.3 m and 6 m discs were available (n=50). The equation estimated without the 
assumption of convex cross-sections was used (the equation with convexity assump-
tion gave practically similar results), and the diameters were selected independently 
(A) or dependently (B) within a stem. (For the explanation of the boxplot, refer to 
the caption of Fig. 57.)
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direction within a stem. The influence is more discernible in variances than in biases, because 
the terms of the form E[D(θ, 1.3)mD(θ, 6)n], m, n ∈R+, are more numerous in the variance 
expressions (Eq. 159 in Section 7.3.2, Appendix F) than in the bias expressions (Eq. 158 
in Section 7.3.2, Appendix E). (Positive correlation between D(θ, 1.3) and D(θ, 6) implies 
that E[D(θ, 1.3)D(θ, 6)]>E[D(θ, 1.3)]E[D(θ, 6)], which can presumably be generalised into 
E[D(θ, 1.3)mD(θ, 6)n]>E[D(θ, 1.3)m]E[D(θ, 6)n], m, n ∈R+.) With perpendicular diameters, 
however, their negative within-cross-section correlation (see the discussion above) seems 
to counteract this influence; why the effect of negative correlation appears to be stronger 
in dependent selection than in independent selection remains unclear.

Neither tree size nor geographical location of growing site appeared to have an influence 
on the sampling errors.

RMSEs

As is evident from the results above, with random diameters (diameter selection methods 1–5) 
the diameter selection method affected the volume equation performance in an individual 
tree more via the sampling error component than via the bias component: the relative within-
tree RMSEs followed the patterns exhibited by the relative within-tree standard deviations, 
although the differences between the methods were more moderate (Fig. 60, Table 42). The 
averages resulting from one (method 1) or two random diameters (methods 4 and 5) without 
convexity assumption were now approximately double or 1.5-fold the 1.6% produced by 
two perpendicular diameters (methods 2 and 3). Even with the poorest of these methods, 
however, the total diameter selection effect (the bias and the sampling error combined) 
appeared clearly smaller than the model error (Fig. 60). Ascribable to the relative within-tree 
biases, convexity assumption made a discernible difference, shifting the distributions some 
0.2–0.4 percentage units closer to zero (Fig. 60 C vs. A and D vs. B, Table 42).

Equally biased but lacking within-tree variance, girth diameter (method 0) distinctly 
outperformed random diameters (Fig. 60, Table 42). Also compared to other fixed diameters 
(methods 6–11), girth diameter yielded the smallest average RMSE when non-convexity 
of cross-sections was ignored (Fig. 61, Table 43). Most importantly, however, the RMSEs 
produced by girth diameter varied clearly the least between the trees (Figs. 60 and 61), 
which makes this method best suited, among all the diameter selection methods considered, 
to single tree volume estimation and to bias correction.

With fixed diameters (methods 6–11), RMSE equalled the absolute value of bias, and 
hence the RMSE distribution deviated from the bias distribution only if the method yielded 
both negative and positive biases (Fig. 61 vs. Fig. 58). Measuring Dmin and its perpendicular 
(methods 8 and 9) performed best on average when non-convexity of the cross-sections 
was taken into account (Table 43, Fig. 61 A and B), whereas measuring girth did best on 
average when non-convexity was disregarded (Table 43, Fig. 61 C and D). As to the effects 
of the independent vs. dependent diameter selection and the convexity assumption, no 
general patterns were to be found but the effect varied by the diameter selection method.

8.4.2 Cubic-Spline-Interpolated Stem Curve

With the non-parametric stem curves based on diameters at seven or more heights in a stem, 
the distinction between the different diameter selection methods in terms of within-tree bias 
was expected to become more pronounced than with the volume equation that involved 
only two diameters. Similarly, the difference between dependent and independent selection 
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Table 42. Summarised distributions of the relative within-tree RMSEs of the volume estimators based 
on the re-estimated Laasasenaho volume equations and girth diameter or independently or depend-
ently selected random diameters with the uniform direction distribution, among the trees where 
both the 1.3 m and 6 m discs were available (n=50).

Relative RMSE Statistic Diameter selection method j
 Independent selection Dependent selection
  0 1 2 3 4 5 1 2 3 4 5

E[(V̂Lj–ṼL)2]1/2/ Mean 1.19 3.07 1.58 1.56 2.34 2.33 3.22 1.56 1.54 2.45 2.44
ṼL (%) Std. dev. 0.27 0.99 0.44 0.44 0.68 0.68 1.11 0.46 0.47 0.75 0.75
 Min. 0.61 1.32 0.84 0.82 1.12 1.15 1.29 0.83 0.80 1.15 1.14
 Median 1.16 3.00 1.57 1.55 2.32 2.31 3.08 1.55 1.51 2.37 2.36
 Max. 1.79 5.65 2.78 2.76 4.12 4.10 5.61 2.81 2.80 4.10 4.09
E[(V̂CLj–ṼCL)2]1/2/ Mean 0.63 2.86 1.20 1.19 2.08 2.07 3.01 1.17 1.16 2.18 2.18
ṼCL (%) Std. dev. 0.19 1.03 0.43 0.44 0.72 0.73 1.17 0.47 0.47 0.82 0.82
 Min. 0.34 0.94 0.59 0.55 0.70 0.69 0.91 0.53 0.51 0.69 0.68
 Median 0.58 2.72 1.12 1.12 1.99 2.00 2.88 1.12 1.12 2.09 2.10
 Max. 1.09 5.47 2.41 2.40 3.90 3.90 5.48 2.45 2.44 3.93 3.93

Fig. 60. Summarised distributions of the relative within-tree RMSEs of the volume estimators based 
on the re-estimated Laasasenaho volume equation and girth (diameter selection method 0) or 
random diameters (diameter selection methods 1–5) in the set of the stems for which both 1.3 m 
and 6 m discs were available (n=50). The equation was estimated without (A, B) or with (C, D) 
the assumption of convex cross-sections, and the diameters were selected independently (A, C) 
or dependently (B, D) within a stem. For comparison, the distribution summary of the absolute 
values of the relative model errors (relative residuals) in the data are given: 1st quartile, median 
and 3rd quartile (continuous grey line), mean (dotted grey line), and mean ± standard deviation 
(dashed grey line). (For the explanation of the boxplot, refer to the caption of Fig. 57.)
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of diameters within a stem was hypothesised to become more pronounced than with the 
volume equation, particularly with the diameter selection methods involving fixed diameters.

Unlike with the volume equation and the general volume estimator, the effect of assuming 
cross-section convexity now emerged only via the reference volume with respect to which 
the within-tree biases were determined and by which they and the within-tree variances 
were proportioned (as the diameters of a non-convex cross-section coincide with those of 
the convex closure, the stem curves, and hence the volume estimates, are the same whether 
the cross-sections are assumed convex or not). As the reference volumes, we employed the 
best estimates obtained with this stem curve method, namely the estimated true stem volume 
(Ṽ) and the estimated convex stem volume (ṼC) computed from the true area diameters 
and the convex area diameters, respectively.

As with the volume equation, the volume estimation error could be regarded as the 
sum of the error attributable to diameter selection and the error contained in the reference 
volume. The error in the reference volume was due to unobserved variation in stem taper-
ing between the fixed observation heights; however, this error could not be quantified, as 
the true volumes of the stems were unknown and no more precise volume estimates were 

Table 43. Summarised distributions of the relative within-tree RMSEs of the volume estimators based 
on the re-estimated Laasasenaho volume equations and independently or dependently selected 
fixed diameters, among the trees where both 1.3 m and 6 m discs were available (n=50). For 
comparison, the results of the estimator based on girth diameter (diameter selection method 0) 
are also given.

Relative RMSE Statistic Diameter selection method j
 Independent selection
  0 6 7 8 9 10 11 min max

E[(V̂Lj–ṼL)2]1/2/ Mean 1.19 1.09 1.02 0.69 0.69 2.48 2.42 4.56 6.67
ṼL (%) Std. dev. 0.27 0.47 0.46 0.54 0.56 0.98 0.99 1.72 1.67
 Min. 0.61 0.08 0.09 0.02 0.00 0.21 0.13 1.54 2.69
 Median 1.16 1.22 1.14 0.65 0.61 2.47 2.43 4.38 6.60
 Max. 1.79 2.02 1.91 2.03 2.12 4.81 4.75 9.34 10.37
E[(V̂CLj–ṼCL)2]1/2/ Mean 0.63 0.66 0.61 0.97 1.00 1.94 1.89 5.08 6.09
ṼCL (%) Std. dev. 0.19 0.41 0.42 0.70 0.73 0.89 0.89 1.69 1.68
 Min. 0.34 0.00 0.05 0.08 0.00 0.08 0.13 2.15 2.05
 Median 0.58 0.63 0.58 0.78 0.81 1.88 1.83 4.99 6.03
 Max. 1.09 1.89 2.08 2.52 2.61 4.02 3.97 9.86 9.84

 Dependent selection
   6 7 8 9 10 11 min max

E[(V̂Lj–ṼL)2]1/2/ Mean  1.20 1.14 0.66 0.64 2.23 2.19 3.62 5.80
ṼL (%) Std. dev.  0.70 0.71 0.55 0.57 1.00 1.00 2.10 1.96
 Min.  0.05 0.05 0.05 0.00 0.26 0.18 0.35 2.12
 Median  1.22 1.10 0.50 0.49 2.15 2.11 3.36 5.85
 Max.  3.15 3.09 2.19 2.35 4.81 4.76 9.31 10.26
E[(V̂CLj–ṼCL)2]1/2/ Mean  0.78 0.74 0.74 0.75 1.70 1.65 4.12 5.23
ṼCL (%) Std. dev.  0.62 0.63 0.69 0.71 0.91 0.91 2.09 1.96
 Min.  0.00 0.00 0.05 0.00 0.09 0.11 0.92 1.45
 Median  0.65 0.57 0.51 0.52 1.48 1.45 3.86 5.37
 Max.  2.48 2.42 2.75 2.91 4.05 4.04 9.83 9.73
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available. Consequently, the relative within-tree biases and variances produced by the dif-
ferent diameter selection methods could only be compared with each other and with those 
obtained with the volume equation, but no notion about their magnitude with respect to the 
“model error” of the stem curve method could be gained.

Biases

As with the volume equation, independent and dependent selection of random diameters 
(diameter selection methods 1–5) yielded practically similar relative within-tree biases 
(the differences in the between-trees averages and standard deviations were less than three 
hundredths of a percentage unit). For these methods, then, only the results from dependent 
selection suffice to be presented here.

Using girth diameter (method 0) or random diameters yielded on average slightly larger 
relative within-tree biases with the cubic-spline-interpolated stem curve than with the 

Fig. 61. Summarised distributions of the relative within-tree RMSEs of the volume esti-
mators based on the re-estimated Laasasenaho volume equation and fixed diameters 
(diameter selection methods 6–11) in the set of the stems for which both 1.3 m and 
6 m discs were available (n=50); for comparison, results obtained with girth (diam-
eter selection method 0) are also given. The equation was estimated without (A, 
B) or with (C, D) the assumption of convex cross-sections, and the diameters were 
selected independently (A, C) or dependently (B, D) within a stem. For comparison, 
the distribution summary of the absolute values of the relative model errors (relative 
residuals) in the data are given: 1st quartile, median and 3rd quartile (continuous 
grey line), mean (dotted grey line), and mean ± standard deviation (dashed grey line). 
(For the explanation of the boxplot, refer to the caption of Fig. 57.)
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volume equation (means of 1.5% vs. 1.2% without the convexity assumption, and 0.8% 
vs. 0.6% with the convexity assumption); also the variation between the stems, considered 
in terms of range (especially maximum values) and standard deviation, became larger, 
but half the stems were still concentrated within 0.4 percentage units from each other, as 
the length of the inter-quartile range remained more or less the same (Table 44, Fig. 62; 
cf. Table 39, Fig. 57). In other words, the systematic overestimating error attributable to 

Table 44. Summarised distributions of the relative within-tree biases of the volume estimators based 
on the cubic-spline-interpolated stem curves and girth or dependently selected random diameters 
(measurement direction determined at breast height for all the observation heights), among the 
trees where 7 or more discs were available (n=79). The biases were determined with respect to 
estimated true volume Ṽ or estimated convex volume ṼC. Selecting random diameters indepen-
dently at all the observation heights produced practically similar results.

Relative bias Statistic Diameter selection method j
 Dependent selection
  0 1 2 3 4 5

[E(V̂Sj)–Ṽ]/Ṽ (%) Mean 1.43 1.49 1.43 1.40 1.46 1.43
 Std. dev. 0.33 0.36 0.33 0.31 0.35 0.33
 Min. 0.83 0.86 0.84 0.81 0.85 0.83
 Median 1.39 1.42 1.39 1.35 1.41 1.39
 Max. 2.41 2.51 2.42 2.32 2.46 2.40
[E(V̂Sj)–ṼC]/ṼC (%) Mean 0.80 0.86 0.81 0.77 0.83 0.81
 Std. dev. 0.26 0.30 0.26 0.24 0.28 0.27
 Min. 0.40 0.44 0.41 0.38 0.42 0.41
 Median 0.72 0.77 0.73 0.69 0.75 0.72
 Max. 1.57 1.81 1.58 1.52 1.67 1.63

Fig. 62. Summarised distributions of the relative within-tree 
biases of the volume estimators based on the cubic-
spline-interpolated stem curves obtained from girth 
(diameter selection method 0) or random diameters 
(diameter selection methods 1–5) among the trees where 
7 or more discs were available (n=79). The reference 
volume was estimated without (A) or with (B) the 
assumption of convex cross-sections, and the diameters 
were selected dependently within a stem with breast 
height diameter determining the common diameter 
direction (independent selection gave practically simi-
lar results). (For the explanation of the boxplot, refer to 
the caption of Fig. 57.)
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random diameter selection or to usage of girth diameter appeared to accrue slightly with the 
increasing number of diameters involved in volume estimation. Yet the differences between 
the different diameter selection methods remained unimportantly small, even if they now 
slightly more perceptibly reflected the area estimation theory (Table 44, Fig. 62) — the 
geometric mean producing smaller biases than the arithmetic one (method 3 vs. 2, 5 vs. 4), 
a randomly selected second diameter resulting in larger biases than a crosswise calipered 
one (method 4 vs. 2, 5 vs. 3) due to the observed negative correlation between perpendicular 
diameters within cross-sections (see Section 8.2.1), and the geometric mean of perpendicular 
diameters performing better than girth (method 3 vs. 0) owing to the same negative correla-
tion. Assuming the cross-sections convex decreased the average biases by the similar 0.6 
percentage units as with the volume equation, but diminished the between-trees variation 
of the biases proportionately less than with the volume equation (Fig. 62 B vs. A, Table 
44; cf. Fig. 57 B vs. A, Table 39); this weaker effect was an expected consequence of the 
fact that with this stem curve method the convexity assumption affected only the reference 
volume and not the actual volume estimates.

Independent selection of fixed diameters (methods 6–11) also resulted in biases that were 
on average 0.3–0.5 percentage units larger than with the volume equation (except Dmin and 
its perpendicular (methods 8 and 9) which yielded as small average biases as with the volume 

Fig. 63. Summarised distributions of the relative within-tree biases of the volume 
estimators based on the cubic-spline-interpolated stem curves obtained from fixed 
diameters (diameter selection methods 6–11) among the trees where 7 or more 
discs were available (n=79); for comparison, results obtained with girth (diameter 
selection method 0) are also given. The reference volume was estimated without 
(A, B) or with (C, D) the assumption of convex cross-sections, and the diameters 
were selected independently (A, C) or dependently (B, D) within a stem. (For 
the explanation of the boxplot, refer to the caption of Fig. 57.)
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equation); yet the biases varied less between trees, in terms of range and standard deviation 
(Fig. 63 A and C, Table 45; cf. Fig. 58 A and C, Table 40). The interrelationships between 
the selection methods were fairly similar to those obtained with the volume equation, and 
also the effect of ignoring cross-section non-convexity parallelled that observed with the 
volume equation, shifting the bias distributions downwards by some 0.5–0.6 percentage 
units but not really influencing the variability (Fig. 63 A vs. C, Table 45).

Dependent selection of fixed diameters (methods 6–11), in turn, resulted in mutually 
strikingly similar bias distributions, quite unlike with the volume equation: all the methods 
produced positive between-trees means within one percentage unit of each other, as well 
as fairly similar between-trees standard deviations; interestingly, also the maximum values 
were uniformly large with all the methods (Fig. 63 B and D). This can be seen to follow 
from the larger number of diameters involved in the stem curve, as the influence of the 
dependent selection attenuating the extremity of Dmin and Dmax is then emphasised (recall 
that no regularity was found in the directions of Dmin and Dmax with respect to height; see 
Section 8.2.1). Interestingly, measuring all the diameters parallel to Dmin at breast height 
(method min with dependent selection) resulted, if also in a large between-trees variability, 

Table 45. Summarised distributions of the relative within-tree biases of the volume estimators based on 
the cubic-spline-interpolated stem curves and independently (measurement directions determined 
independently for all the observation heights) or dependently (measurement direction determined 
at breast height for all the observation heights) selected fixed diameters, among the trees where 7 
or more discs were available (n=79). For comparison, the results of the estimator based on girth 
diameter (diameter selection method 0) are also given.

Relative bias Statistic Diameter selection method j
 Independent selection
  0 6 7 8 9 10 11 min max

[E(V̂Sj)–Ṽ]/Ṽ (%) Mean 1.43 1.20 1.08 –0.37 –0.44 2.94 2.87 –5.04 7.71
 Std. dev. 0.33 0.56 0.54 0.70 0.69 0.88 0.87 1.52 1.94
 Min. 0.83 0.00 –0.09 –1.99 –2.08 1.28 1.10 –0.26 4.67
 Median 1.39 1.25 1.13 –0.30 –0.40 2.92 2.79 –4.84 7.13
 Max. 2.41 2.99 2.75 0.94 0.86 5.29 5.21 –2.01 14.16
[E(V̂Sj)–ṼC]/ṼC (%) Mean 0.80 0.58 0.45 –0.98 –1.06 2.31 2.23 –5.62 7.04
 Std. dev. 0.26 0.52 0.51 0.69 0.68 0.85 0.84 1.52 1.89
 Min. 0.40 –0.53 –0.73 –2.53 –2.62 0.55 0.37 –9.81 3.96
 Median 0.72 0.61 0.51 –0.99 –1.04 2.19 2.13 –5.47 6.40
 Max. 1.57 2.22 1.98 0.47 0.36 4.67 4.58 –2.62 13.44
 Dependent selection
   6 7 8 9 10 11 min max

[E(V̂Sj)–Ṽ]/Ṽ (%) Mean  1.53 1.49 1.20 1.16 1.76 1.72 –0.18 3.38
 Std. dev.  1.09 1.08 0.88 0.88 0.93 0.91 2.51 2.48
 Min.  –1.25 –1.26 –0.71 –0.72 –0.06 –0.08 –7.32 –1.23
 Median  1.38 1.37 1.14 1.12 1.56 1.52 0.17 3.13
 Max.  5.12 5.08 4.88 4.85 4.87 4.83 5.67 11.11
[E(V̂Sj)–ṼC]/ṼC (%) Mean  0.90 0.86 0.58 0.53 1.13 1.09 –0.80 2.74
 Std. dev.  1.06 1.05 0.86 0.86 0.89 0.87 2.47 2.46
 Min.  –1.82 –1.83 –1.03 –1.11 –0.72 –0.74 –7.99 –1.94
 Median  0.81 0.77 0.49 0.47 0.94 0.92 0.41 2.51
 Max.  4.48 4.45 4.25 4.21 4.24 4.20 4.98 10.26
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in the least average bias among all the diameter selection methods when no cross-section 
convexity was assumed (Table 45). The convexity assumption decreased the average biases 
uniformly by 0.6 percentage units, whereas the between-trees variation remained approxi-
mately the same (Fig. 63 D vs. B, Table 45).

The effect of stem size on relative within-tree bias obtained with girth or random diameters 
(methods 0 and 1–5; independent and dependent selection) was weaker than that found with 
the volume equation: the correlations between the estimated true stem volumes and the 
biases were around –0.4, and the biases in pulpwood-size stems were on average 1.3-fold 
compared to those in the sawlog-size stems. The effect was considerably attenuated by the 
convexity assumption. With fixed diameters (methods 6–11), no association between stem 
size and within-tree bias was found.

Unlike with the volume equation, the geographical location of the growing site appeared to 
influence the between-stems variation of the within-tree biases obtained with girth or random 
diameters (methods 0 and 1–5; independent and dependent selection): the more north the 
site was located, the more variable biases did the methods produce. The larger variability in 
stem tapering observed in Lapland (Laasasenaho 1982) and mentioned with volume equation 
biases does not make a plausible explanation, since the seven or more diameter observations 
along the stem, from which cubic-spline-interpolated stem curves were constructed, can be 
thought to give adequate information on tapering. Rather, the larger variability in the within-
tree biases may reflect the larger variability in cross-section non-circularity in the trees in 
Northern Finland: the treewise averages of CVD, Dmin/Dmax, be/ae and isoperimetric deficit 
showed clearly larger variation toward the north when plotted against the cluster co-ordinate 
in N–S direction. (The treewise averages of the indices showed also statistically significant 
linear trend with respect to the cluster co-ordinate, but the slopes were so small that the 
effect was practically negligible; also, the correlations between the indices and the cluster 
co-ordinate were small. Consequently we can say that the trees were not practically more 
non-circular on average in Northern Finland than in Southern Finland. On the other hand, 
a systematically larger amount of non-circularity would cause not only a larger variation in 
biases but also a higher mean level of them, which was not observed.)

In the subset of the 50 stems investigated with the volume equation, the relative within-
tree biases produced by the stem curve method were on average 0.1–0.2 percentage units 
closer to zero than in the set of all the 79 stems. This suggests that the differences in the 
within-tree biases between the two volume estimation methods could in reality be smaller 
than the results above indicate. 

Variances

The convexity assumption, turning up solely in the reference volume, did not practically 
influence the relative within-tree variances of the volume estimates obtained with the 
cubic-spline-interpolated stem curves. Hence only the results attained without the convexity 
assumption are presented below.

Random diameters (methods 1–5) yielded on average smaller and less variable sampling 
errors (within-tree standard deviations) with the stem curve method than with the volume 
equation, particularly when diameters were selected independently at the separate heights 
(Fig. 64, Table 46; cf. Fig. 59, Table 41). This was not surprising, as a larger number of 
diameters observed along a stem is likely to result in more precise volume estimates. The 
increase in precision was weaker with dependent diameter selection, especially with the 
methods involving non-crosswise diameters (methods 1, 4, 5); this is probably because 
dependent selection entailed positive within-tree correlation between the diameters at 
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separate heights, which then augmented volume estimator variance compared to independ-
ent selection, more with the stem curve than with the volume equation as there were more 
dependent diameters involved. With perpendicular diameters (methods 2, 3), this effect of 
dependent selection was then attenuated by the negative within-cross-section correlation 
of perpendicular diameters. The differences in the magnitude notwithstanding, the overall 
patterns of the sampling errors closely resembled those obtained with the volume equation: 
perpendicular diameters (methods 2, 3) gave the best precision, and the average gain from 
measuring the second diameter perpendicularly instead of taking it in a random direction 
(methods 2, 3 vs. 4, 5) was larger than that from taking two random diameters instead of 
only one (methods 4, 5 vs. 1) (Table 46, Fig. 64).

Table 46. Summarised distributions of the relative within-tree standard deviations of the volume 
estimators based on the cubic-spline-interpolated stem curves and independently or dependently 
selected random diameters, among the trees where 7 or more discs were available (n=79). The 
standard deviations were proportioned with estimated true volume Ṽ; proportioning with estimated 
convex volume ṼC yielded practically similar results.

Relative std. dev.  Statistic Diameter selection method j
 Independent selection Dependent selection
  1 2 3 4 5 1 2 3 4 5

Var(V̂Sj)1/2/Ṽ (%) Mean 1.85 0.70 0.70 1.31 1.31 2.30 0.69 0.69 1.62 1.63
 Std. dev. 0.76 0.29 0.29 0.53 0.53 1.23 0.43 0.43 0.87 0.87
 Min. 0.75 0.31 0.31 0.53 0.53 0.52 0.17 0.17 0.36 0.37
 Median 1.66 0.63 0.62 1.17 1.17 2.08 0.63 0.64 1.47 1.47
 Max. 5.23 1.65 1.60 3.61 3.60 6.15 2.16 2.12 4.34 4.35

Fig. 64. Summarised distributions of the relative within-tree standard deviations 
of the volume estimators based on the cubic-spline-interpolated stem curves 
obtained from random diameters (diameter selection methods 1–5) among the 
trees where 7 or more discs were available (n=79). The reference volume was 
estimated without the assumption of convex cross-sections (assuming convexity 
gave practically similar results), and the diameters were selected independently 
(A) or dependently (B) within a stem. (For the explanation of the boxplot, refer 
to the caption of Fig. 57.)
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Tree size had no noticeable effect on the sampling errors. Geographical location of grow-
ing site, in turn, seemed to have an influence, even if to a lesser extent than on the biases 
and only with independently selected random diameters (methods 1–5): the sampling errors 
became the more variable the farther north the site was located. Like the more variable 
biases, the more variable sampling errors accord with the larger variability in non-circularity 
(larger variability in within-cross-section diameter variation) observed in Northern Finland 
(see the discussion on the biases above). (Clearly, systematically larger amount of non-
circularity, i.e., systematically larger variation in diameter within cross-sections, which was 
not observed in our data, would induce not only larger variation in sampling errors but also 
a generally higher level of them, which was not observed either.)

In the subset of the 50 stems investigated with the volume equation, the within-tree 
standard deviations were on average 0.05–0.1 percentage units smaller than in the set of 
all the 79 stems, with all the diameter selection methods except with those involving both 
Dmin and Dmax (methods 6, 7). Thus the differences in the sampling errors between the 
spline-interpolated stem curve and the volume equation might actually be slightly larger 
than the results above suggest.

RMSEs

With the diameter selection methods involving random diameters (methods 1–5), the within-
tree RMSEs largely reflected the behaviour of the within-tree sampling errors discussed 
above. With perpendicular diameters (methods 2, 3), the RMSE distributions became fairly 
similar to those produced by the volume equation (Table 47, Fig. 65; cf. Table 42, Fig. 
60), as the slightly smaller sampling error component compensated for the slightly larger 
bias component; whether the diameters were selected independently or dependently did 
not matter, as the dependence in diameter selection had no practical impact on either of the 
components. With one or two random diameters (methods1, 4, 5), however, the depend-
ence in diameter selection did count through the differences in sampling errors: With inde-
pendently selected diameters, RMSEs decreased on average by 0.3–0.6 percentage units 
compared to those obtained by the volume equation, and also their between-trees variation 

Table 47. Summarised distributions of the relative within-tree RMSEs of the volume estimators based 
on the cubic-spline-interpolated stem curves and girth diameter or independently or dependently 
selected random diameters, among the trees where 7 or more discs were available (n=79).

Relative RMSE Statistic Diameter selection method j
 Independent selection Dependent selection
  0 1 2 3 4 5 1 2 3 4 5

E[(V̂Sj–Ṽ)2]1/2/ Mean 1.43 2.41 1.61 1.58 1.99 1.97 2.81 1.63 1.59 2.25 2.23
Ṽ (%) Std. dev. 0.33 0.80 0.39 0.38 0.58 0.57 1.12 0.43 0.41 0.76 0.76
 Min. 0.83 1.36 0.98 0.94 1.25 1.24 1.19 0.92 0.89 1.12 1.11
 Median 1.39 2.21 1.51 1.49 1.83 1.81 2.68 1.54 1.51 2.10 2.10
 Max. 2.41 5.95 2.79 2.65 4.39 4.33 6.59 2.88 2.81 4.90 4.86
E[(V̂Sj–ṼC)2]1/2/ Mean 0.80 2.05 1.08 1.05 1.56 1.54 2.48 1.10 1.07 1.85 1.84
ṼC (%) Std. dev. 0.26 0.80 0.36 0.34 0.58 0.57 1.19 0.42 0.41 0.83 0.82
 Min. 0.40 0.90 0.57 0.55 0.73 0.72 0.75 0.47 0.44 0.65 0.64
 Median 0.72 1.84 0.97 0.95 1.40 1.39 2.35 1.01 0.98 1.74 1.73
 Max. 1.57 5.64 2.30 2.17 4.04 3.99 6.31 2.54 2.47 4.56 4.53
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diminished clearly; the changes were especially pronounced with one random diameter 
(method 1) (Table 47, Fig. 65 A and C; cf. Table 42, Fig. 60 A and C). With dependently 
selected diameters, in turn, the RMSE distributions remained closer to those given by 
the volume equation (Table 47, Fig. 65 B and D; cf. Table 42, Fig. 60 B and D); in other 
words, dependent selection, as compared to independent selection, impaired the volume 
estimator performance more with the cubic-spline-interpolated stem curve than with the 
volume equation. Also the convexity assumption had a slightly larger influence on RMSEs 
with the cubic-spline-interpolated stem curve than with the volume equation: disregarding 
cross-section non-convexity shifted the RMSE distributions 0.4–0.5 percentage units closer 
to zero, but left the shape of the distributions practically unchanged (Table 47, Fig. 65 C 
vs. A and D vs. B; cf. Table 42, Fig. 60 C vs. A and D vs. B).

In comparison with the methods involving random diameters, the girth diameter (method 
0) was not so strikingly superior now as with the volume equation: the difference in the 
average RMSE between the best method involving random diameters (methods 2, 3) and 
the girth diameter method was only half of that observed with the volume equation, and also 
the diminution in the between-trees variation of RMSEs was less pronounced (Table 47, 
Fig. 65; cf. Table 42, Fig. 60).

Among the diameter selection methods involving fixed diameters (methods 0, 6–11), 
however, the girth method exhibited clearly the smallest between-trees variation in RMSE, 
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Fig. 65. Summarised distributions of the relative within-tree RMSEs of the volume 
estimators based on the cubic-spline-interpolated stem curves obtained from 
girth (diameter selection method 0) or random diameters (diameter selection 
methods 1–5) among the trees where 7 or more discs were available (n=79). The 
reference volume was estimated without (A, B) or with (C, D) the assumption 
of convex cross-sections, and the diameters were selected independently (A, C) 
or dependently (B, D) within a stem. (For the explanation of the boxplot, refer 
to the caption of Fig. 57.)
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although the independently or dependently selected Dmin and its perpendicular (methods 8, 
9) without convexity assumption, or the independently selected Dmin and Dmax (methods 6, 
7), outperformed it in terms of average RMSE (Table 48, Fig. 66). When diameters were 
selected independently within a stem, the interrelationships between the methods were in 
general quite similar to those observed with the volume equation, and also the convexity 
assumption had a fairly similar effect (Table 48, Fig. 66 A and C; cf. Table 43, Fig. 61 A 
and C). When diameters were selected dependently, the RMSE distributions of the different 
methods became much more identical than with the volume equation, just as was the case 
also with the within-tree biases (Fig. 66 B and D, Fig. 63 B and D; cf. Fig. 61 B and D).

8.4.3 General Volume Estimator

With the general volume estimators of this study, based on area estimation processes involv-
ing diameters and circle area formula, independent selection of random diameters with the 
uniform direction distribution at observation heights was not meaningful to consider: while 
the biases and variances of each stochastic area estimation process would not have deviated 
from those obtained with dependent diameter selection, the zero covariances between the 

Table 48. Summarised distributions of the relative within-tree RMSEs of the volume estimators based 
on the cubic-spline-interpolated stem curves and independently or dependently selected fixed 
diameters, among the trees where 7 or more discs were available (n=79). For comparison, the 
results of the estimator based on girth diameter (diameter selection method 0) are also given.

Relative RMSE Statistic Diameter selection method j
 Independent selection
  0 6 7 8 9 10 11 min max

E[(V̂Sj–Ṽ)2]1/2/Ṽ  Mean 1.43 1.20 1.08 0.63 0.65 2.94 2.87 5.04 7.71
(%) Std. dev. 0.33 0.56 0.53 0.47 0.49 0.88 0.87 1.52 1.94
 Min. 0.83 0.00 0.01 0.01 0.02 1.28 1.10 2.01 4.67
 Median 1.39 1.25 1.13 0.50 0.52 2.92 2.79 4.84 7.13
 Max. 2.41 2.99 2.75 1.99 2.08 5.29 5.21 9.26 14.16
E[(V̂Sj–ṼC)2]1/2/ṼC  Mean 0.80 0.65 0.56 1.02 1.09 2.31 2.23 5.62 7.04
(%) Std. dev. 0.26 0.43 0.38 0.63 0.64 0.85 0.84 1.52 1.89
 Min. 0.40 0.01 0.02 0.05 0.11 0.55 0.37 2.62 3.96
 Median 0.72 0.61 0.56 0.99 1.04 2.19 2.13 5.47 6.40
 Max. 1.57 2.22 1.98 2.53 2.62 4.67 4.58 9.81 13.44
 Dependent selection
   6 7 8 9 10 11 min max

E[(V̂Sj–Ṽ)2]1/2/Ṽ  Mean  1.59 1.55 1.25 1.21 1.76 1.72 1.98 3.48
(%) Std. dev.  0.99 0.99 0.82 0.81 0.92 0.91 1.54 2.34
 Min.  0.04 0.06 0.01 0.01 0.06 0.08 0.12 0.02
 Median  1.38 1.37 1.14 1.11 1.56 1.52 1.70 3.13
 Max.  5.12 5.08 4.88 4.84 4.87 4.83 7.32 11.11
E[(V̂Sj–ṼC)2]1/2/ṼC  Mean  1.11 1.08 0.78 0.75 1.17 1.13 2.00 2.97
(%) Std. dev.  0.83 0.82 0.68 0.67 0.83 0.81 1.65 2.18
 Min.  0.05 0.02 0.05 0.02 0.06 0.04 0.10 0.14
 Median  0.87 0.78 0.62 0.57 0.94 0.92 1.67 2.51
 Max.  4.48 4.45 4.25 4.21 4.24 4.20 7.99 10.26
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area estimators at the observation heights would not have provided information for covari-
ance function estimation (see the discussion in Section 7.3.4 and Section 5.2). Accordingly, 
we present in the following results only for dependently selected random diameters and 
both dependently and independently selected fixed diameters.

We were particularly interested in how, with each diameter selection method, the within-
tree biases and sampling errors (variances) estimated with the general volume estimator 
compared with those estimated with the cubic-spline-interpolated stem curve. In both the 
volume estimation methods, the within-tree bias and variance in a stem were obtained by 
integrating the mean and covariance functions of the area estimation (error) process: In the 
general volume estimator, these functions were estimated by linear interpolation between 
the estimated area estimator biases or covariances at the observation heights along a stem 
(see Section 7.3.4). In the stem curve method, the functions were obtained as the pointwise 
means or covariances of a number of cubic-spline-interpolated stem curves (or, in the case of 
the mean, stem curve differences to true area diameter stem curve) based on a large sample 
of diameters measured at the observation heights (see Section 5.3, Eqs. 131 and 132). The 
differences between the methods would probably mainly derive from the differences of 
the interpolation methods, as at the observation heights the values of the functions (the 
estimated area estimator biases vs. the sample means of the area estimation errors, and the 

Fig. 66. Summarised distributions of the relative within-tree RMSEs of the volume 
estimators based on the cubic-spline-interpolated stem curves obtained from fixed 
diameters (diameter selection methods 6–11) among the trees where 7 or more 
discs were available (n=79); for comparison, results obtained with girth (diameter 
selection method 0) are also given. The reference volume was estimated without 
(A, B) or with (C, D) the assumption of convex cross-sections, and the diameters 
were selected independently (A, C) or dependently (B, D) within a stem. (For 
the explanation of the boxplot, refer to the caption of Fig. 57.)
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estimated area estimator covariances vs. the sample covariances of the area estimates) were 
presumably quite close to each other with each diameter selection method. Note that with 
the general volume estimator, we only dealt with the stem segments between the lowermost 
and the uppermost observation heights and thus ignored the butt parts (between the stump 
height and the lowermost observation height) involving most uncertainty; this might affect 
the comparison to the stem curve method where the whole stems (from the stump height 
to the top of the tree) were considered.

The convexity assumption did not manifest itself in the actual general volume estima-
tors considered here, as the area estimation processes based on diameters and circle area 
formula were the same be the cross-sections assumed convex or not. The assumption did, 
however, affect the area estimation error processes, where the area error was determined 
with respected to either true or convex area; the mean functions of these error processes 
were estimated from the area estimation biases taken with respect to true or convex area 
(for the stem segment between the lowermost and the uppermost observation heights), and 
the definite integrals of the mean functions then yielded estimates of the within-tree volume 
biases with respect to (partial) true stem volume or to (partial) convex stem volume. In 
addition, the convexity assumption influenced the reference volume by which the within-
tree biases and standard deviations were proportioned; as the reference volumes, we used 
the estimated partial true stem volume (Ṽ) and the estimated partial convex stem volume 
(ṼC), computed for the stem segment between the lowermost and the uppermost observa-
tion heights with the cubic-spline-interpolated stem curves obtained from the true area 
diameters and the convex area diameters, respectively.

In the subset of the 50 stems where the Laasasenaho volume equation was examined, 
the average within-tree biases were 0.1–0.2 percentage units nearer zero and the average 
within-tree standard deviations 0.05–0.1 percentage units smaller than in the set of all the 
79 stems, with all the diameter selection methods except those based on both Dmin and 
Dmax (methods 6, 7), just as we previously found to be the case with the stem curve method. 
Consequently, the differences between the volume equation and the general volume estima-
tor are probably less pronounced in terms of the within-tree biases and more pronounced 
in terms of the within-tree variances than the results below indicate.

Biases

With all the diameter selection methods, the results on the within-tree biases were strikingly 
similar to those obtained with the cubic-spline-interpolated stem curves (Tables 49 and 50, 
Figs. 67 and 68; cf. Tables 44 and 45, Figs. 62 and 63). This implies that the simple linear 
interpolation between the estimated expectations of an area estimator at 7–10 observation 
heights could approximate the mean function of the area estimation process in quite a 
similar way as the pointwise mean of a large number of more sophisticatedly interpolated 
stem curves based on diameters measured at the same observation heights.

The association between the within-tree biases and the stem size was practically identi-
cal to that observed with the stem curve method, the sawlog-size stems showing smaller 
average biases and smaller between-trees variation than the pulpwood-size stems when 
girth or dependently selected random diameters (methods 0, 1–5) were used, and no size 
effect emerging when fixed diameters (methods 6–11) were employed. Also the growing 
site location seemed to affect the within-tree biases in the same way as with the stem curve 
method, the between-trees variation of the biases produced by girth or dependently selected 
random diameters (methods 0, 1–5) increasing when going towards the north.
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Table 49. Summarised distributions of the relative within-tree biases of the general volume estimators 
based on girth or dependently selected random diameters (measurement direction determined at 
breast height for all the observation heights), among the trees where 7 or more discs were avail-
able (n=79). The biases were (in theory) determined with respect to true volume V or convex 
volume VC and proportioned with estimated true volume Ṽ or estimated convex volume ṼC.

Relative bias Statistic Diameter selection method j
 Dependent selection
  0 1 2 3 4 5

E(V̂Gj–V)/Ṽ (%) Mean 1.45 1.50 1.46 1.42 1.48 1.45
 Std. dev. 0.33 0.35 0.33 0.32 0.34 0.33
 Min. 0.82 0.84 0.83 0.81 0.83 0.82
 Median 1.41 1.45 1.42 1.38 1.43 1.41
 Max. 2.45 2.63 2.46 2.36 2.51 2.45
E(V̂Gj–VC)/ṼC (%) Mean 0.82 0.87 0.83 0.79 0.84 0.82
 Std. dev. 0.25 0.28 0.26 0.24 0.26 0.25
 Min. 0.40 0.43 0.41 0.38 0.42 0.40
 Median 0.74 0.79 0.75 0.71 0.77 0.74
 Max. 1.57 1.80 1.58 1.49 1.68 1.57

Table 50. Summarised distributions of the relative within-tree biases of the general volume estimators 
based on independently (measurement directions determined independently for all the observation 
heights) or dependently (measurement direction determined at breast height for all the observation 
heights) selected fixed diameters, among the trees where 7 or more discs were available (n=79). 
For comparison, the results of the estimator based on girth diameter (diameter selection method 
0) are also given.

Relative bias Statistic Diameter selection method j
 Independent selection
  0 6 7 8 9 10 11 min max

[E(V̂Gj)–V]/Ṽ (%) Mean 1.45 1.18 1.05 –0.39 –0.47 2.99 2.91 –5.14 7.75
 Std. dev. 0.33 0.50 0.49 0.66 0.65 0.82 0.82 1.52 1.79
 Min. 0.82 0.12 0.03 –1.77 –1.79 1.50 1.43 –9.61 4.73
 Median 1.41 1.19 1.10 –0.30 –0.36 2.98 2.91 –4.92 7.46
 Max. 2.45 2.89 2.63 0.94 0.86 5.42 5.36 –2.09 14.47
[E(V̂Gj)–VC]/ṼC (%) Mean 0.82 0.55 0.42 –1.01 –1.09 2.34 2.27 –5.73 7.07
 Std. dev. 0.25 0.46 0.45 0.65 0.65 0.78 0.78 1.53 1.73
 Min. 0.40 –0.41 –0.52 –2.34 –2.42 1.02 0.92 –10.35 4.02
 Median 0.74 0.57 0.45 –0.99 –1.04 2.28 2.17 –5.56 6.76
 Max. 1.57 2.14 1.85 0.46 0.39 4.52 4.46 –2.71 13.55
 Dependent selection
   6 7 8 9 10 11 min max

[E(V̂Gj)–V]/Ṽ (%) Mean  1.49 1.44 1.16 1.11 1.81 1.77 –0.43 3.53
 Std. dev.  1.04 1.03 0.83 0.82 0.88 0.87 2.37 2.30
 Min.  –0.85 –0.93 –0.62 –0.63 –0.12 –0.15 –7.22 –1.18
 Median  1.41 1.38 1.12 1.00 1.64 1.61 –0.27 3.37
 Max.  4.79 4.74 4.59 4.55 4.54 4.50 4.70 12.33
[E(V̂Gj)–VC]/ṼC (%) Mean  0.86 0.81 0.53 0.48 1.18 1.13 –1.05 2.88
 Std. dev.  1.00 1.00 0.79 0.79 0.84 0.83 2.33 2.29
 Min.  –1.45 –1.53 –0.94 –0.95 –0.65 –0.67 –7.97 –1.90
 Median  0.82 0.78 0.47 0.42 1.01 0.99 –0.89 2.66
 Max.  4.14 4.10 3.94 3.90 3.90 3.85 4.02 11.42
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Fig. 68. Summarised distributions of the relative within-tree biases of the general volume estimators 
based on fixed diameters (diameter selection methods 6–11) among the trees where 7 or more discs 
were available (n=79); for comparison, results obtained with girth (diameter selection method 0) 
are also given. The estimators were constructed without (A, B) or with (C, D) the assumption of 
convex cross-sections, and the diameters were selected independently (A, C) or dependently (B, 
D) within a stem. (For the explanation of the boxplot, refer to the caption of Fig. 57.)

Fig. 67. Summarised distributions of the relative within-tree 
biases of the general volume estimators based on girth 
(diameter selection method 0) or random diameters 
(diameter selection methods 1–5) among the trees where 
7 or more discs were available (n=79). The estimators 
were constructed without (A) or with (B) the assump-
tion of convex cross-sections, and the diameters were 
selected dependently within a stem with breast height 
diameter determining the common diameter direction. 
(For the explanation of the boxplot, refer to the caption 
of Fig. 57.) 
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Variances

As with the stem curve method, the convexity assumption came up only in the reference volume 
and did not practically affect the within-tree variances of the general volume estimators. 
Consequently, we here present only the result obtained without the convexity assumption.

Also the within-tree sampling errors (within-tree standard deviations) practically coin-
cided with those obtained in the stem curve method (Table 51, Fig. 69 A; cf. Table 46 
dependent selection, Fig. 64 B). In other words, as an approximation of the covariance 
function of an area estimation process involving dependently selected random diameters, 
a simple linear interpolation of the within-tree covariances of the area estimator at all the 
combinations of 7–10 observation heights appeared to correspond well to the function 
composed of the pointwise covariances of a large number of the cubic-spline-interpolated 
stem curves based on diameters measured at those observation heights.

In terms of within-tree sampling errors, using (dependently selected) perpendicular diam-
eters (methods 2, 3) appeared to yield more favourable correlation structure for the area 
estimation process, resulting in sampling errors that lay on average proportionally farther 
from the theoretical maximum, than employing one or two random diameters (methods 
1, 4, 5): if the elements of the area estimation process were assumed fully correlated, the 
average within-tree standard deviations increased 2.3-fold with perpendicular diameters and 
1.8-fold with one or two random diameters (Table 51, Fig. 69 B vs. A). The between-trees 
variation of the theoretical maximums of the within-tree sampling errors did not deviate 
much from that of the observed sampling errors, and the distributions were slightly widened 
only with perpendicular diameters.

The within-tree sampling errors or their theoretical maximum values exhibited no 
dependence on stem size, which again parallelled the results obtained with dependently 
selected random diameters in the stem curve approach. Similarly, no effect of the growing 
site location on the sampling errors was found (the increased variability in the sampling 

Table 51. Summarised distributions of the observed relative within-tree standard deviations of 
the general volume estimators and the theoretical maximums of these standard deviations 
(obtained by assuming area estimators at different heights to be fully correlated, i.e., 
ρÂj(h, k)=1 for all h and k in [0, H]), based on dependently selected random diameters, 
among the trees where 7 or more discs were available (n=79). The standard deviations 
were proportioned with estimated true volume Ṽ; proportioning with estimated convex 
volume ṼC yielded practically similar results.

Relative std. dev. Statistic Diameter selection method j
 Dependent selection
  1 2 3 4 5

Var(V̂Gj)1/2/Ṽ (%) Mean 2.25 0.66 0.66 1.59 1.58
 Std. dev. 1.17 0.39 0.39 0.83 0.83
 Min. 0.56 0.15 0.14 0.43 0.45
 Median 2.07 0.58 0.59 1.47 1.48
 Max. 6.95 1.88 1.88 4.92 4.94
Var[V̂Gj | ρÂj(h, k)=1]1/2/Ṽ (%) Mean 4.07 1.53 1.52 2.87 2.85
 Std. dev. 1.16 0.45 0.45 0.82 0.82
 Min. 2.03 0.77 0.76 1.43 1.42
 Median 3.87 1.43 1.44 2.73 2.71
 Max. 8.65 2.88 2.92 6.11 6.11
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errors toward the north that was observed with the stem curve method only pertained to 
independently selected random diameters).

RMSEs

Naturally, considering the bias and sampling error results above, the distributions of the 
within-tree RMSEs produced by the general volume estimator were almost identical to 
those obtained with the cubic-spline-interpolated stem curve with all the diameter selection 
methods (Tables 52 and 53, Figs. 70 and 71; cf. Table 47 dependent selection, Table 48, 
Fig. 65 B and D, Fig. 66). With dependently selected one or two random diameters (meth-
ods 1, 4, 5), the maximum RMSEs were discernibly larger than those observed in the 
stem curve method. With dependent selection of fixed diameters (methods 6–11), a larger 
mean RMSE always implied a larger between-trees variation compared to the stem curve 
approach, whereas with independent selection a larger mean could also entail a smaller 
between-trees variation.

8.5 Estimation of Stand Totals in Bitterlich Sampling

In the theoretical part of this study (Section 4.1.2), we found that estimating the inclusion 
probabilities of trees by assuming non-circular breast height cross-sections circular results 
in errors that may cause bias in stand total estimators, and that these errors in the inclusion 
probabilities consist of the following two tree-specific components: (i) deviation of the true 
basal area factor of the tree κ(α)=AC/|M(α)| (the ratio between the convex area AC of the 
breast height cross-section and the inclusion area |M(α)|) from that of a circle sin2(α/2), 
and (ii) deviation of the area estimate Âj=πDj2/4, based on diameter Dj selected by some 
method j in the breast height cross-section, from the convex area AC. In the expression of 

Fig. 69. Summarised distributions of the relative within-tree 
standard deviations of the general volume estimators 
based on random diameters (diameter selection methods 
1–5), with the observed correlation (A) or an assumed 
full correlation (ρÂj(h, k)=1 for all h and k in [0, H]; 
B) between the area estimators at different heights 
among the trees where 7 or more discs were available 
(n=79). The standard deviations were proportioned with 
estimated true volume (proportioning with estimated 
convex volume gave practically similar results), and 
the diameters were selected dependently within a stem. 
(For the explanation of the boxplot, refer to the caption 
of Fig. 57.)
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Table 52. Summarised distributions of the relative within-tree RMSEs of the general volume estima-
tors based on girth or dependently selected random diameters, among the trees where 7 or more 
discs were available (n=79).

Relative RMSE Statistic Diameter selection method j
 Dependent selection
  0 1 2 3 4 5

E[(V̂Gj–V)2]1/2/Ṽ (%) Mean 1.45 2.77 1.63 1.60 2.23 2.22
 Std. dev. 0.33 1.05 0.40 0.39 0.72 0.72
 Min. 0.82 1.28 0.91 0.88 1.22 1.23
 Median 1.41 2.62 1.54 1.53 2.07 2.07
 Max. 1.59 7.43 2.68 2.60 5.53 5.49
E[(V̂Gj–VC)2]1/2/ṼC (%) Mean 0.82 2.43 1.09 1.06 1.83 1.81
 Std. dev. 0.25 1.12 0.38 0.37 0.78 0.78
 Min. 0.40 0.83 0.46 0.43 0.74 0.76
 Median 0.74 2.23 1.01 0.98 1.72 1.70
 Max. 1.57 7.12 2.23 2.21 5.17 5.15

Table 53. Summarised distributions of the relative within-tree RMSEs of the general volume estima-
tors based on independently or dependently selected fixed diameters, among the trees where 7 
or more discs were available (n=79). For comparison, also the results of the estimator based on 
girth diameter (diameter selection method 0) are given.

Relative RMSE Statistic Diameter selection method j 
 Independent selection

  0 6 7 8 9 10 11 min max

E[(V̂Gj–V)2]1/2/Ṽ  Mean 1.45 1.18 1.05 0.61 0.64 2.99 2.91 5.14 7.75
(%) Std. dev. 0.33 0.50 0.49 0.46 0.48 0.82 0.82 1.52 1.79
 Min. 0.82 0.12 0.03 0.00 0.02 1.50 1.43 2.09 4.73
 Median 1.41 1.19 1.10 0.45 0.47 2.98 2.91 4.92 7.46
 Max. 1.59 2.89 2.63 1.77 1.79 5.42 5.36 9.61 14.47
E[(V̂Gj–VC)2]1/2/ṼC  Mean 0.82 0.59 0.50 1.04 1.11 2.34 2.27 5.73 7.07
(%) Std. dev. 0.25 0.39 0.36 0.61 0.62 0.78 0.78 1.53 1.73
 Min. 0.40 0.04 0.01 0.01 0.04 1.02 0.92 2.71 4.02
 Median 0.74 0.57 0.46 0.99 1.04 2.28 2.17 5.56 6.76
 Max. 1.57 2.14 1.85 2.34 2.42 4.52 4.46 10.35 13.55
 Dependent selection
   6 7 8 9 10 11 min max

E[(V̂Gj–V)2]1/2/Ṽ Mean  1.55 1.51 1.19 1.14 1.82 1.77 1.89 3.58
(%) Std. dev.  0.94 0.94 0.78 0.77 0.88 0.86 1.47 2.23
 Min.  0.01 0.03 0.01 0.01 0.06 0.03 0.02 0.03
 Median  1.41 1.38 1.12 1.00 1.64 1.61 1.84 3.37
 Max.  4.79 4.74 4.59 4.55 4.54 4.50 7.22 12.33
E[(V̂Gj–VC)2]1/2/ṼC Mean  1.06 1.03 0.71 0.68 1.22 1.17 2.02 3.03
(%) Std. dev.  0.78 0.77 0.63 0.62 0.78 0.76 1.55 2.09
 Min.  0.00 0.01 0.03 0.00 0.01 0.03 0.02 0.12
 Median  0.93 0.85 0.59 0.58 1.01 0.99 1.75 2.66
 Max.  4.14 4.10 3.94 3.90 3.90 3.85 7.97 11.42
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Fig. 71. Summarised distributions of the relative within-tree RMSEs of the general volume estimators 
based on fixed diameters (diameter selection methods 6–11) among the trees where 7 or more discs 
were available (n=79); for comparison, results obtained with girth (diameter selection method 0) 
are also given. The volume estimators were constructed without (A, B) or with (C, D) the assump-
tion of convex cross-sections, and the diameters were selected independently (A, C) or depend-
ently (B, D) within a stem. (For the explanation of the boxplot, refer to the caption of Fig. 57.)

Fig. 70. Summarised distributions of the relative within-tree 
RMSEs of the general volume estimators based on girth 
(diameter selection method 0) or random diameters 
(diameter selection methods 1–5) among the trees where 
7 or more discs were available (n=79). The volume 
estimators were constructed without (A) or with (B) the 
assumption of convex cross-sections, and the diameters 
were selected dependently within a stem. (For the expla-
nation of the boxplot, refer to the caption of Fig. 57.)E[
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the bias of a stand total (Eq. 69 in Section 4.1.2), these error components appear as tree-
specific multipliers sin2(α/2)/κ(α)·AC/(πDj2/4) of the treewise values of the characteristic 
for which we want to compute the stand total; a multiplier value larger than one implies 
that the tree contributes to the bias of the stand total with an overestimating input, whereas 
a value smaller than one indicates an underestimating input. 

The error components were computed for all the breast height cross-sections and, as a 
“thinking experiment”, also for all the other cross-sections of the data (imaging them as 
breast height cross-sections), with the viewing angle α values of 1.146°, 1.621°, 2.292° and 
3.624° (corresponding, with circular cross-sections, to the basal area factor values of 1, 2, 
4, and 10 m2/ha, respectively), and with the 22 diameter selection methods (Section 7.2) 
that were earlier applied in cross-section area estimation and stem volume estimation. With 
the diameter selection methods involving randomness (methods 1–5, 1ξ–5ξ, 1ξ90, 4ξ90 
and 5ξ90), the expectation of the error E[sin2(α/2)/κ(α)·AC/(πDj2/4]=sin2(α/2)/κ(α)·AC· 
E[1/(πDj2/4)] over the diameter direction distribution was computed.

Approximating the true basal area factor with that of a circle appeared to produce exigu-
ous errors, implicating overestimating bias smaller than 1% on average and not larger than 
2.3% at maximum in the set of the breast height cross-sections (Fig. 72 A). In the set of all 
the cross-sections, the average errors were of the same magnitude, whereas the maximum 
values were clearly larger, implicating overestimating bias of up to 7.0% (Fig. 72 B). 
According to theory, the basal area factor approximation cannot inflict underestimating 
bias (i.e., sin2(α/2)/κ(α) cannot assume a value smaller than one; see Eq. 71 in Section 
4.1.2). The few unfeasible values emerging in our data (one breast height cross-section 
with α=3.624°, and two to four cross-sections in the whole data with α=1.621°, α=2.292° 
and α=3.624°) probably resulted from the low resolution in the scanning of the photographs 
(see Chapter 6): besides very circular in shape, the problematic cross-sections were small 
in size (usually taken at the height of 70% or 85%) with an unnaturally rough boundary in 
the scanned image, as the pixel size was “large” relative to the disc size. Examples of the 
cross-sections with unfeasible error values are given in Fig. 73 and of the cross-sections 
with the maximum error values in Fig. 74.

Fig. 72. Summarised distributions of sin2(α/2)/κ(α), showing 
deviation of the true basal area factor κ(α) of a cross-
section from that of a circle sin2(α/2), with viewing 
angle α values of 1.146°, 1.621°, 2.292° and 3.624° 
(corresponding, with circular cross-sections, to the basal 
area factor values of 1, 2, 4, and 10 m2/ha, respectively) 
in the set of the breast height cross-sections (A; n=80) 
and in the set of all the cross-sections (B; n=709). The 
latter case (B) is a “thinking experiment”: what if all 
the cross-sections of the data were breast height cross-
sections?
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Fig. 74. Cross-sections where sin2(α/2)/κ(α) assumed its maximum values in the set of 
the breast height discs (A) and in the set of all the discs (B). For each cross-section, 
the inclusion regions with viewing angles α=1.146° (outermost), α=1.621°, α=2.292° 
and α=3.624° (innermost) are shown; the inclusion regions yielding the maximum 
values of sin2(α/2)/κ(α) are delineated with black line. The cross-section co-ordinates 
were dilated with factor 10 in relation to the inclusion region co-ordinates to facilitate 
perception.

Fig. 73. The only breast height cross-section where sin2(α/2)/κ(α) assumed an unfeasi-
ble value below one (A) and the two cross-sections in the set of all the discs where 
sin2(α/2)/κ(α) assumed the smallest unfeasible below-one values (B). For each cross-
section, the inclusion regions with viewing angles α=1.146° (outermost), α=1.621°, 
α=2.292° and α=3.624° (innermost) are shown; the inclusion regions yielding the 
below-one or the smallest below-one value of sin2(α/2)/κ(α) are delineated with black 
line. The cross-section co-ordinates were dilated with factor 10 in relation to the inclu-
sion region co-ordinates to facilitate perception.
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Matérn’s theoretical result that, with a viewing angle of the magnitude 1°, Bitterlich 
sampling gives practically the same bias in the relative basal area of a stand as we would 
get by calipering every stem in a randomly chosen direction, could be empirically con-
firmed: with the smallest viewing angle 1.146°, the scatterplot of sin2(α/2)/κ(α)–1 against 
[E(Â1)–AC]/AC (the relative within-cross-section bias of the area estimator involving one 
random diameter) showed a strong one-to-one relationship between these characteristics 
in individual cross-sections (and almost identical distributions), both in the set of the 
breast height cross-sections and in the set of all the cross-sections (to see the rationale of 
this consideration, combine Eqs. 81 and 85 in Section 4.1.3: AC·sin2(α/2)/κ(α)≈E(Â1) ⇔ 
sin2(α/2)/κ(α)–1≈[E(Â1)–AC]/AC). With the larger viewing angles the similarity declined, 
being much less manifest already with the viewing angle 1.621°.

Quite strikingly, with the smallest viewing angle 1.146°, sin2(α/2)/κ(α) correlated almost 
perfectly with relative isoperimetric deficit (Â0–AC)/AC=Â0/AC–1 in the set of all the 
cross-sections and very strongly in the set of the breast height cross-sections (Table 54). 
(Naturally, sin2(α/2)/κ(α) also correlated strongly negatively with girth-ellipse ratio be/ae, 
because both be/ae and (Â0–AC)/AC are transformations of the convex perimeter C and 
area AC and therefore strongly negatively correlated; see Section 8.2.1). A scatterplot of 
sin2(α/2)/κ(α) against Â0/AC showed the slope to be 1, which implies that with small α, 
sin2(α/2)/κ(α)=sin2(α/2)|M(α)|/AC is very close to Â0/AC, that is, sin2(α/2)|M(α)| is very 
close to Â0. The explanation is given by the limiting value of sin2(α/2)|M(α)|: Matérn 
(1956, p. 24) writes that by “geometrical consideration” sin2(α/2)|M(α)| tends to E(Â1) as 
α tends to 0; a check with α=0.001° on artificial example shapes (Fig. 10 in Section 4.1.2), 
another orbiform (Matérn 1956, Fig. 3 c) and ellipses of axis ratios 0.5–0.9 corroborated 
the result. Now, with α=1.146° sin2(α/2)|M(α)| is close to E(Â1)=πμD2/4+πσD2/4, which 
again was earlier found to be close to Â0=πμD2/4 in most of the cross-sections (see Sec-
tion 8.3.2).

Table 54. Correlation of sin2(α/2)/κ(α) with shape indices (diameter coefficient of variation CVD, 
ratio between the extreme diameters Dmin/Dmax, girth-area ellipse ratio be/ae, absolute difference 
between the directions of the extreme diameters |θDmin–θDmax|, correlation between perpendicular 
diameters ρD(π/2)), with relative convex deficit (AC–A)/AC and isoperimetric deficit (Â0–AC)/
AC, as well as with mean diameter μD in the breast height cross-sections (n=80) and in all the 
cross-sections of the data (n=709). The ratio sin2(α/2)/κ(α) was computed with the viewing angle 
α values of 1.146°, 1.621°, 2.292° and 3.624° (corresponding, with circular cross-sections, to the 
basal area factor values of 1, 2, 4, and 10 m2/ha, respectively).

Viewing CVD Dmin/Dmax be/ae |θDmax–θDmin| ρD(π/2) (AC–A)/ (Â0–AC)/ μD
angle α        AC AC

 Breast height cross-sections

1.146° 0.61 –0.66 –0.91 –0.16 –0.09 0.22 0.92 0.15 
1.621° 0.55 –0.60 –0.87 –0.17 0.00 0.18 0.87 0.17 
2.292° 0.57 –0.60 –0.76 –0.18 –0.06 0.02 0.77 0.21 

sin2(α/2)/κ(α)

3.624° 0.39 –0.46 –0.73 –0.20 –0.02 0.26 0.73 0.12 

 All cross-sections

1.146° 0.76 –0.78 –0.94 –0.07 0.00 0.47 0.98 0.15 
1.621° 0.74 –0.76 –0.94 –0.08 0.00 0.46 0.96 0.15 
2.292° 0.72 –0.75 –0.89 –0.08 –0.03 0.44 0.92 0.14 sin2(α/2)/κ(α)

3.624° 0.65 –0.67 –0.80 –0.08 –0.02 0.35 0.83 0.14 
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The decline of the correlations with the increasing viewing angle (Table 54) follows in a 
natural way from the behaviour of sin2(α/2)/κ(α): as α tends to π, the inclusion region M(α) 
tends to the convex closure of the cross-section (see the discussion in Section 4.1.2, and 
Matérn 1956, p. 24) and, thus, sin2(α/2)/κ(α)=sin2(α/2)|M(α)|/AC tends to sin2(π/2)AC/AC=1 
(which as a scalar is then uncorrelated with any variable). The path of sin2(α/2)/κ(α) to this 
end value varies quite much according to shape (refer e.g. to Figs. 13 and 14 in Section 4.2.1), 
which for its part also explains the somewhat larger variation of sin2(α/2)/κ(α) observed 
with the largest viewing angle 3.624° compared to the other viewing angles (Fig. 72).

The systematic overestimation of convex area that girth diameter (diameter selection 
method 0) and random or Bitterlich diameters (methods 1–5, 1ξ–5ξ, 1ξ90, 4ξ90, 5ξ 90) 
yield with the circle area formula seemed to neutralise effectively the error due to basal 
area factor approximation in the breast height cross-sections: bias implicated by the com-
bined error due to diameter selection and basal area factor approximation was on average 
close to zero with the viewing angle 1.146° and less than 0.4% overestimation with the 
viewing angle 3.624° (Fig. 75). (Note that the diameter selection effect is slightly weaker 
than a straightforward insertion of the area estimator bias, shown in the set of all the cross-
sections e.g. in Fig. 44 A, in the error expression would imply, because E(1/Dj2)≥1/E(Dj2) 
with random or Bitterlich diameters.) The larger the viewing angle, the more variable the 
combined errors appeared to be and the larger part of the trees seemed to contribute to bias 
with an overestimating rather than underestimating input. Measuring only one random 
diameter (method 1), or Bitterlich diameter parallel to plot radius (method 1ξ), or both 
(methods 4ξ and 5ξ) yielded larger maximum errors than the other methods, yet implicating 
overestimating bias not larger than 2.2%.

Fig. 75. Summarised distributions of the combined treewise effects of the non-circular breast height 
cross-sections (n=80) on the bias in stand total estimators in Bitterlich sampling, with 22 diameter 
selection methods (see Section 7.2) and with viewing angle α values of 1.146° (A) and 3.624° (B) 
(corresponding, with circular cross-sections, to the basal area factor values of 1 and 10 m2/ha, 
respectively).
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Fig. 76. Summarised distributions of the combined treewise effect of non-circular breast height 
cross-section on the bias in stand total estimators in Bitterlich sampling, with 22 diameter selec-
tion methods (see Section 7.2) and with viewing angle α values of 1.146° (A) and 3.624° (B) 
(corresponding, with circular cross-sections, to the basal area factor values of 1 and 10 m2/ha, 
respectively) in the set of all the cross-sections (n=709). This is a “thinking experiment”: what 
if all the cross-sections of the data were breast height cross-sections?

In the set of all the cross-sections, the averages of the combined errors were of the same 
magnitude as in the set of the breast height cross-sections, and with the viewing angle 
3.624° even indicating bias closer to zero (Fig. 76). The maximum values, however, were 
clearly larger, implicating overestimating bias of up to 8.4% with viewing angle 1.146° 
and up to 8.8% with viewing angle 3.624°; the largest maximum values were produced 
by the same methods (1, 1ξ, 4ξ and 5ξ) as in the set of the breast height cross-sections. 
Interestingly, measuring Bitterlich diameter perpendicular to plot radius (method 1ξ90) or 
taking the arithmetic mean of Bitterlich diameters (method 4ξ90) appeared slightly more 
advisable than using girth diameter (method 0), as judged from the error distributions in 
the set of all the cross-sections.
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9 Summary and Conclusions
This study explores how non-circularity of tree stem cross-sections affects cross-section area 
estimation, stem volume estimation and Bitterlich sampling under the circularity assump-
tion. The primary purpose of the work was to provide theoretical tools for quantifying these 
non-circularity effects. The secondary purpose was to demonstrate the magnitude of the 
effects with reasonable data on Scots pine.

In the theoretical part of the work, we developed methods for quantifying (i) the errors 
that the within-cross-section variation in diameter causes to cross-section area estimates 
given by the circle area formula and 22 different diameter selection methods, (ii) the errors 
that the within-cross-section variation in diameter induces in stem volume estimates given 
by the Laasasenaho (1982) volume equation, a cubic-spline-interpolated stem curve and 
a generalised volume estimator together with the 22 diameter selection methods, and 
(iii) the errors that non-circular shape of breast height cross-sections and the 22 diameter 
selection methods inflict on stand total estimates in Bitterlich sampling. The 22 diameter 
selection methods, listed in Section 7.2, involved diameters measured with tape or caliper 
and differed from each other in terms of the choice of the measurement direction, the 
number of diameters to be measured and the type of mean (geometric, arithmetic) applied 
to the measured diameters. In the empirical part of the work, based on the digital images 
of 709 cross-sections taken at 6–10 heights in 81 Scots pine stems from different parts of 
Finland, we first investigated the variation in the shape of the cross-sections; thereafter we 
demonstrated how the systematic and sampling errors of the area, volume and stand total 
estimators presented in the theoretical part can be computed in practice and what magnitude 
they are in a this kind of small Scots pine data set.

The empirical results should be taken with a pinch of salt, due to certain defects of the 
data. First, taking and imaging discs at several heights in trees is laborious, and therefore our 
data set, although relatively large compared to the data sets found in literature, is still rather 
small for drawing general conclusions. More importantly, however, our non-probabilistic 
sampling of trees, resulting in an uneven spatial distribution of trees over Finland and in 
a two-modal size distribution with severe under-representation of log-size trees, hampers 
generalisation to any meaningful Scots pine population. This subjectivity in the data gather-
ing was accepted because the idea was to illustrate the magnitude of the theoretical effects 
rather than estimate some actual quantities of a defined population. Finally, to avoid potential 
difficulties in the image interpretation, the discs were debarked before photographing, and 
thus the results pertain to stem wood without bark, which is contrary to the usual practice 
in forest mensuration.

We strove for isolating the effect of non-circularity from other sources of variation or 
error. To eliminate measurement errors in particular, we computed the cross-section meas-
urements on digital images instead of taking them with common instruments on the discs. 
Yet in practical forest mensuration, measurement errors are virtually impossible to evade or 
even to quantify; moreover, modelling them appears also difficult, as the factors affecting 
the measurement situation can be rather complex and involve a good deal of psychology 
(Matérn 1990). For the only empirical results found in literature on the combined effect of 
non-circularity and measurement errors, see the study by Gregoire et al. (1990).

In the following, we summarise the main results of this work on (i) variation in cross-
section shape, (ii) estimation of cross-section area, (iii) estimation of stem volume and (iv) 
estimation of stand totals with Bitterlich sampling, and attempt to come up with practical 
conclusions that could be useful in actual forest mensuration work.
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Variation in Cross-Section Shape

Non-convexity is a potentially important source of systematic overestimation in area and 
volume estimation of standing trees, as it cannot be observed with caliper or girth tape 
measurements. In the 709 debarked stem cross-sections of this study, however, the amount 
of non-convexity was exiguous: the relative difference between the convex and true area 
was less than 1% in 87% of the cross-sections and not more than 2.9% in maximum. This 
may follow from the predominance of small pulpwood-size trees in the data: Matérn (1990) 
reported somewhat larger non-convexity in his 45 debarked cross-sections taken from log-
size Scots pine stems. According to his results, bark is also likely to increase non-convexity, 
particularly in the lower parts of Scots pine stems.

Judging from the six scalar and three functional shape indices computed for the cross-
sections in the data, ellipse did not depict cross-section shape better than circle. In fact, 
rather than from actual shape observations, the persistently reiterated idea of ellipse as a 
more realistic shape model may originate from area estimation results (see the discussion 
below). Further, on the basis of shape the indices, the cross-sections were found to be more 
non-circular in the butt of the stems than in the middle and upper parts. As a curiosity, a 
useful result presented by Matérn (1990) could be corroborated: also in our data, diameter 
coefficient of variation CVD within a cross-section correlated almost fully negatively with 
the ratio of the minimum and the maximum diameter Dmin/Dmax, and thus Dmin/Dmax, which 
is relatively simple to measure, may very well be used to predict linearly CVD, which is 
far less tractable, with CVD = 36 – 0.36 · Dmin/Dmax (both the characteristics are expressed 
in percentage units).

A clearly systematic directional pattern in diameter was observed in the cross-sections 
in the butt of the stems: the diameters taken between the SW–NE and S–N directions were 
on average the largest in the cross-sections and would result in overestimates of the convex 
area of the magnitude 3.6–5.7% when substituted in the circle area formula, whereas the 
diameters taken between the NW–SE and W–E directions were on average the smallest 
and would yield underestimates of the magnitude 0–1.6%. A plausible explanation might 
be given by the south-westerly winds prevailing in Finland, combined with the relatively 
flat topography of the country: the torsional moment caused by the wind stress results in 
asymmetric growth, possibly through formation of reaction wood, that strengthens the stem 
in the directions of the moment.

Estimation of Cross-Section Area

The estimators of cross-section area or stem volume were assessed by the systematic error 
(the bias, i.e., the expectation of error with respect to true value) and the sampling error 
(the variance or standard deviation around the expected value) that infinitely many repeated 
diameter selections, with the particular selection method, would yield within a cross-section 
or within a tree stem. It is important to notice that the systematic error is the expectation 
of the error over repeated diameter selections within a cross-section or within several 
cross-sections in a tree, not an error being realised in each individual diameter selection. 
With fixed diameters involving no random choice of measurement direction, such as the 
diameter derived from girth or the maximum and the minimum diameter, the sampling error 
is naturally zero (as repeated diameter selections always result in the same diameter) and 
the systematic error simply equals the area or volume estimation error.

In the theoretical consideration of cross-section area estimation, citing and elaborating 
Matérn’s (1956) theoretical results, we saw that the commonly used diameter selection 



928

Silva Fennica 46(5B), 2012 research articles

methods — diameter derived from girth (girth diameter, giving the expectation of diameter 
over all possible measurement directions), diameter calipered in a random direction, mean 
of this diameter and its perpendicular, and mean of two diameters calipered in random 
directions — together with the circle area formula systematically overestimate convex 
area, irrespective of the cross-section shape. The magnitude of the overestimating bias was 
shown by Matérn to have a lower bound that depends on diameter variance within the cross-
section (the larger the variance the larger the least possible overestimation). In our data of 
709 Scots pine cross-sections, the overestimation bias was found to be virtually similar for 
all these diameter selection methods: the average within-cross-section biases were about 
0.9% with respect to convex area and about 1.6% with respect to true area, that is, of the 
same meagre magnitude as the amount of non-convexity, and with fairly little variation 
between the discs. In other words, measuring girth or a second diameter at each height, 
either in a random direction or crosswise, did not bring any benefit, in terms of systematic 
error, compared to taking only one diameter in a random direction. 

In terms of sampling error, however, these diameter selection methods were found to 
differ from each other considerably. The girth diameter method was naturally superior as 
it involves no uncertainty of this kind. The methods involving random diameters, in turn, 
produced substantial sampling errors: with one random diameter the average sampling error 
was four times, with the mean of two random diameters three times, and with the mean of 
one random diameter and its perpendicular one and a half times the average systematic error. 
In other words, the benefit of taking the second diameter crosswise instead of measuring 
it in a random direction was greater than that gained by measuring two random diameters 
instead of only one. Taking the second diameter perpendicular to the first one rather than 
in a random direction seemed advisable also in the sense that it considerably attenuated the 
sampling error variation between the cross-sections. Because of the large sampling errors 
related to the use of random diameters, the advantageousness of using fixed diameters, 
especially the girth diameter, in single-tree estimation became fairly obvious in our data. 
Noteworthily, it appears that for estimating sampling errors we may well use the simple 
approximate formulae instead of the complex analytic ones (both derived in the theoretical 
part), as in the data the variance approximations resulted virtually in the same values as 
the analytic variances.

In the theoretical consideration of Bitterlich sampling, we found that if the breast height 
cross-section of a tree is non-circular, the diameter taken parallel or perpendicular to plot 
radius direction in Bitterlich sampling does not correspond to a diameter calipered in a 
random direction (diameter with the uniform direction distribution). A way of computing 
the treewise direction distributions of these Bitterlich diameters was presented, based on 
the geometrical probability of the viewing point location in the inclusion region of a tree. 
In practice, however, the deviations of these direction distributions from the uniform dis-
tribution proved to be unimportantly small: in our data, within the studied viewing angle 
range of 1.146°–3.624° (corresponding, with circular cross-sections, to the basal area factor 
range of 1–10 m2/ha), Bitterlich diameters resulted in similar systematic and sampling 
errors in area estimation as random diameters. The deviation of Bitterlich diameters from 
random diameters could be made visible by confining the examination on the breast height 
cross-sections only: in all the breast height cross-sections, measuring Bitterlich diameter 
perpendicular to plot radius resulted in larger bias than taking diameter in a (uniform) 
random direction; likewise, in 90% of the breast height cross-sections, measuring Bit-
terlich diameter parallel to plot radius resulted in smaller bias than taking the diameter in 
a (uniform) random direction; in all the breast height cross-sections, measuring Bitterlich 
diameter perpendicular to plot radius resulted in larger bias than taking it parallel to plot 
radius; however, as said above, the differences between the methods were negligibly small.
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Unlike the diameter selection methods involving the girth diameter or random diameters, 
those involving the minimum and/or the maximum diameter could also systematically 
underestimate convex area. Among all the diameter selection methods considered, the 
mean of the extreme diameters or the mean of the minimum diameter and its perpendicular 
produced the systematic errors closest to zero on average in our data, but the errors varied 
exceedingly between the trees, which makes these methods less suited for individual tree 
estimation. Moreover, these diameter methods may be less feasible in practice, as measur-
ing the minimum and/or the maximum diameter without error in the field is likely to take 
a longer time than measuring the girth or a random diameter.

The geometric mean of (unequal) diameters always yields smaller area estimates in the 
circle area formula than the arithmetic mean, simply because the geometric mean is always 
smaller than the arithmetic mean. In the case of random diameters, which we saw to result 
in systematic overestimation of convex area, it is hence advantageous to use the geomet-
ric mean instead of the arithmetic one. This may have created the fallacy of the elliptical 
shape of tree cross-sections reiterated in literature, since the use of the geometric mean of 
perpendicular diameters in the circle area formula corresponds to computing the area of 
an ellipse and hence implies a seeming assumption of elliptical shape. In our data, how-
ever, employing the geometric mean did not yield noticeably better area estimation results 
(systematic errors closer to zero, smaller sampling errors) than using the arithmetic mean.

Matérn’s (1990) empirical results on area estimation in Scots pine both under and over 
bark suggest that bark would considerably decrease shape irregularities and thus reduce and 
stabilise the systematic and sampling errors obtained with the common diameter selection 
methods, especially in the butt of stems. Due to the small size of his data set, however, 
these results remain somewhat uncertain.

Above it was emphasised that with the systematic error we here mean the within-cross-
section bias, that is, the expectation of area estimation errors over (infinitely many) repeated 
diameter selections within a cross-section. The mean of these within-cross-section biases 
across cross-sections (trees) is a good criterion for choosing the diameter selection method 
for estimation of both stand basal area and individual cross-section area. Obviously, per-
forming diameter selection only once in a number of cross-sections (trees) and comput-
ing the mean of the resulting area estimation errors does not necessarily yield a similar 
estimate of mean bias, but sometimes quite contrasting values, especially if the number of 
cross-sections (trees) is small. This is because the area estimation error resulting from one 
diameter selection may estimate very poorly the expectation of the errors over (infinitely 
many) repeated diameter selections within a cross-section. Thus the diameter selection 
methods involving random (or Bitterlich) diameters, which we saw to yield overestimating 
within-cross-section bias irrespective of cross-section shape, may well produce negative 
area estimation errors with individual diameter selections, as a result of which also the 
mean of these errors over trees may be negative.

As a conclusion of the effect of non-circularity on cross-section area estimation, we would 
recommend using girth diameter in the circle area formula both for individual tree and stand 
total estimation, because this method involves no sampling error and produced in our data 
generally small overestimating systematic errors, with clearly the least between-cross-
sections variation in these errors among all the 22 diameter selection methods considered. 
Due to this small between-cross-sections variation, the estimator based on girth diameter 
would lend itself to modelling for bias correction. Measuring girth diameter is advisable 
also for growth estimation between two time points, as it gives the growth in mean diam-
eter over all the measurement directions and thus takes “automatically” into account the 
potentially asymmetric growth in non-circular cross-sections.
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Estimation of Stem Volume

In the theoretical consideration of stem volume estimation, we first dealt with the Laasa-
senaho (1982) volume equation, commonly used in Finland for predicting the stem volume 
of standing trees. The model is linear with respect to its parameters and involves tree 
height and diameters at the heights of 1.3 m and 6 m as the explanatory variables. For this 
volume estimation method together with those of the 22 diameter selection methods that 
involved random diameters, we derived expressions, as functions of diameter moments and 
tree height, of the systematic and sampling errors (the within-tree biases and variances) 
over all possible diameter selections within a tree. The diameter selection methods were 
applied both dependently and independently at the two observation heights within a stem: 
in the former, the diameter direction was selected at breast height, and the diameter at the 
upper height was then measured in the same direction; in the latter, the diameter directions 
were selected at each height independently of each other. The effect of diameter selection 
was separated from the model error (error inherent in the model, caused by variation in 
stem tapering and present even if the cross-sections at the heights of 1.3 m and 6 m were 
circular and their diameters were known without error) by defining the systematic errors 
with respect to the best estimate obtainable by the equation and not with respect to the 
estimated true volume (obtained by a more precise stem curve method). The expressions of 
the systematic and sampling errors became so intricate that no similar theoretical results as 
in area estimation, establishing systematic overestimation or underestimation by a diameter 
selection method, could be derived. A similar approach to quantify the diameter selection 
effect, however, can be taken with any linear volume equation, assuming the parameters 
known and the possibly involved tree height measured without error.

As the other volume estimation method, we considered a non-parametric stem curve 
interpolated with cubic splines between diameters observed at 8–11 heights in a stem, quite 
commonly used in Finland to estimate the stem volume of felled sample trees for research 
purposes. For this method, we presented a simple Monte Carlo integration way of estimat-
ing the systematic and sampling errors within a tree using a number of repeated volume 
estimations (realisations of the volume estimator) with the 22 diameter selection methods. 
Also here the diameter selection methods were applied both dependently and independently 
at the separate observation heights within a stem.

Finally, as a theoretical play, we investigated a theoretical way of estimating the errors 
of a general volume estimator, defined as a definite integral of an area estimation function 
that gives the estimate of cross-section area at all heights in the stem. We found that the 
systematic and sampling errors of such a volume estimator can be obtained by integrating 
the bias and covariance functions of the area estimation process corresponding to the area 
estimation function. In practice, we did not explicitly define an area estimation function 
corresponding to each of the 22 diameter selection methods in each tree, but considered the 
area estimation processes where the area estimator at each height was the circle area formula 
with one the 22 diameter selection methods; for each of these processes, we had discrete 
observations of estimated bias at 7–10 observation heights and of estimated covariance at 
all the 49–100 height combinations in each tree. From these observations, we constructed 
the bias and covariance functions by simple linear interpolation.

In our data of 50 stems for the Laasasenaho volume equation (the disc at the height of 6 
m was available only in 50 trees) and 79 stems for the cubic-spline-interpolated stem curve, 
we found that the commonly used diameter selection methods (girth diameter, diameter 
calipered in a random direction, mean of this diameter and its perpendicular, mean of two 
diameters calipered in random directions) yielded very similar systematic overestimation 
of stem volume within a tree: with all the methods, the mean relative within-tree bias 
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attributable to diameter selection of was about 1.2% with the Laasasenaho volume equa-
tion and about 1.5% with the cubic-spline-interpolated stem curve. The systematic errors 
in volume estimation were hence of the same magnitude as in area estimation. Whether all 
the diameters in a stem were taken in the same direction (dependent selection, the prevail-
ing practice) or whether the diameter measurement directions were chosen independently 
at each height (independent selection, a more laborious alternative) had no practical influ-
ence on the systematic errors. Ignoring non-convexity, which cannot be observed with the 
common measurement equipment from outside, reduced the systematic errors consider-
ably, 0.5–0.6 percentage units with both the volume estimation methods. The differences 
between the results obtained with the geometric vs. the arithmetic mean of diameters were 
unimportantly small.

In terms of the sampling error attributable to diameter selection, these diameter selec-
tion methods were found to differ from each other substantially, just as in area estimation, 
although with slightly smaller magnitude of errors. The girth diameter method involving 
no sampling variation was naturally pre-eminent. Among the other methods, perpendicular 
diameters yielded clearly the smallest sampling errors, the mean relative within-tree standard 
deviation of the volume estimation errors being 1.0% with the Laasasenaho volume equa-
tion and 0.7% with the cubic-spline-interpolated stem curve, whereas one and two random 
diameters yielded approximately triple and double that variation, respectively. Independent 
selection of diameters seemed to result in slightly smaller and less variable sampling errors 
than dependent selection, particularly with the spline-interpolated stem curve involving 
more diameters than the volume equation; the gain from independent selection was so 
modest, however, that it does not compensate for the necessarily increasing time usage in 
taking the measurements.

The consideration of the combined effect of the systematic and sampling errors reveals 
the advantageousness of the use of girth diameter: in terms of within-tree RMSE, the girth 
diameter method, lacking the within-tree sampling error, was clearly superior to the methods 
involving random diameters. This superiority became less pronounced when a larger number 
of diameters was involved in the volume estimation, as the sampling error component related 
to the use of random errors then decreased more than the bias component increased; hence, 
with the cubic-spline-interpolated stem curve, the difference between the use of girth and 
perpendicular random diameters was not as substantial as with the volume equation.

In our data, within the studied viewing angle range of 1.146°–3.624° (corresponding, 
with circular cross-sections, to the basal area factor range of 1–10 m2/ha), Bitterlich diam-
eters produced practically similar systematic and sampling errors as random diameters, no 
matter which volume estimation method was used. As discovered already in area estimation, 
however, if only one diameter can be measured, it would be advisable to take it parallel to 
plot radius in Bitterlich sampling, because the expected value of this diameter is always 
smaller than that of the diameter perpendicular to plot radius and often also smaller than 
that of a random diameter (with the uniform direction distribution).

Using the minimum and/or the maximum diameters and their perpendiculars resulted 
in clearly more variable systematic volume errors, with also underestimating values, than 
the girth diameter or random diameters. Some of these diameter selection methods (mean 
of the minimum diameter and its perpendicular, mean of the minimum and the maximum 
diameters) performed very well on average, producing only little additional bias on top of 
the model error. Yet it would be somewhat risky to recommend these methods even for the 
estimation of the sum of stem volumes in a stand, as they involve rather large uncertainty 
(large between-trees variation in within-tree biases).

With the Laasasenaho volume equation, it was possible to compare the diameter selection 
effect (the combination of the systematic error and the sampling error of a diameter selection 
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method within a tree) to the model error (the error inherent in the model due to variation 
in stem tapering). With all the methods considered, this diameter selection effect appeared 
much smaller than the model error. Also, the model error was found to be unassociated with 
the diameter selection effect; in other words, large model error and a poor performance of 
any diameter selection method, or vice versa, did not systematically coincide in our trees.

From the theoretical play with the general volume estimator we learnt that the bias and 
covariance functions of an area estimation process within a stem can be meaningfully 
estimated in the rather crude way of linear interpolation between the estimated biases and 
covariances of the area estimator at several heights along the stem: the integration of such 
bias and covariance functions resulted in very similar within-tree volume biases and sam-
pling errors as were obtained by repeated constructions and integrations of cubic-spline-
interpolated stem curves from diameters at the same heights.

As a conclusion of the effect of diameter selection on stem volume estimation, we would 
recommend to use the girth diameter for both individual tree and stand estimation, with 
both the Laasasenaho volume equation and the cubic-spline-interpolated stem curve. This 
is because this method involves no sampling error and yielded in our data generally small 
overestimating systematic errors, with the least between-trees variation of these errors 
among all the 22 diameter selection methods considered. Of the methods involving random 
diameters, the geometric mean of one random diameter and its perpendicular (or, diameters 
parallel and perpendicular to plot radius in Bitterlich sampling) could also be used for the 
prediction of individual trees with the spline-interpolated stem curve method.

Estimation of Stand Totals with Bitterlich Sampling

In the theoretical consideration of the estimation of stand totals from a Bitterlich sample, 
we found that non-circularity inflicts errors in the estimation of the inclusion probabilities 
of the trees. These probabilities are used in stand total estimators as the inverse weights of 
the treewise characteristics and estimated by assuming that the breast height cross-sections 
of the trees are circular, using the breast height diameters of the trees as the input variables. 
The errors induced by non-circularity in the inclusion probability estimates may cause bias 
in stand total estimators. They consist of the following two tree-specific components: (i) 
deviation of the true basal area factor of the tree from that of a circle, and (ii) deviation of 
the area estimate given by the circle area formula and the breast height diameter, selected 
by some method, from the convex area. The first component only depends on the shape of 
the breast height cross-section and is thus independent of the diameter selection method.

In the 80 breast height cross-sections of our data, the error components were found to 
counteract each other effectively, when the commonly used diameter selection methods 
(girth diameter, diameter calipered in a random direction, mean of this diameter and its 
perpendicular, mean of two diameters calipered in random directions) were employed: the 
bias implicated by the combined error was on average close to zero with the viewing angle 
1.146° (corresponding, with circular cross-sections, to the basal area factor of 1 m2/ha) and 
less than 0.4% overestimation with the viewing angle 3.624° (the basal area factor of 10 
m2/ha). The larger the viewing angle, the more variable the combined errors appeared to be 
and the larger part of the trees seemed to contribute to bias with an overestimating rather 
than underestimating input. The differences between these diameter selection methods were 
small, however, and with none of them the overestimating bias became larger than 2.2%.

In the theoretical part on Bitterlich sampling, we also worked out the result already 
presented by Matérn (1956) that the simple estimator of the relative basal area of a stand, 
that is, the number of trees selected in Bitterlich sampling times the basal area factor under 
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the circularity assumption, overestimates the true relative basal area, be the breast height 
cross-sections of whatever non-circular shape. In our data, we were then able to corroborate 
Matérn’s (1956) theoretical approximation that with the viewing angle of the magnitude of 
1° (corresponding, with circular cross-sections, to the basal area factor of about 1 m2/ha), 
the bias in relative basal area is about the same as we would get by calipering every stem 
in the stand in one randomly chosen direction; with larger viewing angles, the result did 
not hold any more.

In conclusion, it appears that although inflicting overestimating bias in theory, non-
circularity is not necessarily much to worry about in Bitterlich sampling of young Scots 
pine stands in practice, except when estimating relative basal area with the simple counting 
method. As Matérn (1984) wrote: “In practice there are of course more serious risks of bias 
or errors beyond control. They have to do with conditions of visibility, the correct height in 
which to look at the stem and the possible subjective errors in deciding whether a bound-
ary case (when the stem subtends an angle near [the viewing angle] α) shall be included 
or not.” On the basis of theoretical example shapes, it appears that “boundary cases” can 
be reasonably checked with the usual method of measuring the diameter perpendicular 
to plot radius and computing the critical distance with the circular cross-section formula.

The overall conclusion of this study is that the systematic effects of non-circularity of tree 
cross-sections deserve attention in the estimation of cross-section area and stem volume 
as well as in Bitterlich sampling. The small magnitude of errors that we found in our data 
consisting mostly of pulpwood-size stems cannot be generalised to Scots pine stems of larger 
size or to other tree species. And, as already pointed out in the introductory chapter of this 
study, even if the systematic errors were small in magnitude, compared to measurement 
errors (e.g. Päivinen et al. 1992), for instance, they may cumulate into substantial errors in 
large area inventories. Finally, in the research context, the effects of non-circularity may 
appear as confounding factors, which we wish to eliminate in order to clarify our analyses 
and consolidate our results.

Future Work

We chose Scots pine as the species to be investigated because of its commonness and 
economic importance in Finland. Among the Finnish tree species, however, it is probably 
the most regular in shape, and thus the errors quantified in the data of this study can be 
thought to make a sort of “lower bound” of errors over tree species. A natural line of future 
work would then be to repeat the analyses of this study on other, potentially more irregular 
species, in Finland particularly on Norway spruce and silver birch.

Another straightforward line of future work, possible to carry out already with the data 
of this study, would be to combine the errors in the inclusion probabilities in Bitterlich 
sampling with the errors in stem volume estimates, both depending on the diameter selec-
tion method, to assess the bias caused by non-circularity on the stand volume estimate. 
This could of course be done also for any other treewise characteristic of interest for which 
data are available.

For forest inventory purposes, empirical models for bias correction in cross-section area 
and stem volume could be constructed, with the girth diameter as the diameter selection 
method. In these models with the within-cross-section or within-tree bias as the response 
variable, the explanatory variables should represent the factors influencing the process of 
non-circularity formation, such as site conditions (prevailing winds, sloping topography, 
potential snow load in canopy), management history of the stand and competition between 
the trees (growing space affecting crown size and symmetry), and tree age (indicating how 



934

Silva Fennica 46(5B), 2012 research articles

long the tree has been exposed to non-circularity formation). Gathering data appropriate 
for this kind of modelling, however, seems rather laborious and demanding.

Modelling cross-section shape appears challenging, as obviously it is not possible to depict 
it precisely enough with combinations of geometrical figures. Estimating the boundaries of 
convex closures on the basis of radii information, classifying these closed curves by principal 
components analysis (see. e.g. Ramsay and Silverman 1997), and associating the resulting 
classes of curves with environmental factors could be one approach. Mechanistic model-
ling could make another, perhaps a bit fantastic, approach: one could start by modelling 
physically the structure that a stem needs to develop to resist the torsional moment caused 
by wind, leaning position, or crown mass imbalance; modelling the crown development, 
however, is much more intricate as it requires knowledge of all the growing conditions of 
the tree, including spatial pattern of competing trees, distribution of light, and availability 
of water and nutrients for the tree.
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Appendix A. Support Function of Closed Convex Set or Curve in Plane

The following précis is mostly adapted from Santaló (1976); for more details, see for exam-
ple Rockafellar (1970), Stoyan et al. (1986), Stoyan and Stoyan (1994), and Webster (1994).

Any straight line in the plane is uniquely determined by its distance p∈[0, ∞) from the 
origin O and by the angle θ∈[0, 2π) of its normal with the positive x-axis. As is easily seen 
by using suitably chosen right-angled triangles (Fig. A1), such a line intersects x-axis in the 
point (p/cosθ, 0) and y-axis in the point (0, p/sinθ), and thus has the slope k=–cosθ/sinθ and 
the following equation termed the Hesse normal form (Stoyan and Stoyan 1994):

y = − cosθ
sinθ

x + p
sinθ

⇔ xcosθ+ ysinθ− p = 0 .  (A1)

If we let the distance p vary with the angle θ∈[0, 2π), we obtain a family of lines

F(x, y, θ) = xcosθ+ ysinθ− p(θ) = 0 ,  (A2)

all  the members of which are  tangents of a common closed curve,  the envelope of this 
family of lines (Fig. A2). In general, the envelope of a family of curves is defined as the 
curve every point of which is a point of contact with a member curve of the family (Santaló 
1976). The points of the envelope are the projections onto the xy-plane of those points on 
the surface F(x, y, θ)=0 for which the tangent plane is parallel to the θ-axis; thus the para-
metric representation for the co-ordinates of the envelope is obtained by solving x and y 
(i.e., by eliminating θ) from the pair of equations

Fig. A1. Parameterisation of a line by its distance 
p from the origin O and by the angle θ of its 
normal with the x-axis, and determination of 
the points (x0, 0) and (0, y0) where the line 
intersects the co-ordinate axes.

Fig. A2. The  boundary  of  a  convex  set  as  the 
envelope of a family of lines parameterised 
by the angles θ∈[0, 2π) of their normals with 
respect to the x-axis and by their distances 
p(θ)  from  the  origin.  The  distance  func-
tion p:[0, 2π)→(0, ∞) is termed the support 
function of the set and the tangent lines are 
referred to as the support lines of the set.
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F(x, y, θ) = 0
∂F(x, y, θ)

∂θ
= 0

⎧

⎨
⎪

⎩
⎪

⇔
xcosθ+ ysinθ− p(θ) = 0
−xsinθ+ ycosθ− ′p (θ) = 0  ,

⎧
⎨
⎪

⎩⎪  

(A3)

which results in

 
x = x(θ) = p(θ)cosθ− ′p (θ)sinθ
y = y(θ) = p(θ)sinθ+ ′p (θ)cosθ

⎧
⎨
⎪

⎩⎪  
(A4)

(Santaló 1976). 
If the envelope is a closed convex curve and hence forms the boundary of a convex set 

containing the origin O as its interior point, the distance function p:[0, 2π)→(0, ∞) is termed 
the support function of the set with reference to O, and the tangent lines determined by θ 
and p(θ) (Eq. A2) are referred to as the support lines of the set (Fig. A2). Note that although 
we have here restricted our consideration to the interval [0, 2π), p is actually a periodic 
function with the domain ∪n∈Z[n2π, (n+1)2π)=R.
A convex set is uniquely determined by its support function, which implies that differ-

ent convex sets have different support functions (see Rockafellar 1970, or Webster 1994, 
for the proofs). A periodic, twice differentiable and nonnegative function p is the support 
function of a convex set if and only if

p(θ)+ ′′p (θ) > 0  (A5)

for all θ (Santaló 1976).
From the boundary co-ordinates derived above (Eq. A4), we can calculate the perimeter 

and the area of the convex set by employing the very standard results available for para-
metric representations of curves (see e.g. Coxeter 1969, and Edwards and Penney 1994). 
For this, we need the first derivatives of the co-ordinates with respect to the parameter θ:

′x (θ) = −sinθ p(θ)+ ′′p (θ)⎡⎣ ⎤⎦
′y (θ) = cosθ p(θ)+ ′′p (θ)⎡⎣ ⎤⎦ .

⎧
⎨
⎪

⎩⎪
 

(A6)
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Now for the perimeter C we obtain

C = [ ′x (θ)]2 + [ ′y (θ)]2

0

2π

∫ dθ

 = p(θ)+ ′′p (θ)⎡⎣ ⎤⎦
2
(sin2 θ+ cos2 θ)

0

2π

∫ dθ

 = p(θ)+ ′′p (θ)
0

2π

∫ dθ

 = p(θ)+ ′′p (θ)⎡⎣ ⎤⎦dθ
0

2π

∫

 = p
0

2π

∫ (θ)dθ+ /
0

2π

′p (θ)

 = p
0

2π

∫ (θ)dθ+ ′p (2π)− ′p (0)

 = p
0

2π

∫ (θ)dθ ,

 

(A7)

where the absolute value in the third row becomes redundant because of the condition of 
Eq. A5, and the definite integral of p′(θ) in the fifth row vanishes because p′(0)=p′(2π) by 
the periodicity of p. The area AC, in turn, becomes

AC = 1
2

x(θ) ′y (θ)− y(θ) ′x (θ)⎡⎣ ⎤⎦dθ
0

2π

∫

 = 1
2

p(θ)cosθ− ′p (θ)sinθ⎡⎣ ⎤⎦{ p(θ)cosθ+ ′′p (θ)cosθ⎡⎣ ⎤⎦
0

2π

∫
 + p(θ)sinθ+ ′p (θ)cosθ⎡⎣ ⎤⎦ p(θ)sinθ+ ′′p (θ)sinθ⎡⎣ ⎤⎦ }dθ

 = 1
2

p(θ)2(sin2 θ+ cos2 θ)+ p(θ) ′′p (θ)(sin2 θ+ cos2 θ)⎡⎣ ⎤⎦dθ
0

2π

∫

 = 1
2

p(θ)2 + p(θ) ′′p (θ)⎡⎣ ⎤⎦dθ
0

2π

∫  ,
 

(A8)

which can be further elaborated by integration by parts and by recalling that p(0)=p(2π) 
and p′(0)=p′(2π):
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AC = 1
2

p(θ)2 + p(θ) ′′p (θ)⎡⎣ ⎤⎦dθ
0

2π

∫

 = 1
2

p
0

2π

∫ (θ)2dθ+ 1
2

/
0

2π

p(θ) ′p (θ)− ′p
0

2π

∫ (θ)2dθ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = 1
2

p(θ)2 − ′p (θ)2⎡⎣ ⎤⎦dθ
0

2π

∫ + 1
2

p(2π) ′p (2π)− p(0) ′p (0)⎡⎣ ⎤⎦

 = 1
2

p(θ)2 − ′p (θ)2⎡⎣ ⎤⎦dθ
0

2π

∫  .

 

(A9)
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Appendix B. Horvitz-Thompson Theorem

This précis is collated from Overton and Stehman (1995), Cassel et al. (1977), Särndal et 
al. (1992), and Schreuder et al. (1993), the original reference being the paper of Horvitz 
and Thompson (1952).

Let I denote a finite population of distinct and identifiable units — the trees within an 
area in the Bitterlich sampling case — and let S denote the set of all possible samples taken 
from I under the chosen sampling design. Further, let the sampling design be determined 
by a probability function P:S→[0, 1], assigning to each sample s∈S the probability P(s) of 
selecting that sample and satisfying Σs∈S P(s) = 1. The sampling is a said to be probability 
sampling, if P(s) is known for all s∈S and if every unit i∈I has a non-zero probability of 
being included into a sample.
The first order inclusion probability πi = Pr{i∈s} = Σs∈S: i∈s P(s) for the unit i∈I is the 

probability that the unit i will be included in a sample taken from the population I by 
using the sampling design P. The second order inclusion probability πij = Pr{i∈s, j∈s} = 
Σs∈S: i, j∈s P(s) for sample units i and j, in turn, is the probability that units i and j are both 
included in a sample. The inclusion probabilities are determined by the sampling design P 
and can thus be specified without reference to the variable that we wish to estimate.
The Horvitz-Thompson  theorem deals with estimating a population  total Y = Σi∈I Yi 

from the measurements taken from the population units included in a probability sample 
s. Given that sampling is carried out without replacement, the theorem may be stated as 
follows: The Horvitz-Thompson estimator of Y

ŶHT(s) =
Yi
π ii∈s

∑  (B1)

is unbiased with respect to the sampling design P and has variance

Var[ŶHT(s)] = Yi
2

i∈I
∑ 1

π i
−1

⎛

⎝⎜
⎞

⎠⎟
+

j∈I
∑

i∈I
∑

j≠i

YiYj
π ij
π iπ j

−1
⎛

⎝
⎜

⎞

⎠
⎟  

(B2)

In order to corroborate the theorem, we need to introduce a random variable δi(s) indicating 
whether the unit i is included in the sample s:

δ i (s) =
1, i∈s
0, i∉s ,

⎧
⎨
⎪

⎩⎪
 

(B3)

in which randomness — as in ŶHT(s) — stems from the selection of the sample s accord-
ing to the sampling design P. The expectation of this indicator with respect to the sampling 
design equals the inclusion probability of the unit i:

E[δ i (s)] = 1⋅Pr{i∈s} + 0⋅Pr{i∉s} = Pr{i∈s} = π i  .  (B4)

Now we see the unbiasedness of ŶHT(s) in a straightforward manner:
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E[ŶHT(s)] = E
Yi

π ii∈s
∑

⎛

⎝⎜
⎞

⎠⎟

 = E δ i
i∈I
∑ (s)

Yi

π i

⎡

⎣
⎢

⎤

⎦
⎥

 = E
i∈I
∑ [δ i (s)]

Yi

π i

 = π i
i∈I
∑ Yi

π i

 = Yi
i∈I
∑

 = Y .  

(B5)

In order to derive the variance of ŶHT(s), we need note that

Var[δ i (s)] = E[δ i (s)
2] − E[δ i (s)]{ }2

= 12 ⋅Pr{i∈s} + 02 ⋅Pr{i∉s} − π i
2 = π i − π i

2 = π i (1− π i ) ,   
 

(B6)

and that

Cov[δ i (s), δ j(s)] = E[δ i (s)δ j(s)] − E[δ i (s)]E[δ j(s)]

 = 1⋅1⋅Pr{i∈s, j∈s} + 1⋅0⋅Pr{i∈s, j∉s} + 0⋅1⋅Pr{i∉s, j∈s}
 + 0⋅0⋅Pr{i∉s, j∉s} − π iπ j

 = Pr{i∈s, j∈s} − π iπ j

 = π ij − π iπ j  .
 

(B7)

Now

Var[ŶHT(s)] = Var
Yi

π ii∈s
∑

⎛

⎝⎜
⎞

⎠⎟

 = Var δ i
i∈I
∑ (s)

Yi

π i

⎡

⎣
⎢

⎤

⎦
⎥

 = V
i∈I
∑ ar[δ i (s)]

Yi
2

π i
2 +

j∈I
∑

i∈I
∑

j≠i

Cov[δ i (s), δ j(s)]
Yi

π i

Yj

π j

 = π i
i∈I
∑ (1− π i )

Yi
2

π i
2 +

j∈I
∑

i∈I
∑

j≠i

(π ij − π iπ j)
Yi

π i

Yj

π j

 = Yi
2

i∈I
∑ 1

π i

−1
⎛

⎝⎜
⎞

⎠⎟
+

j∈I
∑

i∈I
∑

j≠i

YiYj

π ij

π iπ j

−1
⎛

⎝
⎜

⎞

⎠
⎟  .

 

(B8)
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One unbiased estimator of this variance for sample s is given by

Vâr[ŶHT(s)] =
Yi

2

π ii∈s
∑ 1

π i

−1
⎛

⎝⎜
⎞

⎠⎟
+

j∈s
∑

i∈s
∑

j≠i

YiYj

π ij

π ij

π iπ j

−1
⎛

⎝
⎜

⎞

⎠
⎟  ,

 

(B9)

which requires that all the second order inclusion probabilities be non-zero. In fact, Var(ŶHT) 
can be unbiasedly estimated if and only if πij>0 for all i≠j.
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Appendix C. Expressing Boundary Co-ordinates, Radii and Total Area of Inclusion 
Region of Tree in Bitterlich Sampling in Terms of Support Function of Breast Height 
Cross-Section

We consider selecting a tree by Bitterlich sampling with α∈(0, π) as the viewing angle. 
We assume the ground level to be horizontal, the observation level to be at breast height 
and parallel to the ground level, and the viewing point to be uniformly randomly located 
in the region.
We start by finding the mathematical expressions for the boundary co-ordinates and area 

of the inclusion region of a tree, that is, the region from which the tree is seen in an angle 
greater or equal to α. We set the planar co-ordinate system parallel to the ground level so 
that the origin is in the centre of gravity of the breast height cross-section of the tree (or in 
the pith of the cross-section), and denote by p(·) the support function of the convex closure 
of the breast height cross-section. By the definition of the support function (see Chapter 2 
and Appendix A), the family of straight lines

xcosθ + ysinθ − p(θ) = 0 ,   (C1)

θ∈[0,  2π),  comprises  all  the  tangents of  the  convex closure of  the  cross-section;  these 
lines have distance p(θ) from the origin and direction perpendicular to the angle θ (Fig. 
C1). From this set of tangents, we want to single out those pairs that intersect each other 
at angle α; obviously, the pairs of lines with directions perpendicular to θ and θ+π–α meet 
this condition (Fig. C1; Matérn 1956, p. 23). The equations of these lines are expressed as

xcosθ + ysinθ − p(θ) = 0
xcos(θ+ π −α) + ysin(θ+ π −α) − p(θ+ π −α) = 0 ,

⎧
⎨
⎪

⎩⎪  
(C2)

which is equivalent to

xcosθ + ysinθ − p(θ) = 0
xcos(θ−α) + ysin(θ−α) + p(θ+ π −α) = 0 ,

⎧
⎨
⎪

⎩⎪  
(C3)

Fig. C1. Two tangents of the convex closure of a cross-
section  intersecting  at  angle  α:  the  intersection 
point is (x, y); the direction angles of the perpen-
diculars of the tangents are θ and θ+π-α; and the 
distances of the tangents from the origin are p(θ) 
and p(θ+π-α), where p(·) is the support function 
of the convex closure.

θ

α π/2-α

p(θ+π-α)

α

θ+π-α

p(θ)

(x,y)

x

y
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since cos(θ+π)=–cosθ and sin(θ+π)=–sinθ. By solving this pair of equations, a parametric 
presentation for the curve of the intersection points is easily obtained: From the first equa-
tion we solve x

x = 1
cosθ

p(θ)− ysinθ⎡⎣ ⎤⎦ ,  (C4)

and substitute this in the second equation

1
cosθ

p(θ) − ysinθ⎡⎣ ⎤⎦cos(θ−α) + ysin(θ−α) + p(θ+ π −α) = 0 ,
 

(C5)

from which we obtain y

y = p(θ)cos(θ−α) + p(θ+ π −α)cosθ
sinθcos(θ−α) − sin(θ−α)cosθ

 = 1
sinα

p(θ)cos(θ−α) + p(θ+ π −α)cosθ⎡⎣ ⎤⎦ ,  

(C6)

since cos(–θ)=cosθ and sin(–θ)=–sinθ for all θ and

sinθcos(θ−α) − sin(θ−α)cosθ = sinθcos(α − θ) + sin(α − θ)cosθ
 = sin[θ+ (α − θ)]
 = sin(α) .  

(C7)

With this y, we then we turn back to the “solved” x:

x = 1
cosθ

p(θ)− ysinθ⎡⎣ ⎤⎦

 = p(θ)
cosθ

− sinθ
sinαcosθ

p(θ)cos(θ−α) + p(θ+ π −α)cosθ⎡⎣ ⎤⎦

 = − 1
sinα

p(θ)sin(θ−α) + p(θ+ π −α)sinθ⎡⎣ ⎤⎦ ,

 

(C8)

where the last form is obtained by expanding sinα into sinθcos(θ–α)–sin(θ–α)cosθ and then 
back. We have hence ended up in the following intersection points:

x = x(θ; α) = − 1
sinα

p(θ)sin(θ−α) + p(θ+ π −α)sinθ⎡⎣ ⎤⎦

y = y(θ; α) = 1
sinα

p(θ)cos(θ−α) + p(θ+ π −α)cosθ⎡⎣ ⎤⎦

⎧

⎨
⎪⎪

⎩
⎪
⎪

 

(C9)

(Matérn 1956, p. 23), which constitute the boundary of the inclusion region M(α).
From the boundary co-ordinates a parametric representation for the length of the radius 

of the inclusion region, that is, for the distance from the inclusion region boundary to the 
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pith of the breast height cross-section of the tree, is straightforward to derive:

r(θ; α) = x(θ; α)2 + y(θ; α)2

 = 1
sin2 α

⎛
⎝⎜

⎞
⎠⎟

1
2

p(θ)2 sin2(θ−α) + cos2(θ−α)⎡⎣ ⎤⎦ + p(θ+ π −α)2(sin2 θ+ cos2 θ){
 + 2p(θ)p(θ+ π −α) cos(θ−α)cosθ + sin(θ−α)sinθ⎡⎣ ⎤⎦ }

1
2

 = 1
sinα

p(θ)2 + p(θ+ π −α)2 + 2p(θ)p(θ+ π −α)cosα  ,
 

 

(C10)

since  sinα>0  for all α∈(0, π),  sin2θ+cos2θ=1  for all θ and cos(θ–α)cosθ+sin(θ–α)sinθ= 
cos[θ–(θ–α)]=cosα. Note that the direction of this radius is not θ but θ+cos–1[p(θ)/r(θ; α)] 
(Fig. C2).
In order to calculate the area of the inclusion region, we need to differentiate x(θ; α) and 

y(θ; α) with respect to θ:

′x (θ; α) = − 1
sinα

′p (θ)sin(θ−α) + p(θ)cos(θ−α) + ′p (θ+ π −α)sinθ + p(θ+ π −α)cosθ⎡⎣ ⎤⎦

′y (θ; α) = 1
sinα

′p (θ)cos(θ−α) − p(θ)sin(θ−α) + ′p (θ+ π −α)cosθ − p(θ+ π −α)sinθ⎡⎣ ⎤⎦ ,

⎧

⎨
⎪⎪

⎩
⎪
⎪

  
 

(C11)

By these, and by recalling that sin2θ+cos2θ=1, we then attain the following expression for 
the area of M(α) (Coxeter 1969, Edwards and Penney 1994):

Fig. C2. Determination of the direction τ of the inclusion 
region radius r(θ; α): cos(τ-θ)=p(θ)/r(θ; α).

τ

α

p(θ)

x(θ,α)

x

y

θ

y(θ,α)

r(θ,α)
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|M(α) | = 1
2

x(θ; α) ′y (θ; α) − y(θ; α) ′x (θ; α)⎡⎣ ⎤⎦dθ
0

2π

∫

 = 1
2sin2 α

p
0

2π

∫ (θ)2dθ + p
0

2π

∫ (θ+ π −α)2dθ + 2cosα p
0

2π

∫ (θ)p(θ+ π −α)dθ
⎧
⎨
⎪

⎩⎪

 + sinα p
0

2π

∫ (θ) ′p (θ+ π −α)dθ − ′p
0

2π

∫ (θ)p(θ+ π −α)dθ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪
 .  (C12)

This expression can indeed be considerably reduced: By the periodicity of p(·), which 
implies  that  the definite  integral over  the whole period does not depend on the starting 
point of the integration, we get

p
0

2π

∫ (θ)2dθ + p
0

2π

∫ (θ+ π −α)2dθ = 2 p
0

2π

∫ (θ)2dθ .  (C13)

Further,  by  adding  and  subtracting  the  term  ∫p(θ)p′(θ+π–α)dθ,  by  applying  integration 
by  parts  “backwards”,  and  by  again  making  use  of  the  periodicity  of  p(·),  by  which 
p(θ+2nπ)=p(θ) for all n∈N, we get

 p
0

2π

∫ (θ) ′p (θ+ π −α)dθ − ′p
0

2π

∫ (θ)p(θ+ π −α)dθ

= 2 p
0

2π

∫ (θ) ′p (θ+ π −α)dθ − p
0

2π

∫ (θ) ′p (θ+ π −α)dθ + ′p
0

2π

∫ (θ)p(θ+ π −α)dθ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 2 p
0

2π

∫ (θ) ′p (θ+ π −α)dθ − /
0

2π

p(θ)p(θ+ π −α)

= 2 p
0

2π

∫ (θ) ′p (θ+ π −α)dθ − p(2π)p(3π −α)− p(0)p(π −α)⎡⎣ ⎤⎦

= 2 p
0

2π

∫ (θ) ′p (θ+ π −α)dθ .
 

(C14)

The area of the inclusion region hence becomes

|M(α) | = 1
sin2α

p(θ)2 + p(θ)p(θ+ π −α)cosα + p(θ) ′p (θ+ π −α)sinα⎡⎣ ⎤⎦dθ
0

2π

∫  
(C15)

(cf. Matérn 1956, p. 23).



951

Pulkkinen On Non-Circularity of Tree Stem Cross-Sections: Effect of Diameter Selection …

Appendix D. Expressing Probability Distribution of Bitterlich Diameter Direction in 
Terms of Support Function of Breast Height Cross-Section of Tree

We  consider  selecting  a  tree  by  Bitterlich  sampling  with  α  as  the  viewing  angle  and 
measuring its breast height diameter in the plot radius direction, that is, parallel to the line 
segment from the viewing point to the (assumed) centre of gravity, or pith, of the breast 
height cross-section of the tree. We assume the ground level to be horizontal, the observa-
tion level to be at breast height and parallel to the ground level, and the viewing point to be 
uniformly randomly located in the region of interest. We set the planar co-ordinate system 
on the observation level in the way that the origin lies in the centre of gravity, or pith, of 
the breast height cross-section of the tree and denote by p(·) the support function, defined 
with respect to the origin, of the convex closure of the cross-section.
As described in Section 4.2.1, the probability that the direction ξ of the diameter meas-

ured parallel to plot radius in Bitterlich sampling is between arbitrarily chosen directions 
t1 and t2, t1<t2, equals the probability that the plot radius direction τ lies either between t1 
and t2 or between t1+π and t2+π (Fig. 19). These are probabilities that the viewing point is 
located in the sectors of the inclusion region M(α) edged by the rays emanating from the 
tree pith in either directions t1 or t2 or directions t1+π or t2+π (Fig. 19). The probabilities 
can be expressed as simple ratios of the sector areas to the inclusion region area |M(α)|:

Pr{t1 ≤ ξ ≤ t2; α} = Pr{t1 ≤ τ ≤ t2; α} + Pr{t1 + π ≤ τ ≤ t2 + π; α}

 =
|M(α)t1

t2 |

|M(α) |
+

|M(α)t1+π
t2+π |

|M(α) |
 .

 

(D1)

As shown in Appendix C (Eqs. C12 and C15), |M(α)| is obtained by integration from the 
parametric representation of the boundary co-ordinates of M(α)  involving  the  support 
function p(·) of the convex closure of the cross-section:

|M(α) | = 1
2

x(θ; α) ′y (θ; α) − y(θ; α) ′x (θ; α)⎡⎣ ⎤⎦dθ
0

2π

∫

 = 1
sin2 α

g
0

2π

∫ (θ; α)dθ ,
 

(D2)

where

g(θ; α) = p(θ)2 + p(θ)p(θ+ π −α)cosα + p(θ) ′p (θ+ π −α)sinα .  (D3)

However, the area of the sector of M(α) is not attained by simply changing the integra-
tion limits (0, 2π) above to (t1, t2) (or to (t1+π, t2+π)) . This is because θ in the parametric 
representation of the boundary point co-ordinates (x(θ; α), y(θ; α)) does not indicate the 
direction of the boundary point (i.e., the direction of the radius of the inclusion region). 
Instead, θ is the angle that the perpendicular of the leftward tangent of the cross-section 
drawn from the boundary point forms with the positive x-axis (Fig. C2 in Appendix C). 
Therefore, we need to transform the integration limits (t1, t2) into (θ(t1; α), θ(t2; α)), where 
θ(t; α) is a function of t and α obtained by solving θ from
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cos(t − θ) = p(θ)
r(θ)

 = p(θ)
1

sinα
p(θ)2 + p(θ+ π −α)2 + 2p(θ)p(θ+ π −α)cosα

 ,

 

(D4)

where r(θ) is the distance between the boundary point and the tree pith (i.e., the radius of the 
inclusion region in direction t; Fig. C2 in Appendix C). The area of the sector then becomes

|M(α)t1

t2 | = 1
2

x(θ; α) ′y (θ; α) − y(θ; α) ′x (θ; α)⎡⎣ ⎤⎦dθ
θ( t1; α )

θ( t2 ; α )

∫

 = 1
sin2 α

g
θ( t1; α )

θ( t2 ; α )

∫ (θ; α)dθ .
 

(D5)

With geometrical consideration (Fig. D1), we see that for the integration limit transforma-
tion it holds that θ(t+π; α)=θ(t; α)+π for all t. Accordingly, the area of the sector between 
the directions t1+π and t2+π is given by

|M(α)t1+π
t2+π | = 1

sin2 α
g

θ( t1+π; α )

θ( t2+π; α )

∫ (θ; α)dθ

 = 1
sin2 α

g
θ( t1; α )+π

θ( t2 ; α )+π

∫ (θ; α)dθ

 = 1
sin2 α

g
θ( t1; α )

θ( t2 ; α )

∫ (θ+ π; α)dθ .
 

(D6)

Fig. D1. Illustration of the relation between the direction t of the inclusion region radius 
and the angle θ of the perpendicular of the leftward cross-section tangent that makes 
up the left edge of the viewing sector (cf. Figs. C1 and C2 in Appendix C). Obvi-
ously, the angle that corresponds to the radius direction t+π is θ+π. In other words, if 
t is transformed into θ(t; α)=θ, then t+π is transformed into θ(t+π; α)=θ+π=θ(t; α)+π.

t+π (-2π)

α

θ α

θ+π

t x

y
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Due to the periodicity of p(·), by which p(θ+2nπ)=p(θ) and p′(θ+2nπ)=p′(θ) for all n∈N,

g(θ+ π; α) = p(θ+ π)2 + p(θ+ π)p(θ+ 2π −α)cosα + p(θ+ π) ′p (θ+ 2π −α)sinα

 = p(θ+ π)2 + p(θ+ π)p(θ−α)cosα + p(θ+ π) ′p (θ−α)sinα .   
 (D7)

Now the probability that the direction ξ of the diameter measured parallel to plot radius is 
between t1 and t2 becomes

Pr{t1 ≤ ξ ≤ t2; α} =
|M(α)t1

t2 |

|M(α) |
+

|M(α)t1+π
t2+π |

|M(α) |

 =

1
sin2 α

g(θ; α) + g(θ+ π; α)⎡⎣ ⎤⎦dθ
θ( t1; α )

θ( t2 ; α )

∫
1

sin2 α
g

0

2π

∫ (θ; α)dθ

 = C(α) g(θ; α) + g(θ+ π; α)⎡⎣ ⎤⎦dθ
θ( t1; α )

θ( t2 ; α )

∫  ,
 

(D8)

where

C(α) = g
0

2π

∫ (θ; α)dθ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

 = p(θ)2 + p(θ)p(θ+ π −α)cosα + p(θ) ′p (θ+ π −α)sinα⎡⎣ ⎤⎦dθ
0

2π

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

−1

 

(D9)

is the scaling factor independent of t1 and t2. From this probability (Eq. D8), the cumula-
tive distribution function Fξ(· ; α) of ξ∈[0, π) is obtained by setting t1=0 and t2=t, t∈[0, π):

Fξ (t; α) = Pr{ξ ≤ t; α}

 = C(α) g(θ; α) + g(θ+ π; α)⎡⎣ ⎤⎦dθ
θ(0; α )

θ( t; α )

∫

 = C(α) p(θ)2 + p(θ+ π)2 + cosα p(θ)p(θ+ π −α) + p(θ+ π)p(θ−α)⎡⎣ ⎤⎦{
θ(0; α )

θ( t; α )

∫
 + sinα p(θ) ′p (θ+ π −α) + p(θ+ π) ′p (θ−α)⎡⎣ ⎤⎦ }dθ .

  
 

(D10)

As the direction transformation function θ(u; α) is continuously differentiable within the 
domain u∈[0, π) (which is evident again by geometrical consideration), the definite integral 
above can be expressed as follows with the original directions as the integration limits:
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g(θ; α) + g(θ+ π; α)⎡⎣ ⎤⎦dθ
θ(0; α )

θ( t; α )

∫ = g[θ(u; α); α] + g[θ(u; α)+ π; α]{ } ′θ (u; α)du
0

t

∫  ,

 

(D11)

where θ′(u; α) is the derivative of θ(u; α) with respect to u. Evidently, the resulting distri-
bution function

Fξ (t; α) = C(α) g[θ(u; α); α] + g[θ(u; α)+ π; α]{ } ′θ (u; α)du
0

t

∫  
(D12)

is the integral function of the probability density function

fξ (t; α) = ′Fξ (t; α)

 = C(α) g[θ(t; α); α] + g[θ(t; α)+ π; α]{ } ′θ (t; α)

 = C(α) p[θ(t; α)]2 + p[θ(t; α)+ π]2{
 + cosα p[θ(t; α)]p[θ(t; α)+ π −α] + p[θ(t; α)+ π]p[θ(t; α)−α]{ }
 

+ sinα p[θ(t; α)] ′p [θ(t; α)+ π −α] + p[θ(t; α)+ π] ′p [θ(t; α)−α]{ }} ⋅
′θ (t ; α) .

  
 

(D13)

As an example, let us consider the case where the breast height cross-section of a tree is a 
circle with radius R. In this case, p(θ)=R and p′(θ)=0 for all θ∈[0, π), and hence

g(θ; α) + g(θ+ π; α) = R2 + R2 cosα + R2 + R2 cosα

 = 2R2(1+ cosα)
 

(D14)

(see Eqs. D3 and D7), which is invariant of θ. Further, the scaling coefficient becomes

C(α) = (R2 + R2 cosα)
0

2π

∫ dθ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= 1
2πR2(1+ cosα)

 .
 

(D15)

(see Eq. D9). The radius of the inclusion region is given by

r(θ; α) = 1
sinα

R2 + R2 + 2R2 cosα

 =
R 2(1+ cosα)

sinα
 

(D16)

(see Eq. D4), and thus the direction mapping becomes

 cos(u − θ) = p(θ)
r(θ; α)

= R
R 2(1+ cosα)

sinα

= sinα
2(1+ cosα)

⇔ θ = θ(u; α) = u − cos−1 sinα
2(1+ cosα)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 ,

 

(D17)
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for which θ′(u; α)=1 for all u. Now, combining these results, we obtain the density of the 
direction of the diameter taken parallel to the plot radius:

fξ (t; α) = C(α) g(θ; α) + g(θ+ π; α)⎡⎣ ⎤⎦ ′θ (t; α)

 = 1
2πR2(1+ cosα)

⋅ 2R2(1+ cosα) ⋅1

 = 1
π

 ,
 

(D18)

which is the density function of the uniform distribution over [0, π). This is exactly what it 
should be: if the cross-section is circular, also the inclusion region is circular, all the direc-
tions are equally likely to become the plot radius direction, and hence all the diameters 
(which happen to be equal in this case) are equally likely to be measured.
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Appendix E. Within-Tree Expectations of Volume Predictions by Laasasenaho Volume 
Equation with Diameter Selection Methods 1–5, 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90

For the empirical part of this study, we aspire to express the within-tree expectations (Eq. 
114 in Section 5.1)

E[V̂L(θ)] = c1E[D(θ,1.3)2] + c2E[D(θ,1.3)3]

 + c3E[D(θ,1.3)D(θ,6)] + c4E[D(θ,6)2] ,  
(E1)

where the breast height diameter D(θ, 1.3) and upper diameter D(θ, 6) are obtained by one 
of the diameter selection methods 1–5, 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90 (see Sections 3.3.2 
and 4.2.2), in terms of diameter moments that are taken over one-dimensional direction 
distributions. Those moments are straightforward to estimate from the 180 diameters com-
puted for each cross-section in the empirical part of this study (refer to Chapters 6 and 7).

Dependent selection, where the breast height diameter and upper diameter are measured 
in the same direction chosen at breast height, is considered with all the diameter selection 
methods. Independent selection, where the diameter directions are selected at the two heights 
independently, is considered only with the methods 1–5; this is because independent selec-
tion is practically unfeasible with Bitterlich sampling.

Diameter Selection Methods 1–5: Diameters with Uniform Direction Distribution

Dependent selection is presented in a) and independent selection in b).

1. a) D(θ, 1.3)=D(θ, 1.3) and D(θ, 6)=D(θ, 6), θ~Unif(0, π):

E[V̂L1(θ)] = c1E[D(θ, 1.3)2] + c2E[D(θ, 1.3)3]

 + c3E[D(θ, 1.3)D(θ, 6)] + c4E[D(θ, 6)2]  
(E2)

1. b) D(θ, 1.3)=D(θ1, 1.3) and D(θ, 6)=D(θ2, 6), θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L1(θ)] = c1E[D(θ1, 1.3)2] + c2E[D(θ1, 1.3)3]

 + c3E[D(θ1, 1.3)]E[D(θ2 , 6)] + c4E[D(θ2 , 6)2]  
(E3)

2. a) D(θ, 1.3)=[D(θ, 1.3)+D(θ+π/2, 1.3)]/2 and D(θ, 6)=[D(θ, 6)+D(θ+π/2, 6)]/2, θ~Unif(0, π):

E[V̂L2(θ)] =
c1

2
E[D(θ, 1.3)2] + E[D(θ, 1.3)D(θ+ π / 2, 1.3)]{ }

 +
c2

4
E[D(θ, 1.3)3] + 3E[D(θ, 1.3)2 D(θ+ π / 2, 1.3)]{ }

 +
c3

2
E[D(θ, 1.3)D(θ, 6)] + E[D(θ, 1.3)D(θ+ π / 2, 6)]{ }

 +
c4

2
E[D(θ, 6)2] + E[D(θ, 6)D(θ+ π / 2, 6)]{ }

 

(E4)
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2. b) D(θ, 1.3)=[D(θ1, 1.3)+D(θ1+π/2, 1.3)]/2 and D(θ, 6)=[D(θ2, 6)+D(θ2+π/2, 6)]/2,  
θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L2(θ)] =
c1

2
E[D(θ1, 1.3)2] + E[D(θ1, 1.3)D(θ1 + π / 2, 1.3)]{ }

 +
c2

4
E[D(θ1, 1.3)3] + 3E[D(θ1, 1.3)2 D(θ1 + π / 2, 1.3)]{ }

 + c3E[D(θ1, 1.3)]E[D(θ2 , 6)]

 +
c4

2
E[D(θ2 , 6)2] + E[D(θ2 , 6)D(θ2 + π / 2, 6)]{ }  

(E5)

3. a) D(θ, 1.3)=[D(θ, 1.3)D(θ+π/2, 1.3)]1/2 and D(θ, 6)=[D(θ, 6)D(θ+π/2, 6)]1/2, θ~Unif(0, π):

E[V̂L3(θ)] = c1E[D(θ, 1.3)D(θ+ π / 2, 1.3)]

 + c2E [D(θ, 1.3)D(θ+ π / 2, 1.3)]3/2{ }
 + c3E [D(θ, 1.3)D(θ+ π / 2, 1.3)D(θ, 6)D(θ+ π / 2, 6)]1/2{ }
 + c4E[D(θ, 6)D(θ+ π / 2, 6)]

 

(E6)

3. b) D(θ, 1.3)=[D(θ1, 1.3)D(θ1+π/2, 1.3)]1/2 and D(θ, 6)=[D(θ2, 6)D(θ2+π/2, 6)]1/2,  
θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L3(θ)] = c1E[D(θ1, 1.3)D(θ1 + π / 2, 1.3)]

 + c2E [D(θ1, 1.3)D(θ1 + π / 2, 1.3)]3/2{ }
 + c3E [D(θ1, 1.3)D(θ1 + π / 2, 1.3)]1/2{ }E [D(θ2 , 6)D(θ2 + π / 2, 6)]1/2{ }
 + c4E[D(θ2 , 6)D(θ2 + π / 2, 6)]

  
 

(E7)

4. a) D(θ, 1.3)=[D(θ1, 1.3)+D(θ2, 1.3)]/2 and D(θ, 6)=[D(θ1, 6)+D(θ2, 6)]/2,  
θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L4(θ)] =
c1

2
E[D(θ1, 1.3)2] + E[D(θ1, 1.3)]2{ }

 +
c2

4
E[D(θ1, 1.3)3] + 3E[D(θ1, 1.3)]E[D(θ2 , 1.3)2]{ }

 +
c3

2
E[D(θ1, 1.3)D(θ1, 6)] + E[D(θ1, 1.3)]E[D(θ2 , 6)]{ }

 +
c4

2
E[D(θ1, 6)2] + E[D(θ1, 6)]2{ }  

(E8)
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4. b) D(θ, 1.3)=[D(θ1, 1.3)+D(θ2, 1.3)]/2 and D(θ, 6)=[D(θ3, 6)+D(θ4, 6)]/2,  
θ1, θ2, θ3, θ4~Unif(0, π) i.i.d.:

E[V̂L4(θ)] =
c1

2
E[D(θ1, 1.3)2]+ E[D(θ1, 1.3)]2{ }

 +
c2

4
E[D(θ1, 1.3)3]+ 3E[D(θ1, 1.3)]E[D(θ2 , 1.3)2]{ }

 + c3E[D(θ1, 1.3)]E[D(θ3, 6)]

 +
c4

2
E[D(θ3, 6)2]+ E[D(θ3, 6)]2{ }

 

(E9)

5. a) D(θ, 1.3)=[D(θ1, 1.3)D(θ2, 1.3)]1/2 and D(θ, 6)=[D(θ1, 6)D(θ2, 6)]1/2, θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L5(θ)] = c1E[D(θ1, 1.3)]2

 + c2E [D(θ1, 1.3)]3/2{ }2

 + c3E [D(θ1, 1.3)D(θ1, 6)]1/2{ }2

 + c4E[D(θ1, 6)]2

 

(E10)

5. b) D(θ, 1.3)=[D(θ1, 1.3)D(θ2, 1.3)]1/2 and D(θ, 6)=[D(θ3, 6)D(θ4, 6)]1/2,  
θ1, θ2, θ3, θ4 ~Unif(0, π) i.i.d.:

E[V̂L5(θ)] = c1E[D(θ1, 1.3)]2

 + c2E [D(θ1, 1.3)]3/2{ }2

 + c3E [D(θ1, 1.3)]1/2{ }2
E [D(θ3, 6)]1/2{ }2

 + c4E[D(θ3, 6)]2

 

(E11)

Diameter Selection Methods 1ξ–5ξ: Diameters Parallel To Plot Radius in Bitterlich Sam-
pling

The non-uniform distribution Fξ(ξ; α) of the diameter direction ξ parallel to plot radius in 
Bitterlich sampling, with viewing angle α, is determined at breast height. For brevity, α 
is omitted in the diameter moment denotations (i.e., e.g. E[D(ξ, 1.3); α] is denoted with 
E[D(ξ, 1.3)]), although it essentially determines the distribution Fξ(ξ; α) over which the 
moments are taken.

1ξ.  D(θ, 1.3)=D(ξ, 1.3) and D(θ, 6)=D(ξ, 6), ξ~Fξ(ξ; α):

E[V̂L1ξ (θ)] = c1E[D(ξ, 1.3)2] + c2E[D(ξ, 1.3)3]

 + c3E[D(ξ, 1.3)D(ξ, 6)] + c4E[D(ξ, 6)2]
 

(E12)
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2ξ.  D(θ, 1.3)=[D(ξ, 1.3)+D(ξ+π/2, 1.3)]/2 and D(θ, 6)=[D(ξ, 6)+D(ξ+π/2, 6)]/2, ξ~Fξ(ξ; α):

E[V̂L2ξ (θ)] =
c1

4
E[D(ξ, 1.3)2] + E[D(ξ + π / 2, 1.3)2] + 2E[D(ξ, 1.3)D(ξ + π / 2, 1.3)]{ }

 +
c2

8
E[D(ξ, 1.3)3] + E[D(ξ + π / 2, 1.3)3] + 3E[D(ξ, 1.3)2 D(ξ + π / 2, 1.3)]{

 + 3E[D(ξ, 1.3)D(ξ + π / 2, 1.3)2]}
 +

c3

4
E[D(ξ, 1.3)D(ξ, 6)] + E[D(ξ, 1.3)D(ξ + π / 2, 6)]{

 + E[D(ξ + π / 2, 1.3)D(ξ, 6)] + E[D(ξ + π / 2, 1.3)D(ξ + π / 2, 6)]}
 +

c4

4
E[D(ξ, 6)2] + E[D(ξ + π / 2, 6)2] + 2E[D(ξ, 6)D(ξ + π / 2, 6)]{ }

  
 

(E13)

3ξ.  D(θ, 1.3)=[D(ξ, 1.3)D(ξ+π/2, 1.3)]1/2 and D(θ, 6)=[D(ξ, 6)D(ξ+π/2, 6)]1/2, ξ~Fξ(ξ; α):

E[V̂L3ξ (θ)] = c1E[D(ξ, 1.3)D(ξ + π / 2, 1.3)]

 + c2E [D(ξ, 1.3)D(ξ + π / 2, 1.3)]3/2{ }
 + c3E [D(ξ, 1.3)D(ξ + π / 2, 1.3)D(ξ, 6)D(ξ + π / 2, 6)]1/2{ }
 + c4E[D(ξ, 6)D(ξ + π / 2, 6)]

 

(E14)

4ξ.  D(θ, 1.3)=[D(ξ, 1.3)+D(θ, 1.3)]/2 and D(θ, 6)=[D(ξ, 6)+D(θ, 6)]/2, ξ~Fξ(ξ; α), θ~Unif(0, π), 
ξ and θ independent:

E[V̂L4ξ (θ)] =
c1

4
E[D(ξ, 1.3)2] + E[D(θ, 1.3)2] + 2E[D(ξ, 1.3)]E[D(θ, 1.3)]{ }

 +
c2

8
E[D(ξ, 1.3)3] + E[D(θ, 1.3)3] + 3E[D(ξ, 1.3)]E[D(θ, 1.3)2]{

 + 3E[D(ξ, 1.3)2]E[D(θ, 1.3)]}
 +

c3

4
E[D(ξ, 1.3)D(ξ, 6)] + E[D(θ, 1.3)D(θ, 6)] + E[D(ξ, 1.3)]E[D(θ, 6)]{

 + E[D(θ, 1.3)]E[D(ξ, 6)]}
 +

c4

4
E[D(ξ, 6)2] + E[D(θ, 6)2] + E[D(ξ, 6)]E[D(θ, 6)]{ }

  
 

(E15)
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5ξ.  D(θ, 1.3)=[D(ξ, 1.3)D(θ, 1.3)]1/2 and D(θ, 6)=[D(ξ, 6)D(θ, 6)]1/2, ξ~Fξ(ξ; α), θ~Unif(0, π), ξ 
and θ independent:

E[V̂L5ξ (θ)] = c1E[D(ξ, 1.3)]E[D(θ, 1.3)]

 + c2E [D(ξ, 1.3)]3/2{ }E [D(θ, 1.3)]3/2{ }
 + c3E [D(ξ, 1.3)D(ξ, 6)]1/2{ }E [D(θ, 1.3)D(θ, 6)]1/2{ }
 + c4E[D(ξ, 6)]E[D(θ, 6)]

 

(E16)

Diameter Selection Methods 1ξ90, 4ξ90 and 5ξ90: Diameters Perpendicular to Plot Radius 
in Bitterlich Sampling

1ξ90.  D(θ, 1.3)=D(ξ+π/2, 1.3) and D(θ, 6)=D(ξ+π/2, 6), ξ~Fξ(ξ; α): to obtain E[V̂L1ξ90(θ)], substi-
tute D(ξ+π/2, 1.3) for D(ξ, 1.3) and D(ξ+π/2, 6) for D(ξ, 6) in Eq. E12.

4ξ90.  D(θ, 1.3)=[D(ξ+π/2, 1.3)+D(θ, 1.3)]/2 and D(θ, 6)=[D(ξ+π/2, 6)+D(θ, 6)]/2, ξ~Fξ(ξ; α), 
θ~Unif(0, π), ξ and θ independent: to obtain E[V̂L4ξ90(θ)], substitute D(ξ+π/2, 1.3) for 
D(ξ, 1.3) and D(ξ+π/2, 6) for D(ξ, 6) in Eq. E15.

5ξ90.  D(θ, 1.3)=[D(ξ+π/2, 1.3)D(θ, 1.3)]1/2 and D(θ, 6)=[D(ξ+π/2, 6)D(θ, 6)]1/2, ξ~Fξ(ξ; α), 
θ~Unif(0, π), ξ and θ independent: to obtain E[V̂L5ξ90(θ)], substitute D(ξ+π/2, 1.3) for 
D(ξ, 1.3) and D(ξ+π/2, 6) for D(ξ, 6) in Eq. E16.
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Appendix F. Within-Tree Variances of Volume Predictions by Laasasenaho Volume 
Equation with Diameter Selection Methods 1–5, 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90

For the empirical part of this study, we want to express the within-tree variances (Eq. 115 
in Section 5.1)

Var[V̂L(θ)] = E[V̂L(θ)2] − E[V̂L(θ)]{ }2

 = c2
2E[D(θ, 1.3)6] +  2c1c2E[D(θ, 1.3)5] +  c1

2E[D(θ, 1.3)4]

 + 2c2c3E[D(θ, 1.3)4 D(θ, 6)] + 2c2c4E[D(θ, 1.3)3D(θ, 6)2]

 + 2c1c3E[D(θ, 1.3)3D(θ, 6)] + (c3
2 + 2c1c4 )E[D(θ, 1.3)2 D(θ, 6)2]

 + 2c3c4E[D(θ, 1.3)D(θ, 6)3] + c4
2E[D(θ, 6)4]

 − E[V̂L(θ)]{ }2
 ,

 

(F1)

where D(θ, 1.3) and D(θ, 6) are obtained by one of the diameter selection methods 1–5, 
1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90 (see Sections 3.2.2 and 4.2.2), in terms of diameter moments 
taken over one-dimensional direction distributions. As the expectations E[V̂L(θ)] were dealt 
with in Appendix E, the task is reduced to finding the expressions for E[V̂L(θ)2].
As  in Appendix E,  the diameter selection methods 1–5 are applied both dependently 

and independently, whereas with the methods 1ξ–5ξ, 1ξ90, 4ξ90 and 5ξ90 only dependent 
selection is considered.

Diameter Selection Methods 1–5: Diameters with Uniform Direction Distribution

Dependent selection is presented in a) and independent selection in b).

1. a) D(θ, 1.3)=D(θ, 1.3) and D(θ, 6)=D(θ, 6), θ~Unif(0, π):

E[V̂L1(θ)2] = c2
2E[D(θ, 1.3)6] + 2c1c2E[D(θ, 1.3)5] + c1

2E[D(θ, 1.3)4]

 + 2c2c3E[D(θ, 1.3)4 D(θ, 6)] + 2c2c4E[D(θ, 1.3)3D(θ, 6)2]

 + 2c1c3E[D(θ, 1.3)3D(θ, 6)] + (c3
2 + 2c1c4 )E[D(θ, 1.3)2 D(θ, 6)2]

 + 2c3c4E[D(θ, 1.3)D(θ, 6)3] + c4
2E[D(θ, 6)4]   

 

(F2)

1. b) D(θ, 1.3)=D(θ1, 1.3) and D(θ, 6)=D(θ2, 6), θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L1(θ)2] = c2
2E[D(θ1, 1.3)6] + 2c1c2E[D(θ1, 1.3)5] + c1

2E[D(θ1, 1.3)4]

 + 2c2c3E[D(θ1, 1.3)4]E[D(θ2 , 6)] + 2c2c4E[D(θ1, 1.3)3]E[D(θ2 , 6)2]

 + 2c1c3E[D(θ1, 1.3)3]E[D(θ2 , 6)] + (c3
2 + 2c1c4 )E[D(θ1, 1.3)2]E[D(θ2 , 6)2]

 + 2c3c4E[D(θ1, 1.3)]E[D(θ2 , 6)3] + c4
2E[D(θ2 , 6)4]

  
 

(F3)
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2. a) D(θ, 1.3)=[D(θ, 1.3)+D(θ+π/2, 1.3)]/2 and D(θ, 6)=[D(θ, 6)+D(θ+π/2, 6)]/2, θ~Unif(0, π):

E[V̂L2(θ)2] =
c2

2

64
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)]6{ }

 +
c1c2

16
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)]5{ }

 +
c1

2

16
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)]4{ }

 +
c2c3

16
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)]4[D(θ, 6)+ D(θ+ π / 2, 6)]{ }

 +
c2c4

16
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)]3[D(θ, 6)+ D(θ+ π / 2, 6)]2{ }

 +
c1c3

8
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)]3[D(θ, 6)+ D(θ+ π / 2, 6)]{ }

 +
c3

2 + 2c1c4

16
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)]2[D(θ, 6)+ D(θ+ π / 2, 6)]2{ }

 +
c3c4

8
E [D(θ, 1.3)+ D(θ+ π / 2, 1.3)][D(θ, 6)+ D(θ+ π / 2, 6)]3{ }

 +
c4

2

16
E [D(θ, 6)+ D(θ+ π / 2, 6)]4{ }

  
 

(F4)

2. b) D(θ, 1.3)=[D(θ1, 1.3)+D(θ1+π/2, 1.3)]/2 and D(θ, 6)=[D(θ2, 6)+D(θ2+π/2, 6)]/2,  
θ1, θ2~Unif(0, π) i.i.d.:

   

E[V̂L2(θ)2] =
c2

2

64
E [D(θ1, 1.3)+ D(θ1 + π / 2, 1.3)]6{ }

 +
c1c2

16
E [D(θ1, 1.3)+ D(θ1 + π / 2, 1.3)]5{ }

 +
c1

2

16
E [D(θ1, 1.3)+ D(θ1 + π / 2, 1.3)]4{ }

 +
c2c3

8
E [D(θ1, 1.3)+ D(θ1 + π / 2, 1.3)]4{ }E[D(θ2 , 6)]

 +
c2c4

16
E [D(θ1, 1.3)+ D(θ1 + π / 2, 1.3)]3{ }E [D(θ2 , 6)+ D(θ2 + π / 2, 6)]2{ }

 +
c1c3

4
E [D(θ1, 1.3)+ D(θ1 + π / 2, 1.3)]3{ }E[D(θ2 , 6)]

 +
c3

2 + 2c1c4

16
E [D(θ1, 1.3)+ D(θ1 + π / 2, 1.3)]2{ }E [D(θ2 , 6)+ D(θ2 + π / 2, 6)]2{ }

 +
c3c4

4
E[D(θ1, 1.3)]E [D(θ2 , 6)+ D(θ2 + π / 2, 6)]3{ }

 +
c4

2

16
E [D(θ2 , 6)+ D(θ2 + π / 2, 6)]4{ }

  
 

(F5)
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3. a) D(θ, 1.3)=[D(θ, 1.3)D(θ+π/2, 1.3)]1/2 and D(θ, 6)=[D(θ, 6)D(θ+π/2, 6)]1/2, θ~Unif(0, π):

E[V̂L3(θ)2] = c2
2E[D(θ, 1.3)3D(θ+ π / 2, 1.3)3]

 + 2c1c2E[D(θ, 1.3)5/2 D(θ+ π / 2, 1.3)5/2]

 + c1
2E[D(θ, 1.3)2 D(θ+ π / 2, 1.3)2]

 + 2c2c3E[D(θ, 1.3)2 D(θ+ π / 2, 1.3)2 D(θ, 6)1/2 D(θ+ π / 2, 6)1/2]

 + 2c2c4E[D(θ, 1.3)3/2 D(θ+ π / 2, 1.3)3/2 D(θ, 6)D(θ+ π / 2, 6)]

 + 2c1c3E[D(θ, 1.3)3/2 D(θ+ π / 2, 1.3)3/2 D(θ, 6)1/2 D(θ+ π / 2, 6)1/2]

 + (c3
2 + 2c1c4 )E[D(θ, 1.3)D(θ+ π / 2, 1.3)D(θ, 6)D(θ+ π / 2, 6)]

 + 2c3c4E[D(θ, 1.3)1/2 D(θ+ π / 2, 1.3)1/2 D(θ, 6)3/2 D(θ+ π / 2, 6)3/2]

 + c4
2E[D(θ, 6)2 D(θ+ π / 2, 6)2]

  
 

(F6)

3. b) D(θ, 1.3)=[D(θ1, 1.3)D(θ1+π/2, 1.3)]1/2 and D(θ, 6)=[D(θ2, 6)D(θ2+π/2, 6)]1/2,  
θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L3(θ)2] = c2
2E[D(θ1, 1.3)3D(θ1 + π / 2, 1.3)3]

 + 2c1c2E[D(θ1, 1.3)5/2 D(θ1 + π / 2, 1.3)5/2]

 + c1
2E[D(θ1, 1.3)2 D(θ1 + π / 2, 1.3)2]

 + 2c2c3E[D(θ1, 1.3)2 D(θ1 + π / 2, 1.3)2]E[D(θ2 , 6)1/2 D(θ2 + π / 2, 6)1/2]

 + 2c2c4E[D(θ1, 1.3)3/2 D(θ1 + π / 2, 1.3)3/2]E[D(θ2 , 6)D(θ2 + π / 2, 6)]

 + 2c1c3E[D(θ1, 1.3)3/2 D(θ1 + π / 2, 1.3)3/2]E[D(θ2 , 6)1/2 D(θ2 + π / 2, 6)1/2]

 + (c3
2 + 2c1c4 )E[D(θ1, 1.3)D(θ1 + π / 2, 1.3)]E[D(θ2 , 6)D(θ2 + π / 2, 6)]

 
+ 2c3c4E[D(θ1, 1.3)1/2 D(θ1 + π / 2, 1.3)1/2]E[D(θ2 , 6)3/2 D(θ2 + π / 2, 6)3/2]

+ c4
2E[D(θ2 , 6)2 D(θ2 + π / 2, 6)2]

  
 

(F7)
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4. a) D(θ, 1.3)=[D(θ1, 1.3)+D(θ2, 1.3)]/2 and D(θ, 6)=[D(θ1, 6)+D(θ2, 6)]/2,  
θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L4(θ)2] =
c2

2

32
E[D(θ1, 1.3)6] + 6E[D(θ1, 1.3)5]E[D(θ2 , 1.3)]{

 + 15E[D(θ1, 1.3)4]E[D(θ2 , 1.3)2] + 10 E[D(θ1, 1.3)3]{ }2 }
 +

c1c2

8
E[D(θ1, 1.3)5] + 5E[D(θ1, 1.3)4]E[D(θ2 , 1.3)]{

 + 10E[D(θ1, 1.3)3]E[D(θ2 , 1.3)2]}
 +

c1
2

8
E[D(θ1, 1.3)4] + 4E[D(θ1, 1.3)3]E[D(θ2 , 1.3)] + 3 E[D(θ1, 1.3)2]{ }2{ }

 +
c2c3

8
E[D(θ1, 1.3)4 D(θ1, 6)] + E[D(θ1, 1.3)4]E[D(θ2 , 6)]{

 

+ 4E[D(θ1, 1.3)3D(θ1, 6)]E[D(θ2 , 1.3)] + 6E[D(θ1, 1.3)2 D(θ1, 6)]E[D(θ2 , 1.3)2]

+ 4E[D(θ1, 1.3)D(θ1, 6)]E[D(θ2 , 1.3)3]}
+

c2c4

8
E[D(θ1, 1.3)3D(θ1, 6)2] + E[D(θ1, 1.3)3]E[D(θ2 , 6)2]{

+ 2E[D(θ1, 1.3)3D(θ1, 6)]E[D(θ2 , 6)]

+ 3E[D(θ1, 1.3)2 D(θ1, 6)2]E[D(θ2 , 1.3)]

+ 6E[D(θ1, 1.3)2 D(θ1, 6)]E[D(θ2 , 1.3)D(θ2 , 6)]

+ 3E[D(θ1, 1.3)D(θ1, 6)2]E[D(θ2 , 1.3)2]}
+

c1c3

4
E[D(θ1, 1.3)3D(θ1, 6)] + E[D(θ1, 1.3)3]E[D(θ2 , 6)]{

+ 3E[D(θ1, 1.3)2 D(θ1, 6)]E[D(θ2 , 1.3)] + 3E[D(θ1, 1.3)D(θ1, 6)]E[D(θ2 , 1.3)2]}
+

c3
2 + 2c1c4

8
E[D(θ1, 1.3)2 D(θ1, 6)2] + E[D(θ1, 1.3)2]E[D(θ2 , 6)2]{

+ 2E[D(θ1, 1.3)2 D(θ1, 6)]E[D(θ2 , 6)] + 2E[D(θ1, 1.3)D(θ1, 6)2]E[D(θ2 , 1.3)]

+ 2 E[D(θ1, 1.3)D(θ1, 6)]{ }2 }
+

c3c4

4
E[D(θ1, 1.3)D(θ1, 6)3] + E[D(θ1, 1.3)]E[D(θ2 , 6)3]{

+ 3E[D(θ1, 1.3)D(θ1, 6)2]E[D(θ2 , 6)] + 3E[D(θ1, 1.3)D(θ1, 6)]E[D(θ2 , 6)2]}
+

c4
2

8
E[D(θ1, 6)4] + 4E[D(θ1, 6)3]E[D(θ2 , 6)] + 3 E[D(θ1, 6)2]{ }2{ }

 
 

(F8)
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4. b) D(θ, 1.3)=[D(θ1, 1.3)+D(θ2, 1.3)]/2 and D(θ, 6)=[D(θ3, 6)+D(θ4, 6)]/2,  
θ1, θ2, θ3, θ4~Unif(0, π) i.i.d.:

E[V̂L4(θ)2] =
c2

2

32
E[D(θ1, 1.3)6] + 6E[D(θ1, 1.3)5]E[D(θ2 , 1.3)]{

 + 15E[D(θ1, 1.3)4]E[D(θ2 , 1.3)2] + 10 E[D(θ1, 1.3)3]{ }2 }
 +

c1c2

8
E[D(θ1, 1.3)5] + 5E[D(θ1, 1.3)4]E[D(θ2 , 1.3)]{

 + 10E[D(θ1, 1.3)3]E[D(θ2 , 1.3)2]}
 +

c1
2

8
E[D(θ1, 1.3)4] + 4E[D(θ1, 1.3)3]E[D(θ2 , 1.3)] + 3 E[D(θ1, 1.3)2]{ }2{ }

 

+
c2c3

4
E[D(θ1, 1.3)4]E[D(θ3, 6)] + 4E[D(θ1, 1.3)3]E[D(θ2 , 1.3)]E[D(θ3, 6)]{

+ 3 E[D(θ1, 1.3)2]{ }2
E[D(θ3, 6)]}

+
c2c4

4
E[D(θ1, 1.3)3]E[D(θ3, 6)2] + 3E[D(θ1, 1.3)2]E[D(θ2 , 1.3)]E[D(θ3, 6)2]{

+ E[D(θ1, 1.3)3] E[D(θ3, 6)]{ }2
+ 3E[D(θ1, 1.3)2]E[D(θ2 , 1.3)] E[D(θ3, 6)]{ }2 }

+
c1c3

2
E[D(θ1, 1.3)3]E[D(θ3, 6)] + 3E[D(θ1, 1.3)2]E[D(θ2 , 1.3)]E[D(θ3, 6)]{ }

+
c3

2 + 2c1c4

4
E[D(θ1, 1.3)2]E[D(θ3, 6)2] + E[D(θ1, 1.3)]{ }2

E[D(θ3, 6)2]{
+ E[D(θ1, 1.3)2] E[D(θ3, 6)]{ }2

+ E[D(θ1, 1.3)]{ }2
E[D(θ3, 6)]{ }2 }

+
c3c4

2
E[D(θ1, 1.3)]E]D(θ3, 6)3] + 3E[D(θ1, 1.3)]E[D(θ3, 6)2]E[D(θ4 , 6)]{ }

+
c4

2

8
E[D(θ3, 6)4] + 4E[D(θ3, 6)3]E[D(θ4 , 6)] + 3 E[D(θ3, 6)2]{ }2{ }

 
 

(F9)
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5. a) D(θ, 1.3)=[D(θ1, 1.3)D(θ2, 1.3)]1/2 and D(θ, 6)=[D(θ1, 6)D(θ2, 6)]1/2, θ1, θ2~Unif(0, π) i.i.d.:

E[V̂L5(θ)2] = c2
2 E[D(θ1, 1.3)3]{ }2

 + 2c1c2 E[D(θ1, 1.3)5/2]{ }2

 + c1
2 E[D(θ1, 1.3)2]{ }2

 + 2c2c3 E[D(θ1, 1.3)2 D(θ1, 6)1/2]{ }2

 + 2c2c4 E[D(θ1, 1.3)3/2 D(θ1, 6)]{ }2

 + 2c1c3 E[D(θ1, 1.3)3/2 D(θ1, 6)1/2]{ }2

 + (c3
2 + 2c1c4 ) E[D(θ1, 1.3)D(θ1, 6)]{ }2

 + 2c3c4 E[D(θ1, 1.3)1/2 D(θ1, 6)3/2]{ }2

 + c4
2 E[D(θ1, 6)2]{ }2

 

(F10)

5. b) D(θ, 1.3)=[D(θ1, 1.3)D(θ2, 1.3)]1/2 and D(θ, 6)=[D(θ3, 6)D(θ4, 6)]1/2,  
θ1, θ2, θ3, θ4~Unif(0, π) i.i.d.:

E[V̂L5(θ)2] = c2
2 E[D(θ1, 1.3)3]{ }2

 + 2c1c2 E[D(θ1, 1.3)5/2]{ }2

 + c1
2 E[D(θ1, 1.3)2]{ }2

 + 2c2c3 E[D(θ1, 1.3)2]{ }2
E[D(θ3, 6)1/2]{ }2

 + 2c2c4 E[D(θ1, 1.3)3/2]{ }2
E[D(θ3, 6)]{ }2

 + 2c1c3 E[D(θ1, 1.3)3/2]{ }2
E[D(θ3, 6)1/2]{ }2

 + (c3
2 + 2c1c4 ) E[D(θ1, 1.3)]{ }2

E[D(θ3, 6)]{ }2

 + 2c3c4 E[D(θ1, 1.3)1/2]{ }2
E[D(θ3, 6)3/2]{ }2

 + c4
2 E[D(θ3, 6)2]{ }2

 

(F11)
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Diameter Selection Methods 1ξ–5ξ: Diameters Parallel to Plot Radius in Bitterlich Sampling

The non-uniform distribution Fξ(ξ; α) of the diameter direction ξ parallel to plot radius in 
Bitterlich sampling, with viewing angle α, is determined at breast height. For brevity, α is 
omitted in the diameter moment denotations, although it essentially determines the distribu-
tion Fξ(ξ; α) over which the moments are taken.

1ξ.  D(θ, 1.3)=D(ξ, 1.3) and D(θ, 6)=D(ξ, 6), ξ~Fξ(ξ; α):

E[V̂L1ξ (θ)2] = c2
2E[D(ξ, 1.3)6] + 2c1c2E[D(ξ, 1.3)5] + c1

2E[D(ξ, 1.3)4]

 + 2c2c3E[D(ξ, 1.3)4 D(ξ, 6)] + 2c2c4E[D(ξ, 1.3)3D(ξ, 6)2]

 + 2c1c3E[D(ξ, 1.3)3D(ξ, 6)] + (c3
2 + 2c1c4 )E[D(ξ, 1.3)2 D(ξ, 6)2]

 + 2c3c4E[D(ξ, 1.3)D(ξ, 6)3] + c4
2E[D(ξ, 6)4]

  
 

(F12)

2ξ.  D(θ, 1.3)=[D(ξ, 1.3)+D(ξ+π/2, 1.3)]/2 and D(θ, 6)=[D(ξ, 6)+D(ξ+π/2, 6)]/2, ξ~Fξ(ξ; α):

E[V̂L2ξ (θ)2] =
c2

2

64
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)]6{ }

 +
c1c2

16
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)]5{ }

 +
c1

2

16
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)]4{ }

 +
c2c3

16
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)]4[D(ξ, 6)+ D(ξ + π / 2, 6)]{ }

 +
c2c4

16
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)]3[D(ξ, 6)+ D(ξ + π / 2, 6)]2{ }

 +
c1c3

8
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)]3[D(ξ, 6)+ D(ξ + π / 2, 6)]{ }

 +
c3

2 + 2c1c4

16
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)]2[D(ξ, 6)+ D(ξ + π / 2, 6)]2{ }

 +
c3c4

8
E [D(ξ, 1.3)+ D(ξ + π / 2, 1.3)][D(ξ, 6)+ D(ξ + π / 2, 6)]3{ }

 +
c4

2

16
E [D(ξ, 6)+ D(ξ + π / 2, 6)]4{ }

  
 

(F13)
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3ξ.  D(θ, 1.3)=[D(ξ, 1.3)D(ξ+π/2, 1.3)]1/2 and D(θ, 6)=[D(ξ, 6)D(ξ+π/2, 6)]1/2, ξ~Fξ(ξ; α):

E[V̂L3ξ (θ)2] = c2
2E[D(ξ, 1.3)3D(ξ + π / 2, 1.3)3]

 + 2c1c2E[D(ξ, 1.3)5/2 D(ξ + π / 2, 1.3)5/2]

 + c1
2E[D(ξ, 1.3)2 D(ξ + π / 2, 1.3)2]

 + 2c2c3E[D(ξ, 1.3)2 D(ξ + π / 2, 1.3)2 D(θ, 6)1/2 D(ξ + π / 2, 6)1/2]

 + 2c2c4E[D(ξ, 1.3)3/2 D(ξ + π / 2, 1.3)3/2 D(ξ, 6)D(ξ + π / 2, 6)]

 + 2c1c3E[D(ξ, 1.3)3/2 D(ξ + π / 2, 1.3)3/2 D(ξ, 6)1/2 D(ξ + π / 2, 6)1/2]

 + (c3
2 + 2c1c4 )E[D(ξ, 1.3)D(ξ + π / 2, 1.3)D(ξ, 6)D(ξ + π / 2, 6)]

 + 2c3c4E[D(ξ, 1.3)1/2 D(ξ + π / 2, 1.3)1/2 D(ξ, 6)3/2 D(ξ + π / 2, 6)3/2]

 + c4
2E[D(ξ, 6)2 D(ξ + π / 2, 6)2]

 

(F14)

4ξ.  D(θ, 1.3)=[D(ξ, 1.3)+D(θ, 1.3)]/2 and D(θ, 6)=[D(ξ, 6)+D(θ, 6)]/2, ξ~Fξ(ξ; α), θ~Unif(0, π), 
ξ and θ independent:

E[V̂L4ξ (θ)2] =
c2

2

64
E[D(ξ, 1.3)6] + E[D(θ, 1.3)6]{

 + 6E[D(ξ, 1.3)5]E[D(θ, 1.3)] + 6E[D(ξ, 1.3)]E[D(θ, 1.3)5]

 + 15E[D(ξ, 1.3)4]E[D(θ, 1.3)2] + 15E[D(ξ, 1.3)2]E[D(θ, 1.3)4]

 + 20E[D(ξ, 1.3)3]E[D(θ, 1.3)3]}
 +

c1c2

16
E[D(ξ, 1.3)5] + E[D(θ, 1.3)5]{

 + 5E[D(ξ, 1.3)4]E[D(θ, 1.3)] + 5E[D(ξ, 1.3)]E[D(θ, 1.3)4]

 + 10E[D(ξ, 1.3)3]E[D(θ, 1.3)2] + 10E[D(ξ, 1.3)2]E[D(θ, 1.3)3]}

 

+
c1

2

16
E[D(ξ, 1.3)4] + E[D(θ, 1.3)4]{

+ 4E[D(ξ, 1.3)3]E[D(θ, 1.3)] + 4E[D(ξ, 1.3)]E[D(θ, 1.3)3]

+ 6E[D(ξ, 1.3)2]E[D(θ, 1.3)2]}
+

c2c3

16
E[D(ξ, 1.3)4 D(ξ, 6)] + E[D(θ, 1.3)4 D(θ, 6)]{

+ E[D(ξ, 1.3)4]E[D(θ, 6)] + E[D(θ, 1.3)4]E[D(ξ, 6)]
+ 4E[D(ξ, 1.3)3D(ξ, 6)]E[D(θ, 1.3)] + 4E[D(ξ, 1.3)3]E[D(θ, 1.3)D(θ, 6)]
+ 4E[D(ξ, 1.3)D(ξ, 6)]E[D(θ, 1.3)3] + 4E[D(ξ, 1.3)]E[D(θ, 1.3)3D(θ, 6)]

+ 6E[D(ξ, 1.3)2 D(ξ, 6)]E[D(θ, 1.3)2] + 6E[D(ξ, 1.3)2]E[D(θ, 1.3)2 D(θ, 6)]}
+

c2c4

16
E[D(ξ, 1.3)3D(ξ, 6)2] + E[D(θ, 1.3)3D(θ, 6)2]{

+ E[D(ξ, 1.3)3]E[D(θ, 6)2] + E[D(θ, 1.3)3]E[D(ξ, 6)2]
+ 2E[D(ξ, 1.3)3D(ξ, 6)]E[D(θ, 6)] + 2E[D(θ, 1.3)3D(θ, 6)]E[D(ξ, 6)]
+ 3E[D(ξ, 1.3)2 D(ξ, 6)2]E[D(θ, 1.3)] + 3E[D(θ, 1.3)2 D(θ, 6)2]E[D(ξ, 1.3)]
+ 6E[D(ξ, 1.3)2 D(ξ, 6)]E[D(θ, 1.3)D(θ, 6)]
+ 6E[D(θ, 1.3)2 D(θ, 6)]E[D(ξ, 1.3)D(ξ, 6)]

+ 3E[D(ξ, 1.3)D(ξ, 6)2]E[D(θ, 1.3)2] + 3E[D(θ, 1.3)D(θ, 6)2]E[D(ξ, 1.3)2]}
+

c1c3

8
E[D(ξ, 1.3)3D(ξ, 6)] + E[D(θ, 1.3)3D(θ, 6)]{

+ E[D(ξ, 1.3)3]E[D(θ, 6)] + E[D(θ, 1.3)3]E[D(ξ, 6)]
+ 3E[D(ξ, 1.3)2 D(ξ, 6)]E[D(θ, 1.3)] + 3E[D(θ, 1.3)2 D(θ, 6)]E[D(ξ, 1.3)]

+ 3E[D(ξ, 1.3)D(ξ, 6)]E[D(θ, 1.3)2] + 3E[D(θ, 1.3)D(θ, 6)]E[D(ξ, 1.3)2]}
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E[V̂L4ξ (θ)2] =
c2

2

64
E[D(ξ, 1.3)6] + E[D(θ, 1.3)6]{

 + 6E[D(ξ, 1.3)5]E[D(θ, 1.3)] + 6E[D(ξ, 1.3)]E[D(θ, 1.3)5]

 + 15E[D(ξ, 1.3)4]E[D(θ, 1.3)2] + 15E[D(ξ, 1.3)2]E[D(θ, 1.3)4]

 + 20E[D(ξ, 1.3)3]E[D(θ, 1.3)3]}
 +

c1c2

16
E[D(ξ, 1.3)5] + E[D(θ, 1.3)5]{

 + 5E[D(ξ, 1.3)4]E[D(θ, 1.3)] + 5E[D(ξ, 1.3)]E[D(θ, 1.3)4]

 + 10E[D(ξ, 1.3)3]E[D(θ, 1.3)2] + 10E[D(ξ, 1.3)2]E[D(θ, 1.3)3]}

 

+
c1

2

16
E[D(ξ, 1.3)4] + E[D(θ, 1.3)4]{

+ 4E[D(ξ, 1.3)3]E[D(θ, 1.3)] + 4E[D(ξ, 1.3)]E[D(θ, 1.3)3]

+ 6E[D(ξ, 1.3)2]E[D(θ, 1.3)2]}
+

c2c3

16
E[D(ξ, 1.3)4 D(ξ, 6)] + E[D(θ, 1.3)4 D(θ, 6)]{

+ E[D(ξ, 1.3)4]E[D(θ, 6)] + E[D(θ, 1.3)4]E[D(ξ, 6)]
+ 4E[D(ξ, 1.3)3D(ξ, 6)]E[D(θ, 1.3)] + 4E[D(ξ, 1.3)3]E[D(θ, 1.3)D(θ, 6)]
+ 4E[D(ξ, 1.3)D(ξ, 6)]E[D(θ, 1.3)3] + 4E[D(ξ, 1.3)]E[D(θ, 1.3)3D(θ, 6)]

+ 6E[D(ξ, 1.3)2 D(ξ, 6)]E[D(θ, 1.3)2] + 6E[D(ξ, 1.3)2]E[D(θ, 1.3)2 D(θ, 6)]}
+

c2c4

16
E[D(ξ, 1.3)3D(ξ, 6)2] + E[D(θ, 1.3)3D(θ, 6)2]{

+ E[D(ξ, 1.3)3]E[D(θ, 6)2] + E[D(θ, 1.3)3]E[D(ξ, 6)2]
+ 2E[D(ξ, 1.3)3D(ξ, 6)]E[D(θ, 6)] + 2E[D(θ, 1.3)3D(θ, 6)]E[D(ξ, 6)]
+ 3E[D(ξ, 1.3)2 D(ξ, 6)2]E[D(θ, 1.3)] + 3E[D(θ, 1.3)2 D(θ, 6)2]E[D(ξ, 1.3)]
+ 6E[D(ξ, 1.3)2 D(ξ, 6)]E[D(θ, 1.3)D(θ, 6)]
+ 6E[D(θ, 1.3)2 D(θ, 6)]E[D(ξ, 1.3)D(ξ, 6)]

+ 3E[D(ξ, 1.3)D(ξ, 6)2]E[D(θ, 1.3)2] + 3E[D(θ, 1.3)D(θ, 6)2]E[D(ξ, 1.3)2]}
+

c1c3

8
E[D(ξ, 1.3)3D(ξ, 6)] + E[D(θ, 1.3)3D(θ, 6)]{

+ E[D(ξ, 1.3)3]E[D(θ, 6)] + E[D(θ, 1.3)3]E[D(ξ, 6)]
+ 3E[D(ξ, 1.3)2 D(ξ, 6)]E[D(θ, 1.3)] + 3E[D(θ, 1.3)2 D(θ, 6)]E[D(ξ, 1.3)]

+ 3E[D(ξ, 1.3)D(ξ, 6)]E[D(θ, 1.3)2] + 3E[D(θ, 1.3)D(θ, 6)]E[D(ξ, 1.3)2]}
+
c3
2 + 2c1c4
16

E[D(ξ, 1.3)2D(ξ, 6)2] + E[D(θ, 1.3)2D(θ, 6)2]{
+ E[D(ξ, 1.3)2]E[D(θ, 6)2] + E[D(θ, 1.3)2]E[D(ξ, 6)2]
+ 2E[D(ξ, 1.3)2D(ξ, 6)]E[D(θ, 6)] + 2E[D(θ, 1.3)2D(θ, 6)]E[D(ξ, 6)]
+ 2E[D(ξ, 1.3)D(ξ, 6)2]E[D(θ, 1.3)] + 2E[D(θ, 1.3)D(θ, 6)2]E[D(ξ, 1.3)]
+ 4E[D(ξ, 1.3)D(ξ, 6)]E[D(θ, 1.3)D(θ, 6)]}

+
c3c4
8

E[D(ξ, 1.3)D(ξ, 6)3] + E[D(θ, 1.3)D(θ, 6)3]{
+ E[D(ξ, 1.3)]E[D(θ, 6)3] + E[D(θ, 1.3)]E[D(ξ, 6)3]
+ 3E[D(ξ, 1.3)D(ξ, 6)2]E[D(θ, 6)] + 3E[D(θ, 1.3)D(θ, 6)2]E[D(ξ, 6)]

+ 3E[D(ξ, 1.3)D(ξ, 6)]E[D(θ, 6)2] + 3E[D(θ, 1.3)D(θ, 6)]E[D(ξ, 6)2]}
+
c4
2

16
E[D(ξ, 6)4] + E[D(θ, 6)4]{

+ 4E[D(ξ, 6)3]E[D(θ, 6)] + 4E[D(θ, 6)3]E[D(ξ, 6)]

+ 6E[D(ξ, 6)2]E[D(θ, 6)2]}

 

(F15)
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5ξ.  D(θ, 1.3)=[D(ξ, 1.3)D(θ, 1.3)]1/2 and D(θ, 6)=[D(ξ, 6)D(θ, 6)]1/2, ξ~Fξ(ξ; α), θ~Unif(0, π), ξ 
and θ independent:

E[V̂L5ξ (θ)2] = c2
2E[D(ξ, 1.3)3]E[D(θ, 1.3)3]

 + 2c1c2E[D(ξ, 1.3)5/2]E[D(θ, 1.3)5/2]

 + c1
2E[D(ξ, 1.3)2]E[D(θ, 1.3)2]

 + 2c2c3E[D(ξ, 1.3)2 D(ξ, 6)1/2]E[D(θ, 1.3)2 D(θ, 6)1/2]

 + 2c2c4E[D(ξ, 1.3)3/2 D(ξ, 6)]E[D(θ, 1.3)3/2 D(θ, 6)]

 + 2c1c3E[D(ξ, 1.3)3/2 D(ξ, 6)1/2]E[D(θ, 1.3)3/2 D(θ, 6)1/2]

 + (c3
2 + 2c1c4 )E[D(ξ, 1.3)D(ξ, 6)]E[D(θ, 1.3)D(θ, 6)]

 + 2c3c4E[D(ξ, 1.3)1/2 D(ξ, 6)3/2]E[D(θ, 1.3)1/2 D(θ, 6)3/2]

 + c4
2E[D(ξ, 6)2]E[D(θ, 6)2]  

(F16)

Diameter Selection Methods 1ξ90, 4ξ90 and 5ξ90: Diameters Perpendicular to Plot Radius 
in Bitterlich Sampling

1ξ90.  D(θ, 1.3)=D(ξ+π/2, 1.3) and D(θ, 6)=D(ξ+π/2, 6), ξ~Fξ(ξ; α): to obtain E[V̂L1ξ90(θ)2], 
substitute D(ξ+π/2, 1.3) for D(ξ, 1.3) and D(ξ+π/2, 6) for D(ξ, 6) in Eq. F12.

4ξ90.  D(θ, 1.3)=[D(ξ+π/2, 1.3)+D(θ, 1.3)]/2 and D(θ, 6)=[D(ξ+π/2, 6)+D(θ, 6)]/2, ξ~Fξ(ξ; α), 
θ~Unif(0, π), ξ and θ independent: to obtain E[V̂L4ξ90(θ)2], substitute D(ξ+π/2, 1.3) for 
D(ξ, 1.3) and D(ξ+π/2, 6) for D(ξ, 6) in Eq. F15.

5ξ90.   D(θ, 1.3)=[D(ξ+π/2, 1.3)D(θ, 1.3)]1/2 and D(θ, 6)=[D(ξ+π/2, 6)D(θ, 6)]1/2, ξ~Fξ(ξ; α), 
θ~Unif(0, π), ξ and θ independent: to obtain E[V̂L5ξ90(θ)2], substitute D(ξ+π/2, 1.3) for 
D(ξ, 1.3) and D(ξ+π/2, 6) for D(ξ, 6) in Eq. F16.
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Appendix G. Computation of Diameters, Breadths and Radii from Vector Image of 
Cross-Section

In scanning, the photographs of the cross-sections were rotated in the way that the mark 
indicating the plot radius direction was always located on the left side of the image. In the 
vector image, the origin of the co-ordinate system was then placed in the lower left corner 
of the image and the y-axis and x-axis were set to run parallel to the left and lower side of 
the image, respectively (Fig. 26 C in Chapter 6).

The computation of the diameters, breadths and radii of a cross-section was based on (i) 
the co-ordinates of the contour points of the cross-section and its convex closure (vector 
images), (ii) the co-ordinates of the centres of gravity of the cross-section, its convex clo-
sure and the mark indicating the plot radius direction, and (iii) the plot radius direction (the 
direction from the plot centre to the assumed tree pith that can be thought to correspond to 
the centre of gravity of the cross-section) with respect to N–S direction as measured in the 
field. As a preprocessing for the breadth and radius computation, the “gaps” in the contour 
point co-ordinate lists were filled by linear interpolation so that a transition from one pixel 
to the next one was horizontally and vertically not longer than one pixel edge length.
The diameters, breadths and radii of a cross-section and its convex closure were computed 

using elementary analytical Euclidean geometry in R2 (see e.g. Ryan 1982). The diameter of 
a cross-section (or equivalently of its convex closure) in plot radius direction was defined 
here as the distance between two parallel tangents perpendicular to the ray emanating from 
the plot centre (at the plane of the tree cross-section) to the centre of gravity of the cross-
section (Fig. G1). To compute this, the direction angle ξ of the plot radius with respect to 
the x-axis of the image was first determined as

ξ = tan−1 ycg − ypr

xcg − xpr

⎛

⎝
⎜

⎞

⎠
⎟  ,

 
(G1)

where (xcg, ycg) and (xpr, ypr) are the centres of gravity of the cross-section and the mark 
indicating the plot radius direction, respectively (Fig. G1). The slope of any straight line 

Fig. G1. Computing  the  diameter  D(ξ)  of  a 
cross-section in plot radius direction: 
(xpr, ypr) is the point indicating the plot 
radius direction, (xcg, ycg) is the centre 
of  gravity  of  the  cross-section,  ξ  is  the 
direction of plot radius with respect to the 
x-axis, (xa, ya) and (xb, yb) are the points 
in which the tangents perpendicular to ξ 
touch the contour of the cross-section, and 
y=(yb-kDxb)+kDx is the equation of the 
one of those tangents that passes through 
(xb, yb).

ξ

D(ξ)

(xpr, ypr)

(xa, ya)

(xcg, ycg)

(xb, yb)

x

y

y=(yb-kDxb)+kDx
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parallel to the plot radius was now tanξ, and since the product of the slopes of two perpen-
dicular lines is always –1, the slope of the tangents perpendicular to plot radius became

kD = − 1
tan(ξ)

 .  
(G2)

The two points (xa, ya) and (xb, yb) in which the two tangents with the slope kD touched the 
contour of the cross-section (Fig. G1) were found among all the contour points (x, y) as those 
that yielded the minimum and the maximum value for the intercept k0 a when substituted in 
the tangent line equation y=k0+kDx. The diameter D(ξ) was then computed as the distance 
between the point (xa, ya) and the tangent y=(yb–kDxb)+kDx passing through (xb, yb):

D(ξ) =
| kDxa − ya + (yb − kDxb ) |

kD
2 +1

 .
 

(G3)

The diameter perpendicular to plot radius was obtained by using the angle ξ+π/2 in comput-
ing kD, (xa, ya), (xb, yb), and finally D(ξ+π/2).

This procedure was then applied to compute the 180 systematic diameters in a cross-
section, defined to start from the N–S direction and be taken at rotation intervals of π/180. 
For this, the direction angle β of the N–S line with respect to the x-axis in the image was 
required. By field measurements, the direction angle ψ of the plot radius (from the plot centre 
to the assumed tree pith) was known with respect to the N–S direction; as a compass bearing, 
ψ increased clockwise (i.e., in N ψ=0, in E ψ=π/2, in S ψ=π, and in W ψ=3π/2). In order to 
compute β from ψ, two steps were taken. First, ψ was transformed into the direction angle 

Fig. G2. Determination of the direction angle ω of the N–S line with respect 
to the plot radius (the line between the plot centre and the centre of 
gravity of  the  tree cross-section), by using  the compass bearing ψ of 
the tree taken from the plot centre. The co-ordinate axes imitate those 
of the vector images.

N

W

ψ

S

E

ω
ψ=ω

ψ

ω

ψ

ω

Plot centre

x

y

y

y

y

x

x

x
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ω∈[–π/2, π/2] of the N–S line with respect to the plot radius direction; the transformation 
depended on which quadrant of compass circle the tree was located (Fig. G2):

ω =

ψ, 0 ≤ ψ < π
2

ψ − π, π
2
≤ ψ < 3π

2

ψ − 2π, 3π
2

≤ ψ < 2π .

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

(G4)

Second, ω was combined with  the direction angle ξ of  the plot  radius determined with 
respect to the x-axis in the image (Eq. G1) to obtain the direction angle β of the N–S line 
with respect to the x-axis of the image (Fig. G3):

β =

ω + ξ + π, ω + ξ < − π
2

ω + ξ, − π
2
≤ ω + ξ ≤ π

2

ω + ξ − π, ω + ξ > π
2

 .

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

(G5)

Fig. G3. Determination of the diameters D(θj) at systematic rotation angles 
θj=β+jφ with respect to the N–S direction: (xcg, ycg) is the centre of grav-
ity of the cross-section and (xpr, ypr) is the point indicating the plot radius 
direction, ω denotes the direction angle of the N–S line with respect to the 
plot radius, ξ denotes the direction angle of the plot radius with respect 
to the x-axis in the image, and β denotes the direction angle of the N–S 
line with respect to the x-axis in the image. In this study, φ=π/180 and 
j=1, ..., 179. (Note that in this figure, ω, β, and θj are negative.) 

β

D(θj)

(xpr, ypr)

(xcg, ycg)

x

y

ξ
ω

jφ

θj

N

S
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Now the angles of the 180 systematic diameters with the rotation angle interval φ and with 
the N–S direction as the reference direction were obtained as (Fig. G3)

θ j = β + jϕ ,  (G6)

where j=0, 1, ..., 179, and φ=π/180. The diameters were then computed by the procedure 
described above: for each θj, the slope

kDj = − 1
tan(θ j)  

(G7)

of the tangents perpendicular to θj was determined, the points of contact of the two parallel 
tangents with the cross-section contour found, and the diameter computed as the distance 
between one of these points and the tangent passing through the other.
In the computation of the breadths and radii, the above 180 systematic angles (Eq. G6) 

were used. The breadth of a cross-section in direction θj was here defined as the distance 
between the points in which the straight line passing in direction θj through the centre of 
gravity (xcg, ycg) of the cross-section intersected the contour of the cross-section (Fig. G4). 
The slope of this breadth line was

kBj = tan(θ j) ,  (G8)

and since it was to go through (xcg, ycg), its equation could be expressed as y=(ycg–kBj xcg)+kBj x. 
Next, the points (xc, yc) and (xd, yd) most closely satisfying the breadth line equation were 

Fig. G4. Determination of  the breadths B(θj) at systematic rotation angles 
θj=β+jφ with  respect  to  the N–S direction:  (xcg, ycg) is the centre of 
gravity of the cross-section, β denotes the direction angle of the N–S line 
passing through (xcg, ycg), and (xc, yc) and (xd, yd) are the points where 
the line with direction angle θj and passing through (xcg, ycg) intersects 
the contour of the cross-section. In this study, φ=π/180 and j=1, ..., 179.

β
B(θj)

(xcg, ycg)

x

y

jφ

θj

N

S

(xc, yc)

(xd, yd)
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found among the discrete contour points, and the breadth was then obtained as the distance 
between these points:

B(θ j) = (xc − xd )2 + (yc − yd )2  .  (G9)

A total of 180 breadths were computed for both the cross-section and its convex closure.
The radius of a cross-section in direction θj was here defined as the distance from the 

centre of gravity (xcg, ycg) to the point where the ray emanating from (xcg, ycg) in direc-
tion θj intersected the contour of the cross-section. From each pair of points (xc, yc) and 
(xd, yd) determined above for both the cross-section and its convex closure, a pair of radii 
in directions θj and θj+π were obtained as

R(θ j) = (xc − xcg )
2 + (yc − ycg )

2  (G10)

and

R(θ j + π) = (xd − xcg )2 + (yd − ycg )2  ,  (G11)

making a total of 360 radii for both the cross-section and its convex closure.
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Appendix H. Computation of Contour Co-ordinates, Sector Areas and Total Area of 
Inclusion Region in Bitterlich Sampling from Vector Image of Cross-Section

In each cross-section vector image, the co-ordinate system was set and the direction angle 
β of  the N–S line determined with respect  to  the  image x-axis  in  the way explained  in 
Appendix G. For each cross-section, the inclusion region contour, sector areas and total 
area were computed using the following four viewing angle values: 1.146°, 1.621°, 2.292° 
and 3.624° (corresponding, with circular cross-sections, to the basal area factor values of 
1, 2, 4, and 10 m2/ha, respectively). 
In Bitterlich sampling with viewing angle α, the contour of the inclusion region is com-

posed of the intersection points of the cross-section tangents (the convex closure tangents) 
intersecting each other at angle α. If υ is the direction angle of the right-hand-side tangent 
(when viewed at the intersection point) with respect to the x-axis, the direction angle of 
the left-hand-side tangent becomes υ+α (Fig. H1), and the slopes of the tangent equations 
are then tanυ and tan(α+υ), respectively. The intercepts of the tangent equations naturally 
vary along with the slopes. If the tangent equations are

y = a + x tanυ
y = b+ x tan(υ +α) ,

⎧
⎨
⎪

⎩⎪
 (H1)

their intersection point becomes

x = b− a
tanυ− tan(υ +α)

y = a + (b− a) tanυ
tanυ− tan(υ +α)

 .

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

(H2)

In this study, each inclusion region was determined by computing 3600 contour points 
(tangent intersection points): The direction angle of the right-hand-side tangent was set to 

Fig. H1. In Bitterlich  sampling with  viewing 
angle α, the contour of the inclusion region 
consists of the points at which cross-sec-
tion tangents intersect each other at angle 
α. If the direction angle of the right-hand-
side  tangent  is  υi, the direction angle of 
the left-hand-side tangent becomes α+υi. 
The slopes (tanυi and  tan(α+υi)) and the 
intercepts (ai and bi) of the tangent equa-
tions depend on the value of υi (and α); by 
varying υi, we get a set of contour points 
(xi, yi).

υi

(xi, yi)

y = ai + x tanυi

y

α

υi
α+υi

y = bi + x tan(α+υi)

x
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increase systematically, starting from the N–S direction (direction angle β, see Appendix 
G), as

υi = β + iϕ ,  (H3)

where  i=0, 1,  ..., 3599, and φ=π/1800. The  intercept ai of each right-hand-side tangent 
y=ai+xtanυi was determined by computing y–xtanυi with all the cross-section contour points 
(x, y) and by taking either the minimum or the maximum value (depending on the quadrant 
in which υi was residing). The intercept bi of each left-hand-side tangent y=bi+xtan(υi+α) 
was determined in a similar manner. Finally, the co-ordinates of the inclusion region contour 
points (xi, yi) were obtained by substituting υi, ai, υi+α and bi in Eq. H2.

From the inclusion region contour points (xi, yi), the corresponding inclusion region radii 
were determined as the line segments to the centre of gravity (xcg, ycg) of the cross-section. 
The directions of these radii were obtained as

θi = tan−1 ycg − yi

xcg − xi

⎛

⎝
⎜

⎞

⎠
⎟  ,

 

(H4)

and the lengths as 

r(θi ) = (xcg − xi )
2 + (ycg − yi )

2  ,
 

(H5)

i=0, 1,  ..., 3599. Clearly,  the angles between the radii varied,  that  is,  the radii were not 
located at regular angular intervals starting from the N–S direction.

In order to estimate the direction distributions of the Bitterlich diameters (the diameters 
parallel or perpendicular to plot radius direction in Bitterlich sampling), we needed the areas 
of the contiguous inclusion region sectors around the 360 systematic cross-section radius 
directions τj=β+jφ, j=0, 1, ..., 359, φ=π/180, starting from the N–S direction β. The sides 
of the sectors were formed by the inclusion region radii with directions τj–φ/2 and τj+φ/2 
(Fig. H2). As none of the 3600 previously determined radii necessarily coincided with the 
sector side radii, their lengths had to be estimated separately. The points where the sector 
sides intersected the inclusion region contour (the end points of the sector side radii) were 
determined with linear interpolation between the end points of the two nearest inclusion 
region  radii among  the 3600 previously determined ones  (Fig. H2). Let  r(θ1) and  r(θ2) 
denote the lengths of the radii (with directions θ1 and θ2) that are closest to the right-hand 
side of the sector, the length of which we denote by r(τj–φ/2). The corresponding contour 
points closest to the sector side end point (x, y)=(r(τj–φ/2)cos(τj–φ/2), r(τj–φ/2)sin(τj–φ/2)) 
are then (x1, y1)=(r(θ1)cosθ1,  r(θ1)sinθ1) and (x2, y2)=(r(θ2)cosθ2,  r(θ2)sinθ2). By linear 
interpolation, the y co-ordinate of the sector side end point becomes (Fig. H2 B)

y = y1 +
y2 − y1

x2 − x1

(x − x1) ⇔

r(τ j −ϕ / 2)sin(τ j −ϕ / 2) = r(θ1)sinθ1

+
r(θ2 )sinθ2 − r(θ1)sinθ1

r(θ2 )cosθ2 − r(θ1)cosθ1

r(τ j −ϕ / 2)cos(τ j −ϕ / 2)− r(θ1)cosθ1
⎡⎣ ⎤⎦ ,

 
 

(H6)
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from which the sector side length is solved as

r(τ j −ϕ / 2) =
r(θ1)(sinθ1 − kcosθ1)

sin(τ j −ϕ / 2) − kcos(τ j −ϕ / 2)
 ,

 
(H7)

where

k =
r(θ2 )sinθ2 − r(θ1)sinθ1

r(θ2 )cosθ2 − r(θ1)cosθ1

 .
 

(H8)

The length r(τj+φ/2) of the left-hand side of the sector was determined in a similar manner. 
The sector area was estimated as the sum of the areas of the narrow contiguous triangles 
formed by the previously determined radii or sector sides (Fig. H2). If the side lengths of 
a triangle are r(θi–1) and r(θi) with the angle |θi–θi–1| between them, the area is given by

Ai =
1
2

r(θi−1) r(θi )sin |θi − θi−1 | .  (H9)

Fig. H2. Estimating, in Bitterlich sampling with viewing angle α, the area of the inclusion region sec-
tors around the directions τ and τ+π and of angular width φ, by using the 3600 radii computed 
before to determine the inclusion region (dashed lines, in reality with angular interval π/1800, i.e., 
much closer to each other than in this illustration; note that the inclusion region contour consists 
of the line segments between the end points of these radii) (A): the area of the sector is estimated 
by summing up the areas of the contiguous triangles with the known radii as their the sides. As 
none of the known radii necessarily coincides with the sector sides in directions τ-φ/2 and τ+φ/2 
(or τ+π-φ/2 and τ+π+φ/2), the sector sides are determined by means of the nearest known radii 
(B): the point (x, y) where the sector side with direction τ-φ/2 and length r(τ-φ/2) intersects the 
inclusion region contour is obtained with linear interpolation between (x1, y1) and (x2, y2), the 
end points of the closest radii with directions θ1 and θ2 and lengths r(θ1) and r(θ2).

α

y

xτ

φ/2

φ

φ/2 (x, y)

A

(x1, y1)

(x2, y2)

(x1, y1)

(x2, y2)

(x, y)

r(τ-φ/2)

y

θ2
x

θ1

τ-φ/2

r(θ2)

r(θ1)

B
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The total inclusion area was estimated as the sum of the 360 sector areas.
The direction distributions of the Bitterlich diameters were estimated in a discretised form, 

with point probabilities associated to the 180 systematic diameter directions ξj=β+jφ, j=0, 
1, ..., 179, φ=π/180, starting from the N–S direction β. For each direction ξj, the probability 
mass was estimated as the summed area of the two sectors of angular width φ around the 
directions τj and τj+180=τj+π divided by the total inclusion area.
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Appendix I. Computation of Scale in Vector Image of Cross-Section

Although two fixed distances between the camera lens and the plane under the disc were 
applied (632 mm for the discs with the diameter up to 15 cm, and 982 mm for the discs 
larger than that), the camera was focused separately on each disc due to the variation in 
disc thickness, and therefore also the scale had to be computed separately for each disc. 
The determination of the scale — defined as the proportion of the disc dimensions in 

reality to those in the photograph (raster image) — was complicated by two faults in the 
photographing and printing procedure: First, when taking the photographs, the ruler was 
placed on the same plane as the disc bottom, as a result of which it ended up about 3 cm 
(disc thickness) farther from the camera lens than the disc surface. Hence, we could not 
attain the scale straightforwardly by measuring in pixels the length of a 10-cm piece of the 
ruler in the photograph but had to resort to the lens equation and the disc thickness meas-
urements. Second, due to some misunderstanding between the author and the technician 
who developed and printed the photographs, the sizing in the print-making phase was not 
accurate but the negative was occasionally slightly cropped (i.e., the 10 cm × 15 cm sized 
print did not cover the whole 24 mm × 36 mm sized negative, but some part of the edges 
were left out), whereupon the cross-section in the photograph became larger than it should 
have been. Hence, we could not compute the scale straightforwardly by means of the lens 
equation and the disc thickness measurements either but had to reverse the two independ-
ent sizing operations that had taken place in the photograph-making procedure (Fig. I1): 
the shrinking from the real disc to the film negative (1), and the enlarging from the film 
negative to the photograph print (2).
The determination of the scale between the real disc and the film negative was based 

on the lens equation of basic optics; as the camera was focused not on the ruler but on the 
disc surface, we applied the equation to the disc. Let f denote the focal distance of the lens 
system of the camera, a be the distance of the disc surface from (the middle plane of) the 
lens, and b stand for the distance between the image produced on the film negative and the 
lens (Fig. I2). For an accurate image it holds that

1
f
= 1
a
+ 1
b

⇔ b = af
a − f  

(I1)

(Pedrotti and Pedrotti 1987). Let r and n then denote the dimensions of the disc in reality 
and in the film negative, respectively. From the equiform triangles of Fig. I2, their propor-
tion (the inverse of the line magnification) is found to be

r
n
= a

b
 .  

(I2)

Combined with the lens equation (Eq. I1), the scale hence becomes

r
n
= a

b
= a − f

f
 .  

(I3)

In this study, the focal distance f of the camera was 50 mm. The distance between the lens 
and the plane on which the disc was lying was either 632 mm or 982 mm depending on the 
size of the disc; from this, the distance a between the camera lens and the upper surface 
of the disc was obtained by subtracting the disc thickness. As the disc thickness we used 
the mean of the thickness measurements made on each disc in four points at the edge (at 
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regular rotation angle intervals of π/2 radians and starting from the plot radius direction); 
radial displacement calculations showed that the observed within-disc variation in thickness 
had no noteworthy effect on the scale.
The determination of the scale between the film negative and the photograph was based 

on the ruler length measurement in the photograph. As the ruler was located farther from 
the camera lens system than the disc surface on which the camera was focused, the accurate 
image of the ruler was formed in front of the film (Fig. I3):

1
f
= 1

ar

+ 1
br

⇔ br =
arf

ar − f
< b ,

 
(I4)

where ar and br are the distances of the ruler and its accurate image from (the middle 
plane of) the lens system, respectively. The image of the ruler formed on the film (on the 

Fig. I1. The independent components (1) and (2) of the scale computation (3); p, n and 
r denote the dimensions of the cross-section in reality, in the film negative, and in 
the photograph, respectively; pr, nr and rr stand for those of the ruler.

Fig. I2. The simplified principle of the image formation in a camera; f is the focal 
distance of the lens system, r and n are the dimensions of the object in real-
ity and in the image (film), respectively, and a and b are the distances of the 
middle plane of the lens system from the object and the image, respectively.

(1)Film
negative Reality

Lens equation
Ruler length measurements

Lens equation
Disc thickness measurements

(2)

(3)

p n rpr nr rr

Focal plane Lens system
Image plane
(film)

Disc

r

f

n

a b
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disc image plane) then became somewhat diffuse, as it in fact consisted of a multitude of 
images (Fig. I3). Let rr denote the length of the ruler in reality, and nr1 and nr2 stand for the 
ruler length in the smallest and the largest ruler images on the film, respectively. From the 
equiform triangles of Fig. I3 and the lens equations (Eqs. I1 and I4) we find that

nr1

rr

=
br

ar

⇔ nr1 = rr

f
ar − f

 ,  
(I5)

and

nr2

rr

= b− f
f

⇔ nr2 = rr

f
a − f

 .  
(I6)

As the length measurement was taken in principle not at the utmost outer edge but in the 
middle of the border of the ruler in the photograph, we decided to employ the arithmetic 
mean of these extremities as the ruler length in the film negative:

nr =
nr1 + nr2

2
= rr

(ar + a)f − 2f 2

2(ar − f )(a − f )
 .  

(I7)

The scale between the film negative and the photograph was then found to be

n
p
=

nr

pr

=
rr

pr

⋅
(ar + a)f − 2f 2

2(ar − f )(a − f )
 ,

 
(I8)

where p and pr are the dimensions in pixels of the cross-section and the ruler in the pho-
tograph, respectively. As mentioned before, the length rr of the ruler in reality was 10 cm, 

Fig. I3. The formation of the image of the ruler (located lower than the disc surface 
on which the camera was focused) on the disc image plane; ar is the distance 
between the ruler surface and the middle plane of the lens system, br stands 
for the distance of the accurate image of the ruler from the middle plane of 
the lens system, and nr1 and nr2 denote the smallest and the largest images of 
the ruler produced on the film; other notations as in Fig. I2.

Disc

Lens system

Ruler image plane

(film)
Disc image plane

Focal plane

Ruler

a b

f f

rr

nr1 nr2

ar br
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the focal distance f was 50 mm, and the distance a between the disc surface and the camera 
lens either 632 mm or 982 mm minus the mean disc thickness; further, as the ruler thickness 
was 2 mm, the distance ar between the ruler surface and the middle plane of the camera 
lens was either 630 mm or 980 mm depending on the size of the disc.
Finally, by combining the scale components (Eqs. I3 and I8), we attained the scale between 

the dimensions of the real disc r and those of the cross-section in the photograph p:

r
p
= r

n
⋅ n

p
= a − f

f
⋅

rr

pr

⋅
(ar + a)f − 2f 2

2(ar − f )(a − f )
=

rr

pr

⋅
(ar + a)− 2f

2(ar − f )
 .  

(I9)

Naturally, the scale of areas was obtained as the square of this scale of lengths.
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Appendix K. Examples of Association Between Some Shape Indices and Actual Shapes 
of Cross-Sections

In Figs. K1–K7, we display those convex closures or true cross-sections in our data that 
exhibited  the extreme or median values of  the shape  indices  (Sections 7.1.1 and 8.2.1) 
and  the convex and  isoperimetric deficits  (Sections 7.1.2, 7.2, 8.2.2 and 8.3.1).  In Fig. 
K8, we show the four convex closures that were assessed, on the basis of the values of 
the shape indices, as the most elliptic in the data (Section 8.2.1). The contours are scaled 
into approximately the same size. For each convex closure or cross-section, identification 
information (cf. Table 10 and Fig. 22 in Chapter 6) as well as the values of the indices and 
deficits are given in Table K1.

Fig. K1. Convex closures where the diameter coefficient of variation (CVD ) 
assumed its (A) maximum (9.94%), (B) median (1.73%) and (C) mini-
mum (0.37%) value.

A B C

A B C

Fig. K2. Convex  closures where  the  ratio  between  the minimum  and  the 
maximum diameter (Dmin/Dmax) assumed its (A) maximum (98.5%), 
(B) median (94.4%) and (C) minimum (73.4%) value.

Fig. K3. Convex closures where the girth-area ellipse ratio (be/ae) assumed its 
(A) maximum (93.4%), (B) median (87.2%) and (C) minimum (67.8%) 
value.

A B C
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Fig. K7. Cross-sections where the isoperimetric deficit ((Â0–AC)/AC) assumed 
its  (A)  maximum  (5.78%),  (B)  median  (0.71%)  and  (C)  minimum 
(0.18%) value; convex closures are drawn with thin lines. Note that the 
cross-sections here are the same as those in Fig. K3.

Fig. K4. Convex closures where the angle between the minimum and the 
maximum diameter (|θDmin–θDmax|) assumed its (A) maximum (90°), 
(B) median (68°) and (C) minimum (17°) value.

Fig. K5. Convex  closures  where  the  correlation  between  perpendicular 
diameters  (ρD(π/2))  assumed  its  (A)  maximum  (0.78),  (B)  median 
(–0.71) and (C) minimum value (–0.99) as well as (D) the value clos-
est to zero (0.01).

Fig. K6. Cross-sections where the convex deficit ((AC–A)/AC) assumed its 
(A) maximum (2.88%), (B) median (0.63%) and (C) minimum (0.25%) 
value; convex closures of are drawn with thin lines.

A B C

A B C D

A B C

A B C
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Fig. K8. Convex closures that were judged as the most elliptic ones in the data.

A B C D

Table K1. Identification information, values of the five shape indices (diameter coefficient of variation 
CVD, ratio between extreme diameters Dmin/Dmax, girth-area ellipse ratio be/ae, angle between 
minimum diameter and maximum diameter  |θDmin–θDmax|, correlation between perpendicular 
diameters ρD(π/2)), convex deficit ((AC–A)/AC) and isoperimetric deficit ((Â0–AC)/AC) for the 
convex closures or cross-sections displayed in Figs. K1–K8.

Fig. Plot Tree Obs. 
height

CVD  
(%)

Dmin/Dmax 
(%)

be/ae (%) |θDmin–
θDmax| (°)

ρD(π/2) (AC–A)/
AC (%)

(Â0–AC)/
AC (%)

K1 A 310 8 6 m 9.94 73.4 71.3 87 –0.99 1.14 4.35
B 303 6 85% 1.73 93.0 85.2 39 –0.12 1.07 0.97
C 308 5 85% 0.37 98.3 91.0 30 –0.54 0.90 0.34

K2 A 317 11 85% 0.38 98.5 88.0 17 –0.26 0.90 0.61
B 312 4 15% 1.67 94.4 89.1 81 –0.94 0.61 0.50
C See Fig. K1 A

K3 A 321 14 30% 0.77 97.9 93.4 87 –0.91 0.28 0.18
B 307 3 2.5% 0.79 97.1 87.2 72 –0.33 0.53 0.71
C 303 12 1% 9.88 77.0 67.8 79 –0.95 2.33 5.78

K4 A 303 5 30% 2.09 94.0 88.3 90 –0.98 0.64 0.59
B 304 1 1% 5.40 83.3 76.4 68 –0.79 1.31 2.73
C See Fig. K2 A

K5 A 304 15 6 m 1.89 94.0 83.1 42 0.78 0.51 1.30
B 311 3 70% 1.59 95.0 87.1 62 –0.71 0.67 0.71
C 307 3 85% 1.22 95.8 89.6 89 –0.99 0.74 0.45
D 308 13 30% 1.80 94.4 85.4 65 0.01 0.51 0.93

K6 A 303 5 2.5% 1.94 93.3 74.5 57 –0.62 2.88 3.29
B 305 14 30% 2.72 91.9 87.7 85 –0.97 0.63 0.65
C 318 18 7.5% 1.62 94.8 89.8 80 –0.50 0.25 0.44

K7 A See Fig. K3 C
B See Fig. K3 B
C See Fig. K3 A

K8 A 310 8 85% 7.24 81.2 78.5 83 –0.99 1.16 2.21
B See Fig. K1 A
C 318 9 6 m 3.28 90.9 88.6 81 –0.99 0.34 0.55
D 318 18 6 m 1.78 95.1 91.3 84 –0.99 0.26 0.31
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