
1

SILVA FENNICA

Silva Fennica vol. 52 no. 4 article id 9996
Category: research article

https://doi.org/10.14214/sf.9996

http://www.silvafennica.fi
Licenced CC BY-SA 4.0

ISSN-L 0037-5330 | ISSN 2242-4075 (Online)
The Finnish Society of Forest Science

Mulualem Tigabu1, Mostafa Farhadi1, Lars-Göran Stener 2 and Per C. Odén1

Visible + Near Infrared Spectroscopy as taxonomic tool 
for identifying birch species

Tigabu M., Farhadi M., Stener L.-G., Odén P.C. (2018). Visible + Near Infrared Spectroscopy 
as taxonomic tool for identifying birch species. Silva Fennica vol. 52 no. 4 article id 9996. 13 p. 
https://doi.org/10.14214/sf.9996

Highlights
• Multivariate modelling of visible + near infrared (NIR) reflectance spectra of single seeds 

distinguished Betula pubescens and B. pendula with 100% and 99% accuracy, respectively.
• The results demonstrate the feasibility of NIR spectroscopy as taxonomic tool for classifica-

tion of species that have morphological resemblance.

Abstract
The genus Betula L. is composed of several species, which are difficult to distinguish in the field 
on the basis of morphological traits. The aim of this study was to evaluate the taxonomic impor-
tance of using visible + near infrared (Vis + NIR) spectra of single seeds for differentiating Betula 
pendula Roth and Betula pubescens Ehrh. Seeds from several families (controlled crossings of 
known parent trees) of each species were used and Vis + NIR reflectance spectra were obtained 
from single seeds. Multivariate discriminant models were developed by Orthogonal Projections 
to Latent Structures – Discriminant Analysis (OPLS-DA). The OPLS-DA model fitted on Vis 
+ NIR spectra recognized B. pubescens with 100% classification accuracy while the prediction 
accuracy of class membership for B. pendula was 99%. However, the discriminant models fitted 
on NIR spectra alone resulted in 100% classification accuracies for both species. Absorption 
bands accounted for distinguishing between birch species were attributed to differences in color 
and chemical composition, presumably polysaccharides, proteins and fatty acids, of the seeds. 
In conclusion, the results demonstrate the feasibility of NIR spectroscopy as taxonomic tool for 
classification of species that have morphological resemblance.
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1 Introduction

The genus Betula L., commonly known as birch, is composed of several species and natural inter-
specific hybrids, which are distributed throughout the northern temperate and boreal ecosystems 
(Atkinson 1992). They are light-demanding pioneer species that can establish in early successional 
phase following clear-cuttings and gaps created by fire owing to their vigorous seed production 
and fast juvenile growth capacities (Fischer et al. 2002). They also serve as nurse-trees for other 
late-successional species with more economic traits (Renou-Wilson et al. 2010). The two most 
commercially important birch species in northern Europe are silver birch (Betula pendula Roth) 
and downy birch (Betula pubescens Ehrh.), accounting, for example, 11% of the total growing 
stock in Sweden and 17% in Finland (Hynynen et al. 2010). Although both species are valuable 
as raw material for pulp and for mechanical wood-manufacturing, silver birch is preferred for 
planting owing to its higher yield.

There is a large regional variation among the two birch species. For instance, downy birch 
dominates in the northern parts of Sweden, while they often form mixed stands of variable propor-
tions, depending on the site conditions, in central and southern Sweden. Morphological differences, 
such as occurrence of resin granules and hair on young twigs, and bark structure on the lower 
trunk, leaf shape and branch orientation on older trees (Fries 1964), are the most used methods 
for differentiation of the two species. However, there are often individuals showing intermediate 
characteristics and the species may also hybridize, making the differentiation in field unreliable. 
Previously, several studies have been made to differentiate among birch species based on leaf 
traits (Atkinson and Codling 1986); phenolic contents in the bark (Lundgren et al. 1995), leaves 
(Keinänen et al. 1999; Laitinen et al. 2005; Raal et al. 2015) and chemical composition of bud 
exudates (Isidorov et al. 2014). Atkinson et al. (1997) evaluated the feasibility of using near infrared 
(NIR) spectroscopy to separate Betula pendula, Betula pubescens and their hybrids based on leaf 
samples. As the authors admitted, the concentration of chemical compounds in a sample of dried 
and ground leaves from a tree can be influenced by several factors, including the partial shading 
of the tree, the weather conditions during growth, the site quality, the state of senescence, and the 
activities of leaf predators. As a result, the NIR spectra of several samples of a given species may 
vary considerably as absorbance is a function of concentration and hence disturbing the model 
stability. On the contrary, reproductive structures, such as fruits and/or seeds, are less susceptible 
to changes due to growth conditions.

Seed mixtures of birch from various stands are many times used for establishing field trials 
aiming at studies of yield or stem quality among specific birch species. Plant material from such 
seed can also be used in the first step of the breeding process where individual birch trees are tested 
in field aiming at selection of the most well performing trees. There is a large variation among 
individuals in morphological characteristics, which makes differentiation between seed trees of B. 
pendula and B. pubescens unreliable. Thus, to avoid mistakes that may result in wrong conclusions 
and other costly consequences, it would be beneficial to have a method that for sure could distin-
guish seed from the different birch species. Thus, the aim of this study was to evaluate the potential 
of single seed visible (Vis) and Near Infrared (NIR) spectroscopy as a rapid and non-destructive 
technique for differentiating the two birch species, B. pendula and B. pubescens. Near infrared 
spectroscopy is a versatile analytical technique that can detect and measure chemical compounds 
and moisture in biological samples based on absorption of near infrared radiation by bonds between 
light atoms (C – H, O – H and N – H). The molecular bond vibration yields overtones and com-
bination bands that are detectable in the 780–2500 nm wavelength region (Workman and Weyer 
2012). The technique has demonstrated and confirmed its strength in identification of biological 
samples, such as authentication of Picea abies (L.) Karst. seed provenances (Farhadi et al. 2017), 
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parental identification of Pinus sylvestris L. (Tigabu et al. 2005), authentication of origin of olive 
oil (Bevilacqua et al. 2012) and pistachio (Vitale et al. 2013) and identification of the parental spe-
cies Larix decidua Mill. and L. kaempferi (Lamb.) Carrière from their hybrid, L. × eurolepis Herny 
(Farhadi et al. 2016). To our knowledge, no attempt has been made to differentiate birch species 
based on single seed Vis + NIR spectra. Reliable identification of the species is of great concern in 
practical tree breeding since the two species are supposed to be treated separately. Identification of 
seeds is also important to ensure consistency in planting of the desired species, particularly when 
open-pollinated seeds from stands are used as seed sources (at least in Sweden).

2 Methods and materials

2.1 Seed samples

Seeds of B. pendula and B. pubescens were obtained from a clonal archive of the Swedish Forest 
Research Institute at Ekebo, Sweden. Seeds were produced by controlled crossings of known 
maternal and paternal parents in year 2000 for B. pubescens and in 2009/2010 for B. pendula. The 
samples were kept in a freezer at –4 °C until the study was conducted. The parental material were 
all selected as plus-trees from stands in southern Sweden and Finland, to be used for long-termed 
breeding, and were at that time (1989–1991) differentiated among the two species by morphologi-
cal characters. The B. pubescens parents were later on also checked by chemical markers using 
phenolic bark contents (Lundgren et al. 1995). For this study, seeds were sampled from 15 and 
13 families of B. pubescens and B. pendula, respectively due to limited availability. From each 
family, 50 seeds were randomly drawn as a working sub-sample. Thus, a total of 750 seeds for 
B. pubescens and 650 seeds for B. pendula were used for Vis + NIR spectroscopic analysis.

2.2 Sample presentation and collection of NIR spectra

Single seed reflectance spectra were collected with XDS Rapid Content Analyzer (FOSS NIRSys-
tems, Inc., Hilleroed, Denmark) from 400 to 2498 nm at 0.5 nm resolution. Individual seeds were 
directly placed at the center of the scanning glass window of the instrument with 9 mm aperture at 
stationary module and then covered with the instrument’s lid that had black background. Prior to 
collecting single seed reflectance spectra, reference measurement was acquired on standard built-in 
reference of the instrument. To reduce the effects of possible instrumental drift during scanning, 
reference measurements were also taken after every 20 scans. For every seed, 32 scans were made 
and the average value recorded. The spectral data were then exported from Vision Software (FOSS 
NIRSytems, Inc. VISION 3.5) as NSAS file and imported into Simca-P+ software (Version 13.0.0.0, 
Umetrics AB, Sweden) for developing multivariate discriminant models.

2.3 Multivariate discriminant modelling

Prior to modelling, Principal Component Analysis (PCA) was performed to get an overview of 
the raw spectral data set. The PCA revealed four strong outliers that fell outside the 95% confi-
dence interval, which were removed from the final data set (Table 1). The outliers were insect-
damaged seeds that had reflectance values well below the average reflectance values of the other 
seeds. Families were randomly divided into two groups, and one group used for developing the 
calibration model and the other was kept aside for validation of the fitted calibration model. The 
calibration set was composed of seeds from 10 families of B. pubescens (n = 497 seeds) and 
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8 families of B. pendula (n = 399 seeds). The validation set was composed of seeds from five 
families that were randomly selected and excluded during model fitting (n = 250 seeds for each 
species). Multivariate discriminant models were derived by Orthogonal Projection to Latent 
Structures-Discriminant Analysis (OPLS-DA) using corrected absorbance values as regressor and 
a Y-matrix of dummy variables (1.0 for member of a given class, 0.0 otherwise) as regressand. 
The OPLS-DA modelling approach integrates both spectral filtering and subsequent modeling 
steps. The spectral filtering step in OPLS-DA removes more general types of interferences in the 
spectra by removing components orthogonal to the response variable calibrated against (Trygg 
and Wold 2003). Components orthogonal to the response variable containing unwanted system-
atic variation are then subtracted from the original spectral data to produce a filtered descriptor 
matrix. The final discriminant models were then computed using the filtered spectra in the visible 
+ NIR, visible and NIR regions.

All calibrations were developed on mean-centered data sets and the number of significant 
model components was determined by cross validation. A component was considered significant if 
the ratio of the prediction error sum of squares (PRESS) to the residual sum of squares of the previ-
ous dimension (SS) was statistically smaller than 1.0 (Eriksson et al. 2006). Finally, the computed 
models were used to classify samples in the validation set, and seeds were considered as member 
of a given class if the predicted value was greater than the classification threshold (Ypred ≥ 0.5) and 
all others were considered as non-members. The performances of the classification models were 
evaluated using the following classification parameters: sensitivity (Sn), specificity (Sp), clas-
sification error rate (ER), Mean classification ER (MER), classification accuracy (CA) and Mean 
classification accuracy (MCA) following Ballabio and Consonni (2013). The equations used for 
calculating classification parameters were:

Sn
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TP FN
�
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( )1
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FP TN
�
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Table 1. Data sets used for developing discriminant model to distinguish 
seeds of two birch species (Betula spp.), together with number of families 
included in each species, total number of seeds per species, validation sets 
and number of outliers excluded during model development.

Data sets Betula pubescens Betula pendula

No. of families 15 13
Total No. seeds 750 650
Calibration set 497 399
External test set* 250 250
Outliers 3 1

* External test set is composed of samples from five families that were not part of 
the calibration model.
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, where TP (True Positive) is the number of samples of a given species correctly recognized as 
member, FN (False Negative) is the number of samples of a given species incorrectly classified 
as non-member, TN (True Negative) the number of non-member samples correctly classified as 
non-member of a given species, and FP (False Positive) is the number of non-member samples 
incorrectly classified as member of a given species, and n is the number of classes.

While sensitivity describes the model’s ability to correctly recognize samples belonging 
to that class, specificity describes the model’s ability to reject samples of all other classes. The 
values for both sensitivity and specificity range from 0 to 1; for example, if none of the samples 
in a given class was classified as member of other classes (FN = 0), the sensitivity for that class 
would be equal to 1. Similarly, if none of the non-member samples of a given class was classified 
as member of that class (FP = 0), the specificity for that class would be equal to 1.

Absorption bands that accounted for discriminating between birch species were determined 
by a parameter called Variable Influence on Projection (VIP). The VIP for predictive components 
(PRED_VIPOPLS) was computed using the following formula (Galindo-Prieto et al. 2015):
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, where Kp is the total number of variables in the model; P is the normalized loadings; a and 
Ap are the number of each predictive component and the total number of predictive compo-
nents, respectively; SSXcomp and SSYcomp represent the explained sum of squares of ath compo-
nent for X and Y data matrices, respectively; and SSXcum and SSYcum represent the cumulative 
explained sum of squares by all A components in the model for X and Y data matrices, 
respectively.

Since the sum of squares of all VIP values is equal to the number of spectral X matrix 
variables contributed in each calibration model, the average VIP value would be 1. Thus, predic-
tors with VIP value greater than 1.0 have a strong influence on the model, but a cut-off around 
0.7–0.8 has been suggested to discriminate between relevant and irrelevant predictors (Eriksson 
et al. 2006).
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3 Results

3.1	 Spectral	profile	and	model	overview

The average raw absorbance values for B. pendula and B. pubescens seeds showed a similar 
spectral profile with two major peaks at 415 nm and 1920 nm (Fig. 1). The absorbance values 
were larger for B. pubescens than B. pendula across the entire wavelength region, one major 
peak in the visible region and several small shoulder peaks in the NIR region. As a whole, the 
spectra contained sufficient information to distinguish B. pubescens from B. pendula based on 
single seed spectra.

OPLS-DA models were developed to distinguish between B. pubescens and B. pendula 
based on VIS + NIR, visible and NIR spectra of single seed (Table 2). The model developed using 
the VIS + NIR region had one predictive and 9 Y-orthogonal components (A = 1 + 9). The total 
spectral variation described by the model was 98.7%; of which the predictive spectral variation 
(R2XP) accounted for 30.2% and the spectral variation uncorrelated to the classes (R2Xo) consti-
tuted 68.4%. This small proportion of predictive spectral variation modelled 90.1% of the variation 
between species (R2Y) with 89.5% predictive power (Q2cv) according to cross validation. When 
the model was fitted on visible spectra alone, both the proportion of modelled variation between 

Fig. 1. Mean raw reflectance spectra (log 1/R) of Betula pen-
dula and B. pubescens seeds.

Table 2. A statistical summary of discriminant models computed to identify Betula pubescens and 
B. pendula seeds using full (400–2500 nm), visible (400–780 nm) and near infrared (780–2500 nm) 
reflectance spectral region.

Model Wavelength region (nm)
Statistics 400–2500 400–780 780–2500

Number of significant components (A)* 1 + 11 1 + 7 1 + 16
Predictive spectral variation (R2Xp) 0.125 0.138 0.114
Y-orthogonal spectral variation (R2Xo) 0.875 0.861 0.886
Modelled class variation (R2Y) 0.884 0.833 0.924
Predictive power of a model (Q2) 0.877 0.828 0.917

* The first and second values represent the number of components for predictive and orthogonal variations, 
respectively.
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species and the predictive power according to cross-validation were decreased, but the model fitted 
on NIR spectra resulted in slightly higher proportion of modelled variation between species and 
the predictive power than the full or visible spectra model.

The score plot for the first predictive and orthogonal components (tp[1] versus to[1]) showed 
symmetrical separation of B. pubescens and B. pendula (Fig. 2) in the calibration set (X-axis) while 
the orthogonal scores revealed within species variation (Y-axis). There were few samples of both 
species that fell outside the 95% confidence ellipse according to Hotelling’s T2 test (a multivariate 
generalization of Student’s t-test), but these samples were moderate outliers and excluding them 
from the calibration set did not improve the model. Thus, they were kept during model fitting.

3.2	Classification	performance

The model fitted on Vis + NIR spectral region (400–2500 nm) assigned B. pubescens and B. pendula 
to their respective classes except for two B. pendula samples that was misclassified as B. pubescens 
(Fig. 3A). The overall prediction accuracy of class membership was 100% for B. pubescens and 99% 
for B. pendula. The discriminant model developed using the visible region alone fully recognized 
B. pendula but misclassified three samples of B. pubescens (Fig. 3B), while the model developed 
in the NIR region alone completely distinguished B. pubescens from B. pendula (Fig. 3C). The 
ability of the NIR-model to assign seeds to their respective species classes (sensitivity) as well as 
its ability to reject seeds of other species (specificity) was very high with 100% mean classification 
accuracy and 0.0% mean error rate (Table 3).

3.3 Absorption bands relevant for discrimination of birch species and their families

The absorption band in 400–750 nm, with one major absorption peak centered at 674 nm and one 
shoulder peak at 613 nm were highly relevant for distinguishing B. pendula and B. pubescens 
(VIP > 1; Fig. 4A). In the NIR region, absorption peaks centered at 860 nm, 1944 nm, 2211 nm and 
2336 nm were highly relevant for discrimination of the species (Fig. 4B). Other absorption peaks 
in the NIR region which were relevant for species discrimination appeared at 1458 nm, 1509 nm, 
and 1848 nm (VIP = 0.8–1.0).

Fig. 2. Score plot for the first predictive (tp[1]) and orthogonal 
(to[1]) components of OPLS-DA model developed in Vis+ NIR 
range, depecting clear-cut separation of seeds of Betula pube-
scens (●) and B. pendula (●). Note that the ellipse shows 95% 
confidence interval according to Hotelling’s test.
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Fig. 3. Predicted Class membership of samples 
in the test set for seeds of Betula pendula and 
B. pubescens by OPLS-DA models fitted on 
Vis + NIR (panel A), visible (panel B) and NIR 
(panel C) regions. Note that the dashed line is 
threshold for classification (Ypred > 0.5).
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Table 3. Performance of classification model developed for identifying seeds 
of two birch species (Betula spp.) by multivariate discriminant analysis of NIR 
reflectance spectra. Sn is class sensitivity, Sp is class specificity, CA and ER are 
classification accuracy and error rate, respectively.

Species test set Sn Sp CA ER

Betula pubescens Seedlot-1 1.0 1.0 1.0 0.0
Seedlot-2 1.0 1.0 1.0 0.0
Seedlot-3 1.0 1.0 1.0 0.0
Seedlot-4 1.0 1.0 1.0 0.0
Seedlot-5 1.0 1.0 1.0 0.0
Mean CA 1.0
Mean ER 0.0

Betula pendula Seedlot-1 1.0 1.0 1.0 0.0
Seedlot-2 1.0 1.0 1.0 0.0
Seedlot-3 1.0 1.0 1.0 0.0
Seedlot-4 1.0 1.0 1.0 0.0
Seedlot-5 1.0 1.0 1.0 0.0
Mean CA 1.0
Mean ER 0.0

Fig. 4. Variable influence on Projection (VIP) 
plots depicting absorption bands accounted for 
identification of seeds of Betula pendula and 
B. pubescens by discriminant modelling of VIS 
(Panel A) and NIR (Panel B) spectral regions. 
The dashed line shows the threshold of signifi-
cant contribution in model (VIP = 1).
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4 Discussion

The results demonstrate that Vis + NIR spectroscopy has great taxonomic importance for distin-
guishing seeds of morphologically similar Betula spp. The computed OPLS-DA models efficiently 
utilized the spectral variation (R2X) to substantially describe between-species variations with few 
significant components to build the model and with overall excellent predictive power according 
to cross validation (Table 2). The model in the visible or NIR region alone also resulted in compa-
rably similar prediction accuracy of class membership of the validation set as the model fitted on 
full spectra (Fig. 3). The OPLS-DA modelling approach results in parsimonious models with few 
components by extracting irrelevant spectral variations that are not useful for class discrimination 
(Trygg and Wold 2003; Daneshvar et al. 2015; Farhadi et al. 2015). The proportion of spectral 
variation that was uncorrelated to species discrimination was larger than the predictive spectral 
variation (Table 2). As the absorbance values were recorded at 0.5 nm wavelength resolution, it is 
legitimate to expect a high degree of redundancy in the absorbance values at this scale of resolution 
that have no relevance for species discrimination (Farhadi et al. 2016). In addition, individual seeds 
within each species could vary in color, moisture content and chemical composition that influence 
the homogeneity of the classes. This is further evidenced from the Y-orthogonal score plot where 
B. pendula had more tight class than B. pubescens (Fig. 2) while the orthogonal loading plot (data 
not shown)) shows one major peak at 691 nm that correlates with the grouping tendency observed 
in the score plot. Apparently, color variation among individual families within species would be 
the major source of Y-orthogonal spectral variation.

In the visible region, absorption maxima that were highly relevant for discriminating 
B. pendula and B. pubescens appeared at 613 nm and 674 nm (Fig. 4A). The observed absorption 
peaks correlated positively with B. pubescens; thus seeds of B. pubescens appeared to be more red-
brownish than B. pendula seeds, which in turn vary among families within each species. Genotypic 
variations in seed physical traits, such as surface structure of seeds, seed size and germinability, as 
well as quantitative color characteristics of the seed coat are common in many tree seeds. Thus, it 
is legitimate to expect color variation between-species that was detected in the present study. Our 
finding is consistent with previous studies that have demonstrated the usefulness of reflectance 
spectra in the visible region for identification of seed origin and parents of Scots pine (Tigabu et 
al. 2005) as well as for seeds of hybrid larch and its’ parental species (Farhadi et al. 2016).

In NIR region, absorption bands in 780–970 nm, 1410–1570 nm, 1610–1860 nm and 
1890–2000 nm and 2050–2500 nm were highly relevant for discriminating B. pendula from B. pube-
scens (Fig. 4B), and the spectral signature was dominantly emanated from B. pubescens seeds 
as evidenced from the positive loadings in these regions. The absorption band in 780–1100 nm, 
with a major peak at 860 nm, is characteristic of the third overtone of C – H stretching vibration 
and second overtone N – H and C – H stretching vibrations due to absorption by lipid and protein 
moieties such as CH3, CH2, ArNH2 (aromatic amino acids) and NH2. This region was useful to 
identify seed provenances of P. abies (Farhadi et al. 2017). The 1410–1570 nm regions of the NIR 
reflectance spectra presents peaks at 1458 nm and 1509 nm, which corresponds to first overtone of 
O – H and combination band of C – H vibration of various functional groups; notably ROH, and 
starch (Workman and Weyer 2012). The absorption band in 1610–1860 nm with absorption peak 
centered at 1848 nm arises mainly from O – H stretching and C – O combinations. The absorption 
band in 1890–2000 nm with absorption peak centered at 1944 nm arises from combination of O – H 
stretch and HOH deformation, and O – H bend second overtone and C = O stretch second overtone. 
Molecular moieties of alcohol, esters and acids show overlapping absorption peaks in this region 
(Shenk et al. 2001; Workman and Weyer 2012). The absorption band in 2050–2500 nm is charac-
teristic of CH2 stretch-bend combinations as well as N – H combination bands and C – H stretch 
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and CH2 deformation (Workman and Weyer 2012). Several compounds, such as polysaccharides, 
proteins and lipids, exhibit characteristic absorption peaks in these regions. Several fatty acids in 
several oil crops have shown positive correlation to absorption bands in these regions (Hourant 
et al. 2000; Osborne et al. 1993). Farhadi et al. (2016) also found these spectral regions useful for 
discrimination of pure and hybrid larch seeds. Thus, NIR spectroscopy appears to have detected 
differences in chemical compounds between the two species, probably polysaccharides, proteins 
and lipids, as a basis to distinguish between birch species.

The technique can be used to authenticate seed lots of the two species as there is a large 
variation among individuals in morphological characteristics, which makes differentiation between 
seed trees of B. pendula and B. pubescens unreliable. In addition, it can be used as a first step in 
the breeding program to objectively authenticate seeds of individual trees of the two species before 
establishing in the field aiming at selection of the most well performing trees. The advantages with 
this technique is that it is rapid and thereby cost-efficient as it takes ca. two minutes to scan a single 
seed, and non-destructive as there is no need for sample preparation.

5 Conclusions

Identification of birch species based on single seed Vis + NIR spectroscopy was successful. Thus, 
the results demonstrate the feasibility of NIR spectroscopy as taxonomic tool for classification of 
species that have morphological resemblance. Furthermore, the OPLS-DA modelling approach 
results in parsimonious models with additional information to examine within-class variation and 
its cause to better understand the modelling process.
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