1

Fig. 1. The locations of the areas examined during the field inventories of unpaved forest road quality assessments. Both Tuusniemi and Kiihlelysvaara are located in the Finnish Lakeland region in Eastern Finland.

Table 1. The road quality variables (structural condition, surface wearing and flatness) collected based on a Finnish Forest Road Quality recommendations (Korpilahti 2008) developed by Metsäteho Oy were classified to three quality categories in the study. The simplified table lists the road problems to be included in each category and the empirical assessment factors for good, satisfactory, and poor classes.
Assessed roads
quality variables
Road quality issues to pay attention while assessing each variable Road quality classes
Good Satisfactory Poor
Structural
condition
The whole road body condition. Visibility of driving lines. The road surface is smooth; therefore, the driving speed does not need to be reduced Some road quality problems (such as ruts) are visible, driving lines must be chosen with care and speeds have to be slightly reduced. There are clearly visible ruts so the driving lines must be chosen carefully, and driving speeds have to be significantly reduced.
Surface
wearing
The road wearing layer’s quality and material (fine, coarse, not present). The road’s wearing layer is sufficiently thick and of good quality. The wear layer is too thin, or the material is either too fine or too coarse. These are hindering vehicle movement and require slightly reduced speed. The wear layer has majorly been worn away, or the material is too fine or too coarse. These factors are significantly hindering driving and speed reduction is necessary.
Flatness The evenness of the road surface. Depressions, grooves and side bulges are present or not. Road drainage status. The road has an even surface. There is no risk or damage to vehicles. The drainage of the surface is good. Road conditions will not hinder transportation or daily movement. The wear layer is uneven, and the road has depressions, grooves and lateral bulges. There is visible damage. Lower speeds may be required in some places, but the risk of damage to a vehicle is quite small and will not hinder transportation or daily movement. The road has depressions, grooves and lateral bulges, and/or drainage of its surface does not function well. The wear layer is defective, and driving conditions are obviously poor. It is necessary to reduce speed and to change the driving line frequently to avoid vehicle damage. The poor condition of the road hinders transportation and daily movement.
Table 2. Distribution of field observations between the road quality classes (poor, satisfactory and good) of road sections in two study areas. In Tuusniemi all 3 road quality classes were present, while in Kiih­telysvaara the road quality was better and only 2 classes were present.
Tuusniemi, year 2014
Road quality class Structural condition Surface
wearing
Flatness Total number of road sections of each road quality class
Poor 3 6 3 12
Satisfactory 13 27 22 62
Good 33 16 24 73
Total number of road sections of each road quality parameter 49 49 49 147
Kiihtelysvaara, year 2013
Road quality class Structural condition Surface
wearing
Flatness Total number of road sections of each road quality class
Poor 0 0 0 0
Satisfactory 3 7 6 16
Good 10 6 7 23
Total number of road sections of each road quality parameter 13 13 13 39
Table 3. List of variables tested for prediction. In the table, dz: distance of height values from the reference DEM; dz5: distance of 5 random height values from the reference DEM SP: spline interpolation; KR: kriging interpolation; IDW: inverse distance-weighted interpolation; NN: natural neighbour interpolation. Topographic Position Indices (TPI) and Standardized Elevation (SE) names are the following: Interpolation Technique for Reference DEM ‘_’ Interpolation for Surface Quality Index.
ALS derived values – applied for height values in one cell Reference DEM
interpolation methods
Interpolation methods used for DEMs for TPI and SE calculations
intensity SP SP
range KR KR
variance IDW IDW
dz NN NN
dz^2
dz^3
dz5
dz5 ^2
mean (dz)
mean (dz^2)
Table 4. Accuracy (%) of the classification of the TPI and SE index values for the structural condition assessments with and without a reference DEM. Kiihtelysvaara, high pulse density laser scanning data. Resolutions of 1 and 0.5 m. In the table, SP: spline interpolation; KR: kriging interpolation; IDW: inverse distance-weighted interpolation; NN: natural neighbour interpolation; TPI: Topographic Position Index; SE: Standardized Elevation Index.
Interpolation technique for surface index/reference DEM No reference DEM Reference DEM
TPI index SE index TPI index SE index
1 m 0.5 m 1 m 0.5 m 0.5 m 0.5 m
IDW 92% 92% 77% 77% 77% 62%
KR 69% 92% 46% 62% 77% 54%
NN 92% 92% 77% 54% 69% 62%
SP 62% 77% 62% 77% 85% 54%
2

Fig. 2. Cross-sections of bad and good quality roads at 0.25 m resolutions. The Inverse Distance Weighted (IDW) interpolation technique was used to create the surfaces.

3

Fig. 3. The interpolation techniques at a resolution of 0.5 metre. In the figure, SP: spline interpolation; KR: kriging interpolation; IDW: inverse distance weighted interpolation; NN: natural neighbour interpolation.

4

Fig. 4. TPI values for the cross-sections of a bad quality road (up) and good quality road (down). Different interpolations were used at a resolution of 0.25 m. Low pulse density dataset, Tuusniemi. In the figure TPI: Topographic Position Index.

Table 5. Classification accuracy (%) of TPI index values for structural condition assessments with the reference DEM interpolated with the indicated methods. Tuusniemi, high pulse density laser scanning data at a resolution of 0.5 m, verified against the field data. In the table, SP: spline interpolation; KR: kriging interpolation; IDW: inverse distance-weighted interpolation; NN: natural neighbour interpolation; TPI: Topographic Position Index.
Interpolation technique for reference DEM for TPI index 3 quality classes 2 quality classes
(poor vs. non-poor)
p-value
Correctly
classified roads
McNemar test (χ2) Correctly
classified roads
McNemar test (χ2)
IDW IDW 11% 35.315 24% 35.000 <0.0001
IDW KR 13% 35.268 26% 34.000 <0.0001
IDW NN 24% 26.894 37% 21.552 <0.0001
IDW SP 22% 31.091 33% 31.000 <0.0001
KR IDW 17% 33.084 28% 33.000 <0.0001
KR KR 20% 32.084 30% 32.000 <0.0001
KR NN 24% 29.571 35% 26.133 <0.0001
KR SP 7% 35.121 28% 33.000 <0.0001
NN IDW 17% 33.084 28% 33.000 <0.0001
NN KR 9% 34.274 26% 34.000 <0.0001
NN NN 26% 25.256 57% 16.200 <0.0001
NN SP 15% 32.077 30% 32.000 <0.0001
SP IDW 57% 3.806 85% 3.571 0.125
SP KR 57% 3.806 85% 3.571 0.125
SP NN 39% 26.000 70% 10.286 0.002
SP SP 57% 3.806 85% 3.571 0.125
Table 6. Class means and standard deviations (SD) of the observations in each quality class for the variables which define good quality classes. In the table, dz: distance of height values from reference DEM; SP: spline interpolation; KR: kriging interpolation; IDW: inverse distance-weighted interpolation; NN: natural neighbour interpolation; TPI: Topographic Position Index.
Variables Interpolation technique Poor class Satisfactory class Good class p-value McNemar
test (χ2)
mean SD mean SD mean SD
(sum dz)^2 SP 149857.2 259466.2 49651.9 107136.8 49262.7 128945.5 0.887 6.444
dz^2 SP 24978.0 43243.0 8786.3 18431.0 8044.1 19625.9 0.887 6.444
dz SP 227.0 384.1 99.3 199.5 80.7 206.8 0.887 6.444
mean (dz) SP 37.9 63.9 19.4 37.0 14.1 33.5 0.887 6.444
mean (dz^2) SP 4163.3 7206.9 1749.2 3485.7 1332.2 3146.9 0.887 6.444
(sum dz)^2 NN 0.1 0.2 17.6 42.1 47.2 229.0 0.887 6.444
mean (dz) NN 0.0 0.1 0.0 0.1 –0.1 0.3 0.669 1.145
sum(dz)^2 IDW 0.0 0.0 0.2 0.4 85.9 471.2 0.669 1.145
TPI using IDW SP 0.3 1.0 0.0 1.1 –0.3 0.8 0.073 1.857
TPI using KR SP 0.3 1.5 –0.4 1.3 –0.1 0.6 0.073 1.857
TPI using SP SP 0.3 1.4 –0.5 1.4 –0.1 0.6 0.235 2.066
Table 7. Forest road quality classification results of the analysed road sections using weighted distance from the Spline reference DEM with a 3 cm threshold and verified against field observations of structural condition. Overall accuracy: 62.5% Kappa = 0.214.
Field measured classes Classified as... Classification
overall
Producer accuracy (Precision)
Poor Satisfactory Good
Poor 2 0 1 3 66.66%
Satisfactory 2 2 5 9 22.22%
Good 2 5 21 28 75.00%
Truth Overall 6 7 27 40
User Accuracy 33.33% 28.57% 77.77%    
Table 8. Overall classification results for low resolution ALS area after the two-step identification of good and poor classes in terms of structural condition. Overall accuracy: 67.5% Kappa = 0.296
Field measured classes Classified as... Classification
overall
Producer accuracy (Precision)
Poor Satisfactory Good
Poor 2 0 1 3 66.66%
Satisfactory 0 4 5 9 44.44%
Good 0 7 21 28 75.00%
Truth Overall 2 11 27 40
User Accuracy 100.00% 36.36% 77.77%