1

Fig. 1. Top-left and centre: damage by pine shoot beetle results in pine trees deprived of their shoots. Bottom-left: shoots fallen to the ground. Right: two vertical monogamous galleries created by pine shoot beetle females, with larval galleries breaking into adjacent directions. Images by Antti Pouttu and Markus Melin, Natural Resources Institute Finland (CC-BY SA 4.0).

2

Fig. 2. A common sight in Finland: pile of roundwood (here, Scots pine) harvested during the previous winter is waiting to be transported to the factory. Image by Markus Melin, Natural Resources Institute Finland (CC-BY SA 4.0).

3

Fig. 3. Location of the roundwood piles used in the study on pine shoot beetle damage in the surrounding forests, separated by the year of field measurements.

4

Fig. 4. The three categories of bark thickness used in the 2020 field survey when counting the number of beetle exit holes from the logs; the bark of Scots pine is changing from thick to thin when moving from the base of a log (left) into its top (right).

Table 1. Auxiliary information on the roundwood piles used in the study on pine shoot beetle damage in forests surrounding the piles. The coordinates are in the WGS84 system (EPSG: 4326).
Pile Latitude Longitude Year Volume
(m3)
No. of measured field plots
(shoot damage)
No. of measured samples
(emerged insects)
1 23.9025844 62.3706153 2017 356 9 20
2 24.5415178 62.3168368 2017 331 7 30
3 24.3453392 62.108855 2017 34 7 20
4 27.1107396 61.2459632 2017 42 5 16
5 24.6045835 62.0375501 2017 42 8 16
6 23.3038068 61.8281155 2017 130 6 31
101 30.5765414 63.2180891 2020 145 13 29
102 30.5371486 63.2287643 2020 127 8 29
103 30.5314965 63.22911 2020 59 10 17
104 30.5243809 63.2310969 2020 149 9 32
105 29.9444647 63.6232792 2020 40 9 13
106 29.9426211 63.6244717 2020 39 8 10
107 29.9159022 63.6183939 2020 144 8 33
108 29.5883251 63.60701 2020 125 8 0
109 29.5854189 63.6088174 2020 64 9 0
110 29.5818343 63.6096894 2020 124 8 34
111 25.2972062 62.0822797 2020 173 12 36
112 24.9662172 62.4973184 2020 110 13 28
113 24.3008883 63.1313398 2020 131 9 34
114 25.0644776 63.4503408 2020 297 8 0
115 25.0680649 63.4565652 2020 138 8 27
116 26.1272094 63.2416311 2020 242 9 0
117 26.1974721 62.0754757 2020 55 9 21
118 26.1973003 62.0728962 2020 175 9 42
119 30.3350948 63.1643917 2020 151 13 34
Table 2. Candidate variables in the LME models on pine shoot beetle damage in forests close to roundwood piles and on the number of emerged insects from the roundwood piles. * indicates a variable that was retained in the final model.
Model Variable Description
Model 1: Emerged insects Emerged insects
(the response)
Number of pine shoot beetle emergence holes in the sampling area, holes per m2.
Log diameter* Diameter of the log (in centimetres), measured from the middle of the sampling window.
Bark thickness* Thickness of the bark, three categories: thin, medium, thick.
Bark damage* Proportion of harvester-damaged bark, estimated from the sampling areas at 10% intervals on a 0–100% scale. In the modelling, the variables were tested also as a factorial variable with five levels (0–20% bark damage, 20–40% bark damage etc.)
Basal area, pine Basal area of the pine in the surrounding forests, measured from the field plots, m2 ha–1.
Site type Site type of the surrounding forest according to Cajander (1949), estimated from the field plots.
Damaged pine Occurrence of pine shoot beetle breeding material in the surroundings (binary): snow or wind damage, logging residues, etc.
Model 2: Fallen
shoots
Shoot damage
(the response)
Number of fallen shoots in a field plot, shoots per m2.
Distance* Distance (in meters) between the plot to the roundwood pile.
Volume* Volume of the neighbouring roundwood pile.
Basal area, pine As described above.
Site type As described above.
Damaged pine As described above.
Table 3. The LME model on the number of emerged beetles from the forest-stored roundwood piles.
FIXED EFFECTS
Parameter Value Std. error p-value
Intercept –103.94 73.48 0.158
Bark, medium –1.80 28.15 0.949
Bark, thick –117.83 32.77 <0.001
Bark damage, 20–40% –64.74 37.50 0.0851
Bark damage, 40–60% –98.41 36.66 0.0076
Bark damage, 60–80% –159.06 58.26 0.0066
Bark damage, 80–100% –205.41 69.17 0.0032
Log diameter 23.92 3.41 <0.001
RANDOM EFFECTS
  Std. dev. Residual  
Year 29.4
Roundwood pile 80.79 223.25  
5

Fig. 5. Visualisation of the relationship between the variable BarkDamage (percentage of bark damaged by the harvester) and the number of beetle exit holes counted from the logs of the forest-stored roundwood piles. The shading illustrates the 95% confidence interval and the different colours indicate different survey years.

Table 4. Summary statistics on the number of Tomicus piniperda exit holes from each roundwood pile.
Pile No. of emergence holes/m2
Average Maximum Std. dev.
1 162 1000 274
2 238 1063 273
3 592 1300 412
4 90 367 100
5 392 900 233
6 121 740 216
101 152 633 181
102 80 533 145
103 137 700 222
104 178 933 254
105 326 900 316
106 337 1100 297
107 226 900 270
110 303 1267 371
111 230 800 221
112 104 1333 254
113 192 900 255
115 264 900 287
117 138 633 183
118 233 1233 323
119 189 733 217
By bark thickness* Average Maximum Std. dev.
Thin bark 69 667 156
Medium bark 220 1233 287
Thick bark 296 1333 275
* Only for piles 101–119, year 2020 measurements
Table 5. The LME model on the number of fallen shoots per plot (the damage) in a study on pine shoot beetle damage in forests close to roundwood piles.
FIXED EFFECTS
Parameter Value Std. error p-value
Intercept 12.76 10.75 0.24
Distance to pile –0.69 0.11 <0.001
Volume of pile 0.21 0.06 0.003
Residues 15.60 6.10 0.01
RANDOM EFFECTS
  Std. dev. Residual  
Year 4.63
Roundwood pile 14.84 23.3  
6

Fig. 6. Number of fallen shoots per plot at different distances from the roundwood piles. At each boxplot, the black horizontal line indicates the median and the white vertical bar the 25th and 75th quantiles. The dashed horizontal line represents the baseline level of fallen shoots that can be considered “normal” in boreal forests.

Fig. 7. Linear relationship between the distance from roundwood piles of varying volumes and the number of fallen shoots in a plot. For this illustration, the originally continuous variable Volume was classified in the depicted classes. The grey shading illustrates the 95% confidence intervals.

Table 6. Tree-level damage (fallen shoots) caused by pine shoot beetles in relation to the distance from the pile.
Distance from the pile (m) Fallen shoots per tree
Min Max Mean Std. dev.
<10 9 197 47 50
10–20 1 517 63 100
20–30 2 247 40 45
30–40 0 171 23 25
40–50 0 92 23 25
50–60 0 74 19 22
60–70 0 46 18 20
>70 0 100 41 50