1

Fig. 1. Map of the inventory areas.

Table 1. Field measurement dates, number of sample plots, observed mean volume, mean biomass and mean dominant height in each inventory area. Inventory areas are ordered from north to south.
Inventory area Time window Number of sample plots Volume
(m3 ha–1)
Biomass
(t ha–1)
Dominant height (m)
Kolari 29.05.2013 – 07.10.2013 534 100.9 56.3 13.9
Tornio 28.05.2013 – 07.11.2013 596 97.2 57.3 12.7
Ranua 28.05.2012 – 24.10.2012 613 98.3 55.9 12.9
Siikalatva 20.06.2013 – 18.10.2013 657 118.0 64.4 15.6
Toholampi 26.07.2012 – 29.10.2012 587 102.8 55.8 14.7
Ähtäri 23.05.2013 – 25.10.2013 1233 139.7 73.9 16.8
Sulkava 01.07.2011 – 04.01.2012 570 173.4 90.3 18.6
Virolahti 13.05.2013 – 15.11.2013 724 179.4 93.5 17.8
Turku 23.04.2012 – 14.11.2012 716 180.9 93.6 18.8
Table 2. Summary of distribution values for volume, biomass and dominant height by tree species for all of the sample plots in the modelling dataset.
  Minimum 1. Quartile Median Mean 3. Quartile Maximum
Volume (m³ ha–1)
Pine 0.0 8.3 54.2 71.8 110.5 572.4
Spruce 0.0 0.0 3.7 40.5 41.1 839.3
Birch 0.0 0.0 5.0 21.3 25.2 406.4
Other d.t.* 0.0 0.0 0.0 1.3 0.0 581.5
Total 3.0 63.1 114.1 134.9 184.3 915.5
Biomass (t ha–1)
Pine 0.0 4.7 28.8 36.7 57.3 244.4
Spruce 0.0 0.0 2.7 22.8 26.4 366.1
Birch 0.0 0.0 2.8 12.2 14.6 206.6
Other d.t.* 0.0 0.0 0.0 0.7 0.0 302.5
Total 1.8 36.0 62.9 72.4 98.6 409.1
Dominant height (m)
Total 3.9 12.1 15.9 16.0 19.5 32.9
* Other deciduous trees
Table 3. The sensor models, sensor units (A–D), scanning time windows, flying altitudes, pulse repetition frequencies (PRF), half scan angles, and mean pulse density for each project.
Inventory
area
Sensor model Sensor
unit
Time window Altitude (m) PRF
(hz)
Half scan angle (degrees) Pulse density
(pl/m2)
Kolari Optech ALTM Gemini B 07.06. – 06.08.2013 1950 50 000 15 0.6
Tornio Leica ALS 70-HA C 13.06. – 04.08.2013 1950 71 000 20 0.5
Ranua Optech ALTM Gemini A 04.07. – 24.08.2012 1750 70 000 20 1.0
Siikalatva Optech ALTM Gemini B 12.06. – 20.06.2013 1950 50 000 15 0.9
Toholampi Optech ALTM Gemini B 28.06. – 03.07.2012 1750 70 000 20 1.0
Ähtäri Optech ALTM Gemini A 28.06. – 27.08.2013 1730 70 000 20 0.7
Sulkava Optech ALTM Gemini A 31.07. – 04.09.2011 2000 50 000 15 0.7
Virolahti Leica ALS 70-HA D 25.06. – 03.07.2013 1900 71 800 20 0.7
Turku Optech ALTM Gemini B 13.06. – 22.06.2012 1750 70 000 20 1.0
Table 4. Root mean square error (RMSE), mean difference (MD) and t-test statistics of the region-specific nationwide volume model predictions.
Inventory Area RMSE-% MD-% t-value p-value
Kolari 30.1 15.4 13.7 < 2.2×10–16
Tornio 28.4 –7.4 –6.6 8.5×10–11
Ranua 31.8 16.3 14.7 < 2.2×10–16
Siikalatva 25.8 –3.6 –3.6 2.9×10–4
Toholampi 24.8 –5.5 –5.5 5.4×10–8
Ähtäri 26.8 8.0 11.1 < 2.2×10–16
Sulkava 30.4 –11.2 –9.5 < 2.2×10–16
Virolahti 26.8 –6.4 –6.6 9.0×10–11
Turku 22.9 –1.7 –2.0 5.1×10–2
Table 5. Regional volume (V) models, their residual variances (σ2) and relative root mean square error (RMSE) values. The used ALS metrics (Section 2.4) were means (havgF and havgL), standard deviations (hstdF and hstdL), height quantiles (h70F, h90F, h95L and h99L) and density percentages (veg3F, veg9L and veg19L) of first (F) and last (L) echoes, and the maximum value of last echoes (hmaxL).
Inventory area   σ² RMSE-%
Kolari e18 (18) 0.9607 21.5
Tornio e19 (19) - 24.0
Ranua e20 (20) 1.1578 22.9
Siikalatva e21 (21) 1.4291 24.4
Toholampi e22 (22) 1.1254 24.0
Ähtäri e23 (23) 1.5484 24.7
Sulkava e24 (24) 3.2302 26.6
Virolahti e25 (25) 2.3953 24.8
Turku e26 (26) 1.8838 21.8
2

Fig. 2. Predicted (m3 ha–1) values of nationwide and regional volume models plotted against observed values (m3 ha–1) in the modeling dataset. View larger in new window/tab.

Table 6. Root mean square error (RMSE), mean difference (MD) and t-test statistics of the region-specific nationwide biomass model predictions.
Inventory Area RMSE-% MD-% t-value p-value
Kolari 29.7 11.1 9.3 < 2.2×10–16
Tornio 29.4 –2.9 –2.4 1.7×10–2
Ranua 32.6 16.5 14.6 < 2.2×10–16
Siikalatva 25.9 –7.1 –7.3 8.9×10–13
Toholampi 25.3 –6.8 –6.8 2.8×10–11
Ähtäri 26.0 8.2 11.6 < 2.2×10–16
Sulkava 29.4 –11.9 –10.6 < 2.2×10–16
Virolahti 26.0 –3.9 –4.0 5.9×10–5
Turku 22.2 –2.3 –2.7 6.4×10–3
Table 7. Regional biomass (Mt) models, their residual variances (σ2) and relative root mean square error (RMSE) values. The used ALS metrics (Section 2.4) were means (havgF, and havgL), height quantiles (h70F, h90F and h99L) and density percentages (veg3F, veg7L, veg8L and veg19L) of first (F) and last (L) echoes, standard deviation (hstdL), and the maximum value (hmaxL) of last echoes.
Inventory area   σ² RMSE-%
Kolari e28 (28) 0.5603 22.0
Tornio e29 (29) 0.6791 23.7
Ranua e30 (30) 0.6465 23.4
Siikalatva e31 (31) 0.7214 23.0
Toholampi e32 (32) 0.5734 23.0
Ähtäri e33 (33) 0.8074 23.4
Sulkava e34 (34) 1.6063 25.2
Virolahti e35 (35) 1.2081 23.4
Turku e36 (36) 0.8717 20.1
3

Fig. 3. Predicted (t ha–1) values of nationwide and regional biomass models plotted against observed values (t ha–1) in the modelling dataset. View larger in new window/tab.

Table 8. Root mean square error (RMSE), mean difference (MD) and t-test statistics of the region-specific nationwide dominant height model predictions.
Inventory Area RMSE-% MD-% t-value p-value
Kolari 7.2 –0.4 –1.2 2.2×10–1
Tornio 10.5 –8.0 –28.8 < 2.2×10–16
Ranua 7.6 –1.7 –5.7 2.3×10–8
Siikalatva 5.5 1.6 7.6 1.2×10–13
Toholampi 5.9 0.7 3.0 2.8×10–3
Ähtäri 6.5 1.4 7.5 1.4×10–13
Sulkava 6.9 –0.8 –2.7 7.7×10–3
Virolahti 5.4 0.2 1.1 2.9×10–1
Turku 5.9 2.4 11.8 < 2.2×10–16
Table 9. Regional dominant height (HDOM) models, their residual variances (σ2) and relative root mean square error (RMSE) values. The used ALS metrics (Section 2.4) were height quantiles (h95F, h99F, h95L and h99L) of first (F) and last (L) echoes.
Inventory Area   σ² RMSE-%
Kolari e38 (38) 0.0161 6.5
Tornio e39 (39) - 6.4
Ranua e40 (40) - 6.3
Siikalatva e41 (41) - 5.2
Toholampi e42 (42) 0.0127 5.8
Ähtäri e43 (43) - 6.3
Sulkava e44 (44) 0.0248 6.7
Virolahti e45 (45) - 5.4
Turku e46 (46) - 5.4
4

Fig. 4. Predicted (m) values of nationwide dominant height model and regional models plotted against observed values (m) in the modeling dataset. View larger in new window/tab.

Table 10. Relative root mean square error (RMSE) and mean difference (MD) values of cross-validated nationwide (leave-inventory-area-out) and regional (leave-plot-out) volume, biomass and dominant height models, and the calibrated nationwide models in different inventory areas.
  RMSE-% MD-%
  Inventory area Nationwide Calibrated Regional Nationwide Calibrated
Volume Kolari 31.0 23.9 21.7 16.8 3.9
Tornio 28.9 27.5 24.2 –8.8 –1.5
Ranua 32.9 26.3 23.1 18.2 3.5
Siikalatva 25.9 26.4 24.6 –4.2 –2.3
Toholampi 25.0 24.7 24.3 –6.1 –1.9
Ähtäri 28.0 26.0 24.8 10.8 0.8
Sulkava 31.6 28.3 26.8 –13.2 –1.2
Virolahti 27.0 26.7 25.0 –7.5 –0.6
Turku 23.0 23.3 21.9 –2.0 –0.3
Biomass Kolari 30.1 26.3 22.2 12.1 2.9
Tornio 29.6 29.0 23.9 –3.5 –0.3
Ranua 33.8 27.7 23.6 18.7 4.3
Siikalatva 26.1 25.5 23.2 –8.0 –2.8
Toholampi 25.6 24.4 23.2 –7.6 –1.9
Ähtäri 27.3 24.1 23.5 10.8 1.5
Sulkava 30.3 27.0 25.4 –13.8 –1.7
Virolahti 26.1 25.7 23.6 –4.4 –0.1
Turku 22.3 21.9 20.2 –2.6 –0.3
Dominant height Kolari 7.2 7.4 6.5 –0.4 0.0
Tornio 11.4 8.2 6.4 –9.1 –4.6
Ranua 7.7 7.6 6.3 –2.0 –0.3
Siikalatva 5.5 5.3 5.2 1.7 0.4
Toholampi 6.0 5.9 5.8 0.8 0.1
Ähtäri 6.6 6.4 6.3 1.7 0.3
Sulkava 6.9 6.9 6.7 –0.9 –0.2
Virolahti 5.4 5.5 5.4 0.2 0.1
Turku 6.1 5.6 5.4 2.8 0.9
5

Fig. 5. Map of the mean difference (MD) values of nationwide volume, biomass and dominant height models with information of different sensor models (Optech/Leica) and sensor units (A–D).

6

Fig. 6. Root mean square error (RMSE) distributions of the 10 000 times calibrated nationwide volume model in each inventory area. The red line represents the mean of the distribution. Sd = Standard deviation. View larger in new window/tab.

7

Fig. 7. Mean difference (MD) distributions of the 10 000 times calibrated nationwide volume model in each inventory area. The red line represents the mean of the distribution. Sd = Standard deviation. View larger in new window/tab

8

Fig. 8. Root mean square error (RMSE) distributions of the 10 000 times calibrated nationwide biomass model in each inventory area. The red line represents the mean of the distribution. Sd = Standard deviation. View larger in new window/tab

9

Fig. 9. Mean difference (MD) distributions of the 10 000 times calibrated nationwide biomass model in each inventory area. The red line represents the mean of the distribution. Sd = Standard deviation. View larger in new window/tab

10

Fig. 10. Root mean square error (RMSE) distributions of the 10 000 times calibrated nationwide dominant height model in each inventory area. The red line represents the mean of the distribution. Sd = Standard deviation. View larger in new window/tab

11

Fig. 11. Mean difference (MD) distributions of the 10 000 times calibrated nationwide dominant height model in each inventory area. The red line represents the mean of the distribution. Sd = Standard deviation. View larger in new window/tab