1

Fig. 1. Functions of fully mechanized timber harvesting (CTL) with harvester, forwarder, and truck from standing tree to assortment (Y-axis, condition of timber, and technical manipulation) and from forest stand to sawmill (X-axis, location of timber, and spatial manipulation). The functiogram shows the technical and spatial manipulation of the timber in the supply process according to the KWF templates (KWF 2019).

Table 1. Summary of the relevant reviewed literature with the most significant constants for this paper. The table consists of the reviewed literature, the year of the study (not the publication date) and origin, the CO2 emissions, and the constants relevant to this paper. The literature answered heterogeneous questions and therefore produced heterogeneous results. We determined the data on total emissions, those of the harvester use and those of the forwarder use in thinning, final felling, and later thinning, for timber transport, as well as for standard processes such as loading of the timber, relocation of the machine, machine fabrication/supply and maintenance, lubricants, and transport of operator to the job. The values had to be partly converted to get our standard value kg CO2 m–3 or kg CO2 m–3 km–1 (carbon dioxide (kg) per cubic meter of wood or carbon dioxide (kg) per cubic meter of wood and driven kilometer). If no values for transport are available, they are not included in the total, i.e., they only refer to harvester and forwarder use (column 3).
Reviewed Literature Year/Origin CO2 Emission referred to kg CO2 m–3 Constants of Interest referred to kg CO2 m–3
Kühmaier (2022) 2018/Austria Total: 25.63
Harvester: 3.4
Forwarder: 3.7
Truck Transport: 0.02695 km–1
Railway Transport: 0.00939 km–1
Transport of Machine: 0.013
Lubricants: 0.118
Transport of Operator: 0.079
Karjalainen (1996) 1996/Finland No Total
Harvester (thinning): 3.896
Harvester (final felling): 1.857
Forwarder (thinning): 1.918
Forwarder (final felling): 1.423
Truck Transport: 0.0303 km–1
Railway Transport: 0.0187 km1
Waterway Transport: 0.0149 km–1
Lijewski (2017) 2017/Poland No Total
Harvester (final felling): 2.112
Forwarder: 1.505
Truck Transport: 0.0616 km–1
Klvac (2013) 2011/Czech Total (final felling): 12.3
Truck Transport: 0.131 km–1
Puettmann (2013) 2011/USA Total (final felling): 14.5 Lubricants: 0.077
Dias (2007) 2000/Portugal No Total
Harvester (final felling): 2.315
Forwarder (final felling): 2.431
Loading Truck: 0.386
Labelle (2019) 2018/Germany Total (only thinning): 3.962
Harvester: 1.325
Forwarder: 1.853
Lubricants (Harvester): 0.0197
Lubricants (Forwarder): 0.0112
for AdBlue, Grease, Oil
Haavikko (2022) 2016/Finland Total (average): 4.259
Total (final felling): 3.14
Total (thinning): 5.274

Harvester (later thinning): 1.151
Harvester (final felling): 0.893
Forwarder (later thinning): 0.771
Forwarder (final felling): 0.846
Relocation of Machine: 0.325
Zhang (2016) 2009/USA Total (average): 6.994
Total (clear cut): 5.7
Total (selective cut): 8.2875
Machine fabrication/supply/maintenance: 0.112
Handler (2014) 2009/USA Total (average): 15.35
Total (clear cut): 12.3

Total (selective cut): 18.4

Truck Transport: 0.03625 km–1
Railway Transport: 0.00825 km–1
Machine fabrication/supply/ maintenance: 0.5375
Loading Truck: 0.9625
Kärhä (2022) 2020/Finland Total (average): 4.46
Total (final felling): 3.64

Total (thinning): 6.23
Harvester (thinning): 3.96
Harvester (final felling):2.06
Forwarder (thinning): 2.27
Forwarder (final felling):1.58
Transport of Operator: 0.3705
Relocation of Machine: 0.3249
Table 2. Properties of the main European species of timber for calculating the carbon content in freshly cut wood. Oven dry (kiln) density with 0% moisture content in kg m–3 (d0), Total shrinkage of the volume of the raw wood during drying in % (sV); wood density of fiber-saturated timber in kg m–3 (dfs), carbon content of timber in kg m–3 (C). For the calculation of the specific carbon content (C), a carbon content of 51.9% was assumed. CO2 is obtained by multiplying the specific carbon content of the tree species by the carbon-to-carbon dioxide conversion factor of 3.67. Other deciduous trees include Acer, Pyrus communis, Castanea sativa, Alnus, Fraxinus excelsior, Prunus avium, Tilia, Juglans, Robinia pseudoacacia. Other conifers include Tsuga, and Pinus strobus/radiata.
Tree species Kiln density (Wagenführ and Wagenführ 2021; Lohmann and Blosen 2003)
kg m–3 (d0)
Total shrinkage (Wagenführ and Wagenführ 2021; Lohmann and Blosen 2003)
% (sV)
Wood density fiber-saturated
kg m–3 (dfs)
Carbon content
kg m–3 (C)
CO2 content
kg m–3 (CO2)
Conifer
Other conifers 200 (Diestel and Weimar 2014) 734
Pseudotsuga menziesii 470 11.9 414.07 275 788.692
Picea abies 430 11.8 379.26 197 722.388
Pinus sylvestris 490 11.8 432.18 224 823.186
Abies alba 410 10.85 365.515 190 696.207
Larix decidua 550 13.2 477.4 248 909.318
Deciduous
Other deciduous 275 (Diestel and Weimar 2014) 1009.25
Fagus sylvatica 680 17.9 558.28 290 1063.373
Quercus robur 650 14.1 558.35 290 1063.506
Betula pendula 610 13.95 524.905 272 999.802
Populus nigra 410 12.5 358.75 186 683.322
Table 3. Constants taken from the literature are divided into two operations – harvesting (forwarder and harvester) and timber transport. The parameters to be used in the calculation are either variables such as the data from the forestry machine on diesel consumption, kilometers driven, and timber volume, or constants. The constants refer either to kg CO2 m–3 (carbon dioxide (kg) per cubic meter of wood and driven kilometer) for distances traveled in timber transport or to kg CO2 m–3 (carbon dioxide (kg) per cubic meter of wood) related to volumes of timber provided. For harvesters or forwarders, the constants are transport to stand, lubricants, transport of operators, and fabrication, supply, and maintenance apply. The constants must be considered twice in the calculation, as they apply to both harvesters and forwarders. For timber transport by truck, the constants are lubricants, loading and fabrication, supply, and maintenance. For transport by ship or train, again constants apply.
Operation and machine Source of emission Parameter Parameter value (CO2)
Harvesting/Forwarding
(Harvester or Forwarder)
Fuel (Diesel) Variable 3.28 kg l–1 (Handler et al. 2014)
Volume Variable m3
Transport to stand Constant 0.013 kg m–3 (Kühmaier et al. 2022)
Lubricants Constant 0.118 kg m–3 (Kühmaier et al. 2022)
Transport of operator Constant 0.079 kg m–3 (Kühmaier et al. 2022)
Fabrication, supply, and maintenance Constant 0.538 kg m–3 (Handler et al. 2014)
Transportation truck Kilometers Variable km
Volume Variable m3
Fuel (Diesel) Constant 0.16 kg m–3 km–1 (Klvač et al. 2013)
Lubricants Constant 0.00422 kg km1 (Handler et al. 2014)
Loading Constant 0.963 kg m–3 (Handler et al. 2014)
Fabrication, supply, and maintenance Constant 0.538 kg m–3 (Handler et al. 2014)
Transportation ship Waterway (total) Constant 0.0153 kg m–3 km–1 (Karjalainen and Asikainen 1996)
Transportation train Railway (total) Constant 0.0193 kg m–3 km–1 (Karjalainen and Asikainen 1996)
Table 4. Input variables derived from the test cut divided into the accrued assortments of the total volume of timber in m3 over bark (o.b.) and under bark (u.b.), total diesel consumption of harvester and forwarder in liters o.b. and u.b., distance to the sawmill and the proportions of the assortments in the total volume of timber.
Assortment Volume (m3)
o.b. / u.b.
Diesel consumption of harvester and forwarder combined (l)
o.b. / u.b.
Distance to mill
(km)
Share of total quantity
(%)
5.0 m sawlogs 601.4 / 533.1 470 / 468.7 30 65
2.5 m industrial logs 168.2 / 149.4 131.4 / 131.4 108 18.2
3.0 m pulp/paper logs 19.1 /16.8 14.9 / 14.8 165 2
3.0 m butt log pieces 127.8 / 115.2 100 / 101.3 172 14
2.4 m logs for pallets 7.4 /6.7 5.8 / 5.9 117 0.8
Table 5. Results of the calculations to determine the CO2 emissions for the individual assortments from the timber transport, timber harvesting with the harvester, and transport with the forwarder, each in kg CO2 m–3 (carbon dioxide (kg) per cubic meter of wood) over bark (o.b.) and under bark (u.b.). In the case of timber transport, the distances covered individually are already included. Columns 5 and 6 summarize the CO2 emissions. In column 5 per m3 and column 6 over for the total amount per assortment. Column 7 shows the total amount of CO2 stored in the provided timber for each assortment in tons.
Assortment/ Emissions Truck CO2 Harvester CO2 Forwarder CO2 Truck/Harvester/Forwarder CO2 Total CO2 Total C-Storage CO2
kg m–3
u.b./o.b.
kg m–3
o.b.
kg m–3
u.b.
kg m–3
o.b.
kg m–3
u.b.
kg m–3
o.b.
kg m–3
u.b.
t
o.b.
t
u.b.
t
o.b.
t
u.b.
5.0 m sawlogs 6.4 2.058 2.221 2 2.161 10.5 10.8 5.906 5.406 434.4 385.1
2.5 m industrial logs 19.24 23.3 23.6 3.751 3.380 121.5 107.9
3.0 m pulp/paper logs 28.6 32.6 33.0 0.601 0.534 13.8 12.1
3.0 m butt log pieces 29.75 33.8 34.1 4.159 3.787 92.3 83.2
2.4 m logs for pallets 20.71 24.8 25.1 0.177 0.161 5.4 4.8
Mean 20.9 2.058 2.221 2 2.161 25 27.32 - - - -
Table 6. Net carbon storage of the supplied timber by assortment. Thus, it is a value derived from the CO2 stored in the timber minus the CO2 emitted during timber supply. Net carbon storage is given as an absolute value in kg CO2 m–3 (carbon dioxide (kg) per cubic meter of wood) over bark (o.b.) and under bark (u.b.). The rate by which carbon storage must be reduced is given here as %.
Assortment C-Storage C-Storage reduction rate
kg CO2 m–3
reduced by CO2 o.b.
kg CO2 m–3
reduced by CO2 u.b.
% o.b. % u.b.
5 m Sections 711.9 711.0 1.47 1.51
2.5 m Industrial 699.1 689.8 3.33 3.38
3 m Paper 689.7 689.4 4.73 4.78
3 m Butt log pieces 688.6 688.3 4.90 5.00
2.4 m Palette 697.6 697.3 3.50 3.60
On Average 2.19 2.24
2

Fig. 2. Influences of the individual factors on the CO2 emissions of a cubic meter of timber in the entire fully mechanized timber supply chain. In the upper graph, all influencing factors are displayed together. In the lower graph, a special focus is placed on the CO2 emissions per assortment depending on the transport distance, to reflect the influence of the distance to mill. View larger in new window/tab.