Table 1. Average, maximum (Max), minimum (Min) and standard deviation (SD) of field variables in the field data in study area 2.
Forest variable Average Max Min SD
Total volume, m3 ha–1 329.8 1160.8 33.2 220.5
Volume of Scots pine, m3 ha–1 201.0 826.0 0.0 163.6
Volume of Norway spruce, m3 ha–1 46.9 420.0 0.0 88.9
Volume of Larix sp., m3 ha–1 39.9 1110.8 0.0 185.9
Volume of broadleaved, m3 ha–1 42.0 352.6 0.0 84.7
Mean diameter, cm 22.9 55.4 13.9 7.7
Mean height, m 21.2 39.4 14.3 5.1
Basal area, m2 ha–1 31.4 78.5 3.7 14.6
1

Fig. 1. Location of the study area.

2

Fig. 2. Layout of the 11 test sites in the study area (topographic map and elevation model © National Land Survey of Finland, 2014).

3

Fig. 3. Distribution of field plots in relation to growing stock volume.

Table 2. Flight conditions and camera settings during the flights. Median irradiance was taken from Intersil ISL29004 irradiance measurements. Flight height is given from the ground level.
Area Date Time (GPS) Weather Solar
elevation
Sun
azimuth
Median
irrad
Exposure
(ms)
Flight height (m)
v01 26.6 11:07 to 11:23 cloudy 50.91 199.22 2602 10 94
v02 26.6 12:09 to 12:22 cloudy 47.38 219.63 4427 12 88
v0304 25.6 10:38 to 10:51 varying 51.79 188.36 variable 6 85
v05 25.6 09:26 to 09:40 varying 50.93 160.69 variable 6 86
v0607 25.6 12:14 to 12:24 cloudy 47 221.30 3773 10 94
v08 26.6 09:58 to 10:09 sunny 51.84 173.41 13894 10 86
v09v10 25.6 13:51 to 14:12 cloudy 37.20 249.45 2546 8 84
v11 26.6 08:49 to 08:58 varying 49.1 148.44 13982 10 83
Table 3. Results of orientation processing; numbers of GCPs and images, reprojection errors and point density in points m–2.
Block N GCP RGB and FPI RGB
N images Reproj. error (pix) N images Reproj. error (pix) Pointcloud points m–2
v01 7 714 0.70 291 0.84 484
v02 4 469 0.64 176 0.73 555
v0304 9 758 0.60 281 0.70 711
v05 5 717 0.68 292 0.89 601
v06 3 193 0.91 76 1.10 510
v07 4 176 1.63 68 2.56 524
v08 5 421 0.73 178 0.99 538
v09 4 280 0.57 109 0.66 621
v10 3 182 0.65 70 0.88 484
v11 4 469 0.478 469 0.478 833
4

Fig. 4. UAV system (left) based on a Tarot 960 hexacopter and close-up of the sensor configuration (right) (Photographs by Tapio Huttunen).

Table 4. Spectral settings of the FPI VIS/NIR. L0: central wavelength; FWHM: full width at half maximum.
L0 (nm): 507.60, 509.50, 514.50, 520.80, 529.00, 537.40, 545.80, 554.40, 562.70, 574.20, 583.60, 590.40, 598.80, 605.70, 617.50, 630.70, 644.20, 657.20, 670.10, 677.80, 691.10, 698.40, 705.30, 711.10, 717.90, 731.30, 738.50, 751.50, 763.70, 778.50, 794.00, 806.30, 819.70, 833.70, 845.80, 859.10, 872.80, 885.60
FWHM (nm): 11.2, 13.6, 19.4, 21.8, 22.6, 20.7, 22.0, 22.2, 22.1, 21.6, 18.0, 19.8, 22.7, 27.8, 29.3, 29.9, 26.9, 30.3, 28.5, 27.8, 30.7, 28.3, 25.4, 26.6, 27.5, 28.2, 27.4, 27.5, 30.5, 29.5, 25.9, 27.3, 29.9, 28.0, 28.9, 32.0, 30.8, 27.9
5a

Fig. 5a. Original image mosaic (left) acquired in weather conditions changing from cloudy to clear during imaging flight and radiometrically calibrated mosaic (right).

5b

Fig. 5b. Original image mosaic (left) acquired in uniform cloudy weather conditions during imaging flight and radiometrically calibrated mosaic (right).

Table 5a. Estimation results, non-calibrated HS-mosaic, common features.
Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.
D 3 2.6 18.32 –2.17 7 9 1 17
H 3 2.6 8.67 –0.40 7 9 1 17
Volume 3 2.6 31.47 –0.59 7 9 1 17
vol.pine 3 2.6 45.66 0.54 7 9 1 17
vol.spruce 3 2.6 97.58 1.18 7 9 1 17
vol.larch 3 2.6 91.53 –1.31 7 9 1 17
vol.broadleaved 3 2.6 63.98 –7.26 7 9 1 17
n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB features; n.feat. = total number of selected features.
Table 5b. Estimation results, non-calibrated HS-mosaic, individual features.
Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.
D 5 0.7 14.71 –0.52 4 11 0 15
H 5 1.3 7.36 –0.07 4 5 1 10
Volume 5 2.9 22.65 0.00 8 7 1 16
vol.pine 3 0.7 40.02 –0.03 4 5 1 10
vol.spruce 6 2.0 65.06 0.02 6 18 1 25
vol.larch 3 3.0 45.67 –3.00 6 11 3 20
vol.broadleaved 5 2.0 44.52 0.04 5 14 2 21
n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB features; n.feat. = total number of selected features.
Table 5c. Estimation results, calibrated HS-mosaic, common features.
Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.
D 5 2.9 19.19 –1.76 9 6 1 16
H 5 2.9 9.05 –0.43 9 6 1 16
Volume 5 2.9 26.93 –1.60 9 6 1 16
vol.pine 5 2.9 41.94 0.66 9 6 1 16
vol.spruce 5 2.9 77.52 –9.68 9 6 1 16
vol.larch 5 2.9 60.22 2.30 9 6 1 16
vol.broadleaved 5 2.9 81.98 –7.10 9 6 1 16
n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB features; n.feat. = total number of selected features.
Table 5d. Estimation results, calibrated HS-mosaic, individual features.
Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.
D 5 2.0 15.20 –1.76 4 8 0 12
H 6 1.5 7.50 –0.14 6 5 3 14
Volume 5 2.5 23.96 0.00 8 4 2 14
vol.pine 5 2.0 34.51 0.00 11 8 0 19
vol.spruce 5 2.3 57.16 –0.01 6 7 2 15
vol.larch 3 2.6 51.07 –0.29 5 5 2 12
vol.broadleaved 4 2.1 42.00 –1.38 7 13 2 22
n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB features; n.feat. = total number of selected features.
6

Fig. 6. Relative RMSEs of the estimated forest variables with the tested two calibration options (N-cal = non calibrated; Calib. = calibrated imagery) and feature selection strategies (common features for all variables vs. individual feature set for each variable).

Table 6. Estimation results, calibrated HS-mosaic, features optimized for tree species volumes.
Variable k g RMSE (%) Bias (%) n.3D.feat. n.HS.feat. n.RGB.feat. n.feat.
vol.pine 5 3 40.63 –0.43 9 12 3 24
vol.spruce 5 3 75.78 –1.56 9 12 3 24
vol.broadleaved 5 3 50.05 –0.48 9 12 3 24
n.3D.feat. = number of 3D features; n.HS.feat. = number of hyperspectral features; n.RGB.feat. = number of RGB features; n.feat. = total number of selected features.