Full text of this article is only available in PDF format.

Elizabeth Dodson Coulter (email), John Sessions, Michael G. Wing

Scheduling forest road maintenance using the analytic hierarchy process and heuristics

Coulter E.D., Sessions J., Wing M.G. (2006). Scheduling forest road maintenance using the analytic hierarchy process and heuristics. Silva Fennica vol. 40 no. 1 article id 357. https://doi.org/10.14214/sf.357

Abstract

The management of low-volume roads has transitioned from focusing on maintenance designed to protect a capital investment in road infrastructure to also include environmental effects. In this study, two models using mathematical programming are applied to schedule forest road maintenance and upgrade activities involving non-monetary benefits. Model I uses a linear objective function formulation that maximizes benefit subject to budgetary constraints. Model II uses a non-linear objective function to maximize the sum of benefits divided by the sum of all costs in a period. Because of the non-linearity of the constraints and the requirements that the decision variables be binary, the solutions to both problem formulations are found using two heuristics, simulated annealing and threshold accepting. Simulated annealing was found to produce superior solutions as compared to threshold accepting. The potential benefit for completing a given road maintenance or upgrade project is determined using the Analytic Hierarchy Process (AHP), a multi-criterion decision analysis technique. This measure of benefit is combined with the economic cost of completing a given project to schedule maintenance and upgrade activities for 225 km (140 miles) of road in forested road systems within western Oregon. This combination of heuristics, cost-benefit analysis, environmental impacts, and expert judgment produces a road management schedule that better fits the current road management paradigm.

Keywords
simulated annealing; threshold accepting; road environmental impacts; decision support; AHP

Author Info
  • Coulter, College of Forestry and Conservation, University of Montana, 32 Campus Drive, Missoula, MT 59812, USA ORCID ID:E-mail elizabeth.coulter@cfc.umt.edu (email)
  • Sessions, Department of Forest Engineering, College of Forestry, Oregon State University, 204 Peavy Hall, Corvallis, OR 97331-5706, USA ORCID ID:
  • Wing, Department of Forest Engineering, College of Forestry, Oregon State University, 204 Peavy Hall, Corvallis, OR 97331-5706, USA ORCID ID:

Received 17 February 2005 Accepted 19 December 2005 Published 31 December 2006

Available at https://doi.org/10.14214/sf.357 | Download PDF

Creative Commons License

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results