Factors influencing occurrence and impacts of fires in northern European forests
Päätalo M.-L. (1998). Factors influencing occurrence and impacts of fires in northern European forests. Silva Fennica vol. 32 no. 2 article id 695. https://doi.org/10.14214/sf.695
Abstract
The return interval and number of fires vary, depending on the geographical location in interaction with climate, topography and amount of fuel. During recent decades, in northern Europe the number and severity of fires have been insignificant compared with Mediterranean region, in which fire return intervals may be 15–35 years, compared to the average of 60–120 years for boreal forests. This is partly due to the efficient system of fire protection in northern Europe, but is mainly due to the less favourable climate for fire and the smaller human impact on ignition of forest fires. The consequences of fire are related to both site and stand characteristics, site being the most important factor controlling the stability of stands. Dry sites being more flammable and likely to ignite are associated with high risk of fire. In northern Europe, due to the interaction between species and site, the role of species difference in risk of fire damage is not clear. In southern Europe, fire risk cannot be explained by differences between tree species. There, other vegetation (shrubs, etc.) is of major importance for the risk of fire. Management of forests can, to some degree, alter the risk and the occurrence of fire. In northern Europe, logging may have compensated for fire occurrence by decreasing the amount of fuel. In addition, forest roads act as fire-breaks and facilitate fire-fighting. On the contrary, in southern Europe the risk of fire has been found to increase because the traditional forest uses and management have decreased, which increases the accumulation of fuel. However, it is not yet possible to quantify and compare the effect of management in absolute terms. Currently, some tools, such as fire-risk indices, remote sensing and GIS-based techniques, are available for prediction of fire risk in some areas. For example, fire-risk indices are most suitable for areas, like northern Europe, which have a low fire risk. In high-risk areas, such as southern Europe, more sophisticated techniques are needed for assessment of the risk. In the future, assuming global warming at northern latitudes (2 x CO2 climate), the risk of fire damage could also increase in northern Europe. Therefore, to allow the various locational and silvicultural factors to be assessed on the European level, an integrated risk model is needed.
Keywords
tree species;
fire;
climate;
risk assessment;
site
Received 13 June 1997 Accepted 11 May 1998 Published 31 December 1998
Views 2576
Available at https://doi.org/10.14214/sf.695 | Download PDF