Full text of this article is only available in PDF format.

Hannu Salminen (email), Risto Jalkanen

Modelling variation of needle density of Scots pine at high latitudes

Salminen H., Jalkanen R. (2006). Modelling variation of needle density of Scots pine at high latitudes. Silva Fennica vol. 40 no. 2 article id 337. https://doi.org/10.14214/sf.337

Abstract

The relationship between apical extension and needle density and the effect of temperature and precipitation on needle density was modelled using data gathered from forty-nine felled sample trees in five stands of Scots pine (Pinus sylvestris L.) located along a latitudinal transect from the Arctic Circle up to the northern timberline. The lengths were measured and needle densities assessed from all annual shoots located above 1.3 metres using the Needle Trace Method (NTM), resulting, on average, in 39-year-long chronologies. The mean overall needle density was 7.8 short shoots per shoot centimetre. Needle-density variation in the measured data was mostly due to within-tree differences. Of the total variance, within-tree variation yielded 46%, between-tree 21%, and between-year 27%. The dependence of needle density on annual height growth was studied by fitting a multilevel model with random stand-, tree- and year-intercepts, the independent variables being tree age and height growth. There was a very strong negative correlation between height growth and needle density, and the proportion of between-year variance explained solely by height growth and age was 50%. The stand-wise residual variations and their correlations with the temperature and precipitation time series were further analysed with cross-correlation analysis in order to screen for additional independent variables. The only possible additional independent variable found was the precipitation of April–May (precipitation of May in the two northernmost stands). When it was added to the multi-level model, the proportion of explained between-year needle-density variance was 55%, but the overall fit of the model improved only slightly. The effect of late winter and early spring precipitation indicates the role of snow coverage and snowmelt on the growing conditions in the three southernmost stands. In general, stand-level needle-density variation is mostly due to changes in height growth.

Keywords
Pinus sylvestris; needles; dendroclimatology; NTM; precipitation; temperature; fascicles

Author Info
  • Salminen, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail hannu.salminen@metla.fi (email)
  • Jalkanen, Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland E-mail rj@nn.fi

Received 6 April 2005 Accepted 2 January 2006 Published 31 December 2006

Views 3398

Available at https://doi.org/10.14214/sf.337 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Jalkanen R., Kaitera J. (1994) Gremmeniella abietina produces pycnidia in canke.. Silva Fennica vol. 28 no. 2 article id 5402
Kaitera J., Jalkanen R. (1984) Old and fresh Gremmeniella abietina damage on Sc.. Silva Fennica vol. 28 no. 2 article id 5397
Jalkanen R., Jalkanen E. et al. (1984) Ten-year effects of breaking the soil surface on.. Silva Fennica vol. 18 no. 2 article id 5211
Jalkanen R., Huttunen S. et al. (1981) The wax structure of the developing needles of P.. Silva Fennica vol. 15 no. 4 article id 5131
Terhonen E.-L., Babalola J. et al. (2021) Sphaeropsis sapinea found as symptomless .. Silva Fennica vol. 55 no. 1 article id 10420
Terhonen E., Marco T. et al. (2011) The effect of latitude, season and needle-age on.. Silva Fennica vol. 45 no. 3 article id 104
Bargen S. v., Grubits E. et al. (2009) Cherry leaf roll virus – an emerging virus in Fi.. Silva Fennica vol. 43 no. 5 article id 169
Nikula A., Hallikainen V. et al. (2008) Modelling the factors predisposing Scots pine to.. Silva Fennica vol. 42 no. 4 article id 235
Jalkanen R., Hicks S. et al. (2008) Past pollen production reconstructed from needle.. Silva Fennica vol. 42 no. 4 article id 230
Insinna P., Jalkanen R. et al. (2007) Climate impact on 100-year foliage chronologies .. Silva Fennica vol. 41 no. 4 article id 271
Salminen H., Jalkanen R. (2006) Modelling variation of needle density of Scots p.. Silva Fennica vol. 40 no. 2 article id 337
Salminen H., Jalkanen R. (2005) Modelling the effect of temperature on height in.. Silva Fennica vol. 39 no. 4 article id 362
Kurkela T., Aalto T. et al. (2005) Defoliation by the common pine sawfly (Diprion p.. Silva Fennica vol. 39 no. 4 article id 360
Schmitt U., Jalkanen R. et al. (2004) Cambium dynamics of Pinus sylvestris and Betula .. Silva Fennica vol. 38 no. 2 article id 426
Pensa M., Jalkanen R. (1999) Needle chronologies on Pinus sylvestris in north.. Silva Fennica vol. 33 no. 3 article id 654
Jalkanen R., Büttner C. et al. (2007) Cherry leaf roll virus abundant on Betula pubesc.. Silva Fennica vol. 41 no. 4 article id 927