Full text of this article is only available in PDF format.

Esko Mikkonen (email)

Eräiden matemaattisen ohjelmoinnin menetelmien käyttö puun korjuun ja kuljetuksen sekä tehdaskäsittelyn menetelmävalinnan apuvälineenä

Mikkonen E. (1983). Eräiden matemaattisen ohjelmoinnin menetelmien käyttö puun korjuun ja kuljetuksen sekä tehdaskäsittelyn menetelmävalinnan apuvälineenä. Acta Forestalia Fennica no. 183 article id 7630. https://doi.org/10.14214/aff.7630

English title: The usefulness of some techniques of the mathematical programming as a tool for the choice of timber harvesting system

Abstract

The applicability of five mathematical programming methods, namely standard linear programming, parametric programming, goal programming, mixed integer programming and integer programming is discussed as a planning tool for the choice of wood procurement method.

Theoretically, the goal programming approach seems to be the best routine for mathematical handling of problems related to wood procurement. The parametric approach must include enough large post-optimality analysis routine. If the effect of the variables expressed with different measures is to be studied, interpretation of the economic information given by the approach becomes a problem. The other drawback is that the approach does not allow determination of the hierarchy of the goals objectively as they depend on the subjective preferences of the decision maker.

From the practical point of view, standard linear programming is the best method if the objective function can be formulated in economic terms, for instance. If there are several goals to be attained or satisfied the best method is goal programming.

According to the sub-studies, every method under consideration can be used as a solution routine for the minimization of wood procurement costs. In cost minimization the best methods are goal programming and standard linear programming. The best method for harvesting system evaluation purposes is parametric because it allows varied cost calculations within a certain cost range. The best method for harvesting equipment investment planning is mixed integer programming with binary decision variables.

The more complicated and restricted the problem environment is, the better the mathematical programming approach will be, also in harvesting related problems.

The PDF includes a summary in English.

Original keywords
matemaattinen ohjelmointi; standardi lineaarinen optimointi; parametrinen optimointi; tavoiteoptimointi; sekalukuoptimointi; kokonaislukuoptimointi; puunhankinnan suunnittelu

English keywords
mixed integer programming; integer programming; goal programming; wood procurement; mathematical programming; standard linear programming; parametric programming

Published in 1983

Views 1951

Available at https://doi.org/10.14214/aff.7630 | Download PDF

Creative Commons License CC BY-SA 4.0

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles
Your search results
Palander T., (1997) A local DLP-GIS-LP system for geographically dec.. Silva Fennica vol. 31 no. 2 article id 5617
Siitonen M., (1993) Experiences in the use of forest management plan.. Silva Fennica vol. 27 no. 2 article id 5509
Kangas J., Pukkala T. (1992) A decision theoretic approach applied to goal pr.. Silva Fennica vol. 26 no. 3 article id 5484
Pukkala T., Pohjonen V. (1990) Use of linear programming in land use planning i.. Silva Fennica vol. 24 no. 2 article id 5424
Lappi J., Siitonen M. (1985) A utility model for timber production based on d.. Silva Fennica vol. 19 no. 3 article id 5244
Kilkki P., Pökälä R. et al. (1975) Linear programming in the planning of timber pro.. Silva Fennica vol. 9 no. 2 article id 4918
Pulkki R., (1984) A spatial database - heuristic programming syste.. Acta Forestalia Fennica vol. 0 no. 188 article id 7635
Kühle S., Teischinger A. et al. (2019) Optimal location of laminated beech production p.. Silva Fennica vol. 53 no. 3 article id 10074
Borges P., Bergseng E. et al. (2015) Impact of maximum opening area constraints on pr.. Silva Fennica vol. 49 no. 5 article id 1347
Pereira S., Prieto A. et al. (2015) Optimal management in Pinus pinea L. stan.. Silva Fennica vol. 49 no. 3 article id 1226
Bettinger P., Demirci M. et al. (2015) Search reversion within s-metaheuristics: impact.. Silva Fennica vol. 49 no. 2 article id 1232
Öhman K., Eriksson L. O. (2010) Aggregating harvest activities in long term fore.. Silva Fennica vol. 44 no. 1 article id 457
Bettinger P., Zhu J. (2006) A new heuristic method for solving spatially con.. Silva Fennica vol. 40 no. 2 article id 477
Lappi J., (2006) Smooth height/age curves from stem analysis with.. Silva Fennica vol. 40 no. 2 article id 344
Marshall H. D., Murphy G. et al. (2006) Three mathematical models for bucking-to-order Silva Fennica vol. 40 no. 1 article id 356
Rantala J., (2004) Optimizing the supply chain strategy of a multi-.. Silva Fennica vol. 38 no. 2 article id 429
Nieuwenhuis M., (2002) The development and validation of pre-harvest in.. Silva Fennica vol. 36 no. 2 article id 543
Boston K., Bettinger P. (2001) Development of spatially feasible forest plans: .. Silva Fennica vol. 35 no. 4 article id 578