Current issue: 58(5)

Scopus CiteScore 2023: 3.5
Scopus ranking of open access forestry journals: 17th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 53 | 2019

Category : Editorial

article id 10285, category Editorial
Nicole J. Fenton. (2019). The introduction, the link between applied research and a successful publication. Silva Fennica vol. 53 no. 4 article id 10285. https://doi.org/10.14214/sf.10285
Full text in HTML | Full text in PDF | Author Info
  • Fenton, Université du Québec en Abitibi-Temiscamingue, Institute for Forest Research (IFR) at UQAT, Rouyn-Noranda (Québec), Canada E-mail: nicole.fenton@uqat.ca (email)
article id 10257, category Editorial
Lauri Mehtätalo. (2019). Reporting modern statistical analyses: reproducible and transparent. Silva Fennica vol. 53 no. 3 article id 10257. https://doi.org/10.14214/sf.10257
Full text in HTML | Full text in PDF | Author Info
  • Mehtätalo, University of Eastern Finland, Faculty of Science and Forestry, School of Computing, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: lauri.mehtatalo@uef.fi (email)
article id 10216, category Editorial
Henrik Heräjärvi. (2019). New age of discovery in wood science. Silva Fennica vol. 53 no. 2 article id 10216. https://doi.org/10.14214/sf.10216
Full text in HTML | Full text in PDF | Author Info
  • Heräjärvi, Natural Resources Institute Finland (Luke), Production systems, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: henrik.herajarvi@luke.fi (email)
article id 10164, category Editorial
Matti Maltamo. (2019). Silva Fennica in 2019. Silva Fennica vol. 53 no. 1 article id 10164. https://doi.org/10.14214/sf.10164
Full text in HTML | Full text in PDF | Author Info
  • Maltamo, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland E-mail: matti.maltamo@uef.fi (email)

Category : Research article

article id 10230, category Research article
Mohammed Henneb, Osvaldo Valeria, Nelson Thiffault, Nicole Fenton. (2019). Black spruce seedling growth response in controlled organic and organic-mineral substrates. Silva Fennica vol. 53 no. 4 article id 10230. https://doi.org/10.14214/sf.10230
Keywords: Picea mariana; paludification; seedling growth; seedling nutrition; semi-controlled experiment; substrate
Highlights: Seedling height and diameter were highest on clay and mesic substrates respectively; Foliar nutrients were relatively high in seedlings that were established on mesic substrates; We recommend the application of mechanical soil preparation techniques that promote the creation of organic-mesic substrates to support regeneration establishment.
Abstract | Full text in HTML | Full text in PDF | Author Info

In the boreal forest of eastern Canada, a large proportion of black spruce (Picea mariana [Mill.] Britton, Sterns & Poggenb.) stands are affected by paludification. Edaphic conditions that are created by paludification processes, including an abundance of microsites with high moisture and low nutrient contents, hinder forest regeneration. Disturbance of paludified sites by mechanical soil preparation (MSP) reduces organic layer thickness, while generating a range of substrates for regeneration establishment. Yet, little information is available regarding the effects of these substrates on tree growth. Our objective was to determine the effect of organic, mineral and organo-mineral substrates that are created following MSP of a paludified site on the growth and root development of black spruce seedlings in a semi-controlled environment. We demonstrated that substrate exerted a significant effect on seedling growth and foliar concentrations of N, P and K. Increase in height and diameter were respectively greatest on clay (mineral) and mesic substrates. Substrate effects did not affect total biomass increases or final root biomass. Foliar nutrients (N, P, K) were relatively high in seedlings that were established on mesic substrates and relatively low for those established on clay substrates. To ensure successful seedling establishment, we recommend the application of MSP techniques that expose organic-mesic substrates on sites that are susceptible to paludification.

  • Henneb, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada ORCID http://orcid.org/0000-0003-4507-1219 E-mail: mohammed.henneb@uqat.ca (email)
  • Valeria, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada ORCID http://orcid.org/0000-0002-9921-7474 E-mail: osvaldo.valeria@uqat.ca
  • Thiffault, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada; Natural Resources Canada, Canadian Wood Fibre Centre, 1055 rue du PEPS, P.O. Box 10380, Stn Sainte Foy, Quebec, QC G1V 4C7, Canada ORCID http://orcid.org/0000-0003-2017-6890 E-mail: nelson.thiffault@canada.ca
  • Fenton, Institut de recherche sur les forêts (IRF), Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC J9X 5E4, Canada ORCID http://orcid.org/0000-0002-3782-2361 E-mail: nicole.fenton@uqat.ca
article id 10217, category Research article
Xingji Jin, Timo Pukkala, Fengri Li, Lihu Dong. (2019). Developing growth models for tree plantations using inadequate data – a case for Korean pine in Northeast China. Silva Fennica vol. 53 no. 4 article id 10217. https://doi.org/10.14214/sf.10217
Keywords: Pinus koraiensis; optimization-based modeling; quantile regression; self-thinning
Highlights: The permanent sample plots of Chinese plantation trees have not been designed for producing data for growth modeling; We used various methods to deal with the inadequacies of sample plot data; Optimization was used to fit diameter increment and survival models using data with varying measurement intervals and tree identification errors; Quantile regression was used to model self-thinning limit.
Abstract | Full text in HTML | Full text in PDF | Author Info

Korean pine (Pinus koraiensis Siebold & Zucc.) is economically the most important tree species in northeast China. Korean pine plantations are established and managed for the production of timber and seeds. Despite the importance of the species, few models have been developed for the comparison of alternative management schedules. Model development is affected by the fact that permanent sample plots and thinning experiments have not been designed and managed for modeling purposes. The permanent sample plots include few non-thinned plots, and weak trees are removed in thinning treatments, leading to low mortality rate. Moreover, the measurement interval is irregular. This study used optimization-based modeling approach in tree-level diameter increment and survival modeling to deal with the above problems. Models for self-thinning limit were developed to alleviate the problem of underestimated mortality arising from the features of the data. In addition, improved site index and individual-tree height models were developed. The model of Lundqvist and Korf was used as the site index model and the model proposed by Schumacher as the height model. Quantile regression was used to model the maximum stand basal area and maximum number of trees as a function of mean tree diameter and site index. Tree diameter, stand basal area, basal area in larger trees and site index were used as the predictors of diameter increment and tree survival. The models developed in this study constitute a model set that is suitable for simulation and optimization studies. The models produced simulation results that correspond to measured stand development.

  • Jin, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China ORCID http://orcid.org/0000-0003-2971-2709 E-mail: xingji_jin@163.com
  • Pukkala, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China; University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: timo.pukkala@uef.fi (email)
  • Li, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China ORCID http://orcid.org/0000-0002-4058-769X E-mail: fengrili@126.com
  • Dong, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People’s Republic of China ORCID http://orcid.org/0000-0002-3985-9475 E-mail: ldonglihu2006@163.com
article id 10209, category Research article
Claudie-Maude Canuel, Nelson Thiffault, Michael K. Hoepting, James C.G. Farrell. (2019). Legacy effects of precommercial thinning on the natural regeneration of next rotation balsam fir stands in eastern Canada. Silva Fennica vol. 53 no. 4 article id 10209. https://doi.org/10.14214/sf.10209
Keywords: silviculture; Abies balsamea; PCT; conifer; density management
Highlights: We investigated the potential legacy effects of precommercial thinning in next rotation, dense natural balsam fir stands; Precommercial thinning had few legacy effects on next rotation stands and should not impair their regeneration; Balsam fir dominated the regeneration layer. Other tree species were almost absent.
Abstract | Full text in HTML | Full text in PDF | Author Info

The Green River precommercial thinning (PCT) trial was established between 1959–1961 in New Brunswick (Canada) within natural balsam fir (Abies balsamea (L.) Mill.)-dominated stands. Three silviculture scenarios differing only by the increasing nominal spacings of PCT treatments (1.2 m, 1.8 m, 2.4 m) were compared to an unthinned control within randomized replicates that were clearcut harvested in 2008 and treated with herbicide in 2011. During the fourth post-harvest growing season, we assessed regeneration, competing vegetation and coarse woody debris (CWD; differentiated between large woody debris and slash) to assess the legacy effects of PCT on regeneration of next rotation stands. Our results confirmed that silviculture scenarios including PCT significantly increased conifer stocking in treated plots compared to control conditions, but only in the 1.8 m nominal spacing. Considering that treated and untreated stands were fully stocked, we conclude that PCT using the spacing gradient tested has no legacy effect on the regeneration of next rotation natural balsam fir stands. Given the known sensitivity of balsam fir to future climate conditions in this region, we suggest that future treatments should promote tree species diversity to support ecosystem resilience to climate change by favouring more warm-adapted species, such as some hardwoods.

  • Canuel, Faculté de foresterie, géographie et géomatique, Université Laval, Québec, QC G1V 0A6, Canada;  Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada E-mail: claudie-maude.canuel.1@ulaval.ca
  • Thiffault, Canadian Wood Fibre Centre, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Sainte-Foy Stn., Québec, QC G1V 4C7, Canada ORCID http://orcid.org/0000-0003-2017-6890 E-mail: nelson.thiffault@canada.ca (email)
  • Hoepting, Canadian Wood Fibre Centre, Natural Resources Canada, 1219 Queen St. E., Sault Ste. Marie, ON P6A 2E5, Canada E-mail: michael.hoepting@canada.ca
  • Farrell, Canadian Wood Fibre Centre, Natural Resources Canada, 1350 Regent Street, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada E-mail: jamescg.farrell@canada.ca
article id 10183, category Research article
Tomi Karjalainen, Petteri Packalen, Janne Räty, Matti Maltamo. (2019). Predicting factual sawlog volumes in Scots pine dominated forests using airborne laser scanning data. Silva Fennica vol. 53 no. 4 article id 10183. https://doi.org/10.14214/sf.10183
Keywords: Pinus sylvestris; area based approach; k-NN; sawlog
Highlights: We predicted visually bucked factual sawlog volumes at the 30 × 30 m plot-level with several alternatives; The lowest root mean squared error value of approximately 21% was obtained with a linear mixed-effects model that employed factual sawlog volume as a response variable and airborne laser scanning metrics as predictors; The sawlog reduction model commonly used in Finland performed poorly.
Abstract | Full text in HTML | Full text in PDF | Author Info

The aim in the study was to compare alternatives for the prediction of factual sawlog volumes using airborne laser scanning (ALS) data in Scots pine (Pinus sylvestris L.) dominated forests in eastern Finland. Accurate estimates of factual sawlog volume are desirable to ease the planning of harvesting operations. The factual sawlog volume of pines was derived from visual bucking, i.e. a procedure where the defects were located on each stem during sample plot measurements. For other species, the theoretical sawlog volume was considered also as the factual sawlog volume due to data restrictions. We predicted factual sawlog volume with eight alternatives that were based on either linear mixed-effects models or k-nearest neighbour imputations. An existing sawlog reduction model, commonly used in Finland, was also tested individually and combined with a number of the alternatives, and site type information was also utilised. Model fitting and prediction was implemented at the 15 × 15 m level, but accuracy was assessed at the 30 × 30 m level. The relative root mean squared error (RMSE%) values for the factual sawlog volume predictions varied between 20.9% and 33.5%, and the best accuracy was obtained with a linear mixed-effects model. These results indicate that factual sawlog volumes in Scots pine dominated forests can be predicted with reasonable accuracy with ALS data.

  • Karjalainen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: tomikar@uef.fi (email)
  • Packalen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: petteri.packalen@uef.fi
  • Räty, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: janne.raty@uef.fi
  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: matti.maltamo@uef.fi
article id 10151, category Research article
Jyri Hietala, Riitta Hänninen, Matleena Kniivilä, Anne Toppinen. (2019). Networks in international opportunity recognition among Finnish wood product industry SMEs. Silva Fennica vol. 53 no. 4 article id 10151. https://doi.org/10.14214/sf.10151
Keywords: wood products; business networks; institutional networks; internationalization; opportunity recognition; social networks
Highlights: In line with earlier literature, we found the networks in our study to positively impact international opportunity recognition; Despite the reliance on various network forms and levels, a strategic stance towards opportunity recognition can be characterized as being more reactive than proactive; Institutional networks represented a more systematic way of recognizing international opportunities among case companies.
Abstract | Full text in HTML | Full text in PDF | Author Info

Bioeconomy development will create new opportunities for firms operating in the international wood products markets, and identifying and exploiting these opportunities is emphasized as a key concept to achieving business success. Our study will attempt to address a gap in the literature on sawmill industry business development from the viewpoint of international opportunity recognition. The aim of our study is to provide a holistic description on how small and medium-sized enterprises (SMEs) in the wood products industry recognize and exploit international business opportunities, and how they utilize network perspectives in this context. The subject was examined through Finnish wood product industry SMEs by interviewing 11 managers and industry representatives. The results suggest that SMEs recognize international opportunities reactively per se. Social networks formed in professional forums were an important information channel for identifying international opportunities. Through vertical business networks, such as sales agents, firms have been able to increase their international market presence and free their own resources for other important activities. Horizontal dyadic business networks were seen to facilitate new international opportunities through cooperation, while excessive reliance on vertical networks raised concerns and seemed not to be effective in international opportunity recognition. Institutional networks formed a systematic way of recognizing international opportunities, but more so at the initial market entry stage.

  • Hietala, United Bankers, Aleksanterinkatu 21 A, FI-00100 Helsinki, Finland E-mail: jyri.hietala@unitedbankers.fi (email)
  • Hänninen, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: riitta.hanninen@luke.fi
  • Kniivilä, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: matleena.kniivila@luke.fi
  • Toppinen, University of Helsinki, Helsinki Institute of Sustainability Science, Latokartanonkaari 7, P.O. 27, FI-00014 University of Helsinki, Finland E-mail: anne.toppinen@helsinki.fi
article id 10147, category Research article
Mika Aalto, Olli-Jussi Korpinen, Tapio Ranta. (2019). Feedstock availability and moisture content data processing for multi-year simulation of forest biomass supply in energy production. Silva Fennica vol. 53 no. 4 article id 10147. https://doi.org/10.14214/sf.10147
Keywords: bioenergy; simulation; forest resources; data analysis; geographic information system
Highlights: A method for allocating forest biomass availability for a multi-year simulation model was developed; The possibility to take the quality change of feedstock into account by moisture estimations was studied; A method to estimate weather data for moisture estimation equations with fewer parameters was presented.
Abstract | Full text in HTML | Full text in PDF | Author Info

Simulation and modeling have become more common in forest biomass studies. Dynamic simulation has been used to study the supply chain of forest biomass with numerous different models. A robust predictive multi-year model requires biomass availability data, where annual variation is included spatially and temporally. This can be done by using data from enterprises, but in some cases relevant data is not accessible. Another option is to use forest inventory data to estimate biomass availability, but this data must be processed in the correct form to be utilized in the model. This study developed a method for preparing forest inventory data for a multi-year simulation supply model using the theoretical availability of feedstock. Methods for estimating quality changes during roadside storage are also presented, including a possible parameter estimation to decrease the amount of data needed. The methods were tested case by case using the inventory database “Biomass Atlas” and weather data from a weather station in Mikkeli, Finland. The data processing method for biomass allocation produced a reasonable quantity of stands and feedstock, having a realistic annual supply with variation for the demand point. The results of the study indicate that it is possible to estimate moisture content changes using weather data. The estimations decreased the accuracy of the model and, therefore, estimations should be kept minimal. The presented data preparation method can generate a supply of forest biomass for the simulation model, but the validity of the data must be ensured for correct model behavior.

  • Aalto, Lappeenranta-Lahti University of Technology LUT, School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland ORCID https://orcid.org/0000-0002-7768-1145 E-mail: mika.aalto@lut.fi (email)
  • Korpinen, Lappeenranta-Lahti University of Technology LUT, School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland E-mail: olli-jussi.korpinen@lut.fi
  • Ranta, Lappeenranta-Lahti University of Technology LUT, School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland ORCID https://orcid.org/0000-0001-5464-5136 E-mail: tapio.ranta@lut.fi
article id 10016, category Research article
Ivars Kļaviņš, Arta Bārdule, Zane Lībiete, Dagnija Lazdiņa, Andis Lazdiņš. (2019). Impact of biomass harvesting on nitrogen concentration in the soil solution in hemiboreal woody ecosystems. Silva Fennica vol. 53 no. 4 article id 10016. https://doi.org/10.14214/sf.10016
Keywords: nitrogen concentration; stump harvesting; whole-tree harvesting; soil solution; hemiboreal forest; short-rotation coppice
Highlights: Soil solution nitrogen concentrations in whole-tree harvesting sites are higher in sites of medium to high fertility than in sites of low fertility; In whole-tree harvesting and stem-only harvesting sites, soil solution nitrogen concentrations are highest 2 to 3 years after harvesting; The risks of nitrogen leaching immediately after harvesting are higher in traditional forestry systems compared to short-rotation cropping.
Abstract | Full text in HTML | Full text in PDF | Author Info

Considering the increasing use of wood biomass for energy and the related intensification of forest management, the impacts of different intensities of biomass harvesting on nutrient leaching risks must be better understood. Different nitrogen forms in the soil solution were monitored for 3 to 6 years after harvesting in hemiboreal forests in Latvia to evaluate the impacts of different biomass harvesting regimes on local nitrogen leaching risks, which potentially increase eutrophication in surface waters. In forestland dominated by Scots pine Pinus sylvestris L. or Norway spruce Picea abies L. (Karst.), the soil solution was sampled in: (i) stem-only harvesting (SOH), (ii) whole‐tree harvesting, with only slash removed (WTH), and (iii) whole‐tree harvesting, with both slash and stumps harvested (WTH + SB), subplots. In agricultural land, sampling was performed in an initially fertilised hybrid aspen (Populus tremula L.× P. tremuloides Michx.) short-rotation coppice (SRC), where above-ground biomass was harvested. In forestland, soil solution N (nitrogen) concentrations were highest in the second and third year after harvesting. Mean annual values in WTH subplots of medium to high fertility sites exceeded the mean values in SOH subplots and control subplots (mature stand where no harvesting was performed) for the entire study period; the opposite trend was observed for the low-fertility site. Biomass harvesting in the hybrid aspen SRC only slightly affected NO3-N (nitrate nitrogen) and NH4+-N (ammonium nitrogen) concentrations in the soil solution within 3 years after harvesting, but a significant decrease in the TN (total nitrogen) concentration in the soil solution was found in plots with additional N fertilisation performed once initially.

  • Kļaviņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia; University of Latvia, Raiņa blvd 19-125, LV 1586, Riga, Latvia E-mail: ivars.klavins@silava.lv (email)
  • Bārdule, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia; University of Latvia, Raiņa blvd 19-125, LV 1586, Riga, Latvia E-mail: arta.bardule@silava.lv
  • Lībiete, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: zane.libiete@silava.lv
  • Lazdiņa, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: dagnija.lazdina@silava.lv
  • Lazdiņš, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia E-mail: andis.lazdins@silava.lv
article id 10010, category Research article
Panu Halme, Jenna Purhonen, Emma-Liina Marjakangas, Atte Komonen, Katja Juutilainen, Nerea Abrego. (2019). Dead wood profile of a semi-natural boreal forest – implications for sampling. Silva Fennica vol. 53 no. 4 article id 10010. https://doi.org/10.14214/sf.10010
Keywords: coarse woody debris; coniferous forest; forest structure; fine woody debris; forest disturbance dynamics; saproxylic
Highlights: We constructed a full dead wood profile of a semi-natural boreal forest; Abundance-diameter distributions were different among tree species; Extensive sampling is needed if focus on large dead wood and rare tree species.
Abstract | Full text in HTML | Full text in PDF | Author Info

Dead wood profile of a forest is a useful tool for describing forest characteristics and assessing forest disturbance history. Nevertheless, there are few studies on dead wood profiles, including both coarse and fine dead wood, and on the effect of sampling intensity on the dead wood estimates. In a semi-natural boreal forest, we measured every dead wood item over 2 cm in diameter from 80 study plots. From eight plots, we further recorded dead wood items below 2 cm in diameter. Based on these data we constructed the full dead wood profile, i.e. the overall number of dead wood items and their distribution among different tree species, volumes of different size and decay stage categories. We discovered that while the number of small dead wood items was immense, their number dropped drastically from the diameter below 1 cm to diameters 2–3 cm. Different tree species had notably different abundance-diameter distribution patterns: spruce dead wood comprised most strikingly the smallest diameter fractions, whereas aspen dead wood comprised a larger share of large-diameter items. Most of the dead wood volume constituted of large pieces (>10 cm in diameter), and 62% of volume was birch. The variation in the dead wood estimates was small for the numerically dominant tree species and smallest diameter categories, but high for the sub-dominant tree species and larger size categories. In conclusion, the more the focus is on rare tree species and large dead wood items, the more comprehensive should the sampling be.

  • Halme, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; School of Resource Wisdom, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: panu.halme@jyu.fi (email)
  • Purhonen, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: jenna.e.i.purhonen@jyu.fi
  • Marjakangas, Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway E-mail: emma-liina.marjakangas@ntnu.no
  • Komonen, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland; School of Resource Wisdom, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: atte.komonen@jyu.fi
  • Juutilainen, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland E-mail: kjuutilainen@yahoo.com
  • Abrego, Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: nerea.abrego@helsinki.fi
article id 10187, category Research article
Timo Pukkala, Kjersti Holt Hanssen, Kjell Andreassen. (2019). Stem taper and bark functions for Norway spruce in Norway. Silva Fennica vol. 53 no. 3 article id 10187. https://doi.org/10.14214/sf.10187
Keywords: forest management; Picea abies; Kozak model; variable-exponent taper function
Highlights: New variable-exponent stem taper and bark functions were developed for Norway spruce; Both fixed and mixed-effects models were developed; Site index and tree age had statistically significant but small effects on stem taper.
Abstract | Full text in HTML | Full text in PDF | Author Info

Based on data from long-term experimental fields with Norway spruce (Picea abies (L.) H. Karst.), we developed new stem taper and bark functions for Norway. Data was collected from 477 trees in stands across Norway. Three candidate functions which have shown good performance in previous studies (Kozak 02, Kozak 97 and Bi) were fitted to the data as fixed-effects models. The function with the smallest Akaike Information Criterion (AIC) was then chosen for additional analyses, fitting 1) site index-dependent and 2) age-dependent versions of the model, and 3) fitting a mixed-effects model with tree-specific random parameters. Kozak 97 was found to be the function with the smallest AIC, but all three tested taper functions resulted in fairly similar predictions of stem taper. The site index-dependent function reduced AIC and residual standard error and showed that the effect of site index on stem taper is different in small and large trees. The predictions of the age-independent and age-dependent models were very close to each other. Adding tree-specific random parameters to the model clearly reduced AIC and residual variation. However, the results suggest that the mixed-effects model should be used only when it is possible to calibrate it for each tree, otherwise the fixed-effects Kozak 97 model should be used. A model for double bark thickness was also fitted as fixed-effects Kozak 97 model. The model behaved logically, predicting larger relative but smaller absolute bark thickness for small trees.

article id 10179, category Research article
Lauri Korhonen, Jaakko Repola, Tomi Karjalainen, Petteri Packalen, Matti Maltamo. (2019). Transferability and calibration of airborne laser scanning based mixed-effects models to estimate the attributes of sawlog-sized Scots pines. Silva Fennica vol. 53 no. 3 article id 10179. https://doi.org/10.14214/sf.10179
Keywords: Pinus sylvestris; LIDAR; crown base height; hierarchical data; individual tree detection; sawlog quality
Highlights: Attributes of individual sawlog-sized pines estimated by transferring ALS-based models between sites; Mixed effects models were more accurate than k-NN imputation tested earlier; Calibration with a small number of field measured trees improved the accuracy.
Abstract | Full text in HTML | Full text in PDF | Author Info

Airborne laser scanning (ALS) data is nowadays often available for forest inventory purposes, but adequate field data for constructing new forest attribute models for each area may be lacking. Thus there is a need to study the transferability of existing ALS-based models among different inventory areas. The objective of our study was to apply ALS-based mixed models to estimate the diameter, height and crown base height of individual sawlog sized Scots pines (Pinus sylvestris L.) at three different inventory sites in eastern Finland. Different ALS sensors and acquisition parameters were used at each site. Multivariate mixed-effects models were fitted at one site and the models were validated at two independent test sites. Validation was carried out by applying the fixed parts of the mixed models as such, and by calibrating them using 1–3 sample trees per plot. The results showed that the relative RMSEs of the predictions were 1.2–6.5 percent points larger at the test sites compared to the training site. Systematic errors of 2.4–6.2 percent points also emerged at the test sites. However, both the RMSEs and the systematic errors decreased with calibration. The results showed that mixed-effects models of individual tree attributes can be successfully transferred and calibrated to other ALS inventory areas in a level of accuracy that appears suitable for practical applications.

  • Korhonen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland ORCID http://orcid.org/0000-0002-9352-0114 E-mail: lauri.korhonen@uef.fi (email)
  • Repola, Natural Resources Institute of Finland (Luke), Natural resources, Eteläranta 55, FI-96300 Rovaniemi, Finland E-mail: jaakko.repola@luke.fi
  • Karjalainen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: tomikar@uef.fi
  • Packalen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: petteri.packalen@uef.fi
  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: matti.maltamo@uef.fi
article id 10178, category Research article
Franz Holzleitner, Magdalena Langmaier, Eduard Hochbichler, Bernhardt Obermayer, Karl Stampfer, Christian Kanzian. (2019). Effect of prior tree marking, thinning method and topping diameter on harvester performance in a first thinning operation – a field experiment. Silva Fennica vol. 53 no. 3 article id 10178. https://doi.org/10.14214/sf.10178
Keywords: productivity; time study; harvester; prior tree marking; thinning method; topping diameter; video analysis
Highlights: No effect on harvester performance due to prior tree marking detected; Operator selection versus prior tree marking was assessed; Operator could apply two different thinning methods; Prior tree marking seems to have a positive effect on residual stand damage.
Abstract | Full text in HTML | Full text in PDF | Author Info

The effect of harvester operator tree selection or prior tree marking in thinning operations on satisfactory results and performance has been widely discussed. In harvester operator tree selection, the machine operator decides on the fly which trees are selected to remain or cut. The objective of the study was to analyze the effect of prior tree marking, thinning method and topping diameter on harvester performance in low-diameter thinning operations. The entire thinning operation was captured using video technology. Overall, 2.36 ha divided into 48 plots with 5202 trees were thinned with an average diameter at breast height (dbh) over bark for all plots of between 12.5 and 14.7 cm. In total, 3122 trees were harvested, resulting in 60% removal of stem number over all plots. The harvester achieved a mean productivity of 7.38 m3 PMH0–1 with 1.48 m3 PMH0–1 SEM, with stem volume having the major influence on harvesting productivity. Prior tree marking, topping and thinning method did not significantly affect productivity. Without prior tree marking by the foresters, harvesting removal was shifted toward lower diameters. Within the unmarked plots, 7.0% of the residual trees were damaged compared with 3.2% in marked plots.

  • Holzleitner, University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Forest Engineering, Peter-Jordan-Straße 82/3, A-1190 Vienna, Austria ORCID https://orcid.org/0000-0001-8489-3050 E-mail: franz.holzleitner@boku.ac.at (email)
  • Langmaier, University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Silviculture, Peter-Jordan-Straße 82/3, A-1190 Vienna, Austria; Austrian Research Centre for Forests, Department of Forest Growth and Silviculture, Seckendorff Gudent Weg 8, A-1130 Vienna, Austria E-mail: magdalena.langmaier@bfw.gv.at
  • Hochbichler, University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Silviculture, Peter-Jordan-Straße 82/3, A-1190 Vienna, Austria E-mail: eduard.hochbichler@boku.ac.at
  • Obermayer, University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Forest Engineering, Peter-Jordan-Straße 82/3, A-1190 Vienna, Austria; Agricultural Technical School of Pyhra, Kyrnbergstraße 4, A-3143 Pyhra, Austria E-mail: bernhardt.obermayer@lfs-pyhra.ac.at
  • Stampfer, University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Forest Engineering, Peter-Jordan-Straße 82/3, A-1190 Vienna, Austria ORCID http://orcid.org/0000-0001-9350-2859 E-mail: karl.stampfer@boku.ac.at
  • Kanzian, University of Natural Resources and Life Sciences Vienna, Department of Forest and Soil Sciences, Institute of Forest Engineering, Peter-Jordan-Straße 82/3, A-1190 Vienna, Austria ORCID http://orcid.org/0000-0002-1198-9788 E-mail: christian.kanzian@boku.ac.at
article id 10075, category Research article
Matti Maltamo, Marius Hauglin, Erik Naesset, Terje Gobakken. (2019). Estimating stand level stem diameter distribution utilizing harvester data and airborne laser scanning. Silva Fennica vol. 53 no. 3 article id 10075. https://doi.org/10.14214/sf.10075
Keywords: LIDAR; cut-to length harvester; GPS; merchantable volume; tree list
Highlights: Tree level-positioned harvester data were successfully used as plot-level training data for k-nearest neighbor stem diameter distribution modelling applying airborne laser scanning information as predictor variables; Stand-level validation showed that merchantable volume of total tree stock could be estimated with RMSE value of about 9%; The fit of the stem diameter distribution assessed by a variant of Reynold’s error index showed values smaller than 0.2; The most accurate results were obtained for the training plot sizes of 200 m2 and 400 m2.
Abstract | Full text in HTML | Full text in PDF | Author Info

Accurately positioned single-tree data obtained from a cut-to-length harvester were used as training harvester plot data for k-nearest neighbor (k-nn) stem diameter distribution modelling applying airborne laser scanning (ALS) information as predictor variables. Part of the same harvester data were also used for stand-level validation where the validation units were stands including all the harvester plots on a systematic grid located within each individual stand. In the validation all harvester plots within a stand and also the neighboring stands located closer than 200 m were excluded from the training data when predicting for plots of a particular stand. We further compared different training harvester plot sizes, namely 200 m2, 400 m2, 900 m2 and 1600 m2. Due to this setup the number of considered stands and the areas within the stands varied between the different harvester plot sizes. Our data were from final fellings in Akershus County in Norway and consisted of altogether 47 stands dominated by Norway spruce. We also had ALS data from the area. We concentrated on estimating characteristics of Norway spruce but due to the k-nn approach, species-wise estimates and stand totals as a sum over species were considered as well. The results showed that in the most accurate cases stand-level merchantable total volume could be estimated with RMSE values smaller than 9% of the mean. This value can be considered as highly accurate. Also the fit of the stem diameter distribution assessed by a variant of Reynold’s error index showed values smaller than 0.2 which are superior to those found in the previous studies. The differences between harvester plot sizes were generally small, showing most accurate results for the training harvester plot sizes 200 m2 and 400 m2.

  • Maltamo, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu E-mail: matti.maltamo@uef.fi (email)
  • Hauglin, Norwegian Institute of Bioeconomy Research, Division of Forest and Forest Resources, P.O. Box 115, 1431 Ås, Norway E-mail: marius.hauglin@nibio.no
  • Naesset, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, 1432 Ås, Norway E-mail: erik.naesset@nmbu.no
  • Gobakken, Norwegian University of Life Sciences, Faculty of Environmental Sciences and Natural Resource Management, P.O. Box 5003, 1432 Ås, Norway E-mail: terje.gobakken@nmbu.no
article id 10074, category Research article
Sebastian Kühle, Alfred Teischinger, Manfred Gronalt. (2019). Optimal location of laminated beech production plants within the solid hardwood supply network in Austria. Silva Fennica vol. 53 no. 3 article id 10074. https://doi.org/10.14214/sf.10074
Keywords: decision support system; facility location; laminated timber products; mixed integer linear programming; supply chain network design
Highlights: This paper provides data to the solid hardwood business and develops a mixed integer linear program model to design a laminated beech wood supply network; It covers the strategic decision where to locate a new production facility within the existing supply network with the lowest supply network cost; Sufficient sawn wood suppliers and potential facility locations are provided.
Abstract | Full text in HTML | Full text in PDF | Author Info

Due to changes in forest management in various European countries, hardwood forest areas and amounts will increase. Sustainable and individual utilization concepts have to be developed for the upcoming available resource. Studies conclude that there is low potential for hardwoods in the traditional appearance market thus the application areas have to be extended to new structural innovative products. This paper examines the extension to a future laminated beech wood supply network which would be a combination of already existing and new production facilities. For a better future use of hardwood raw materials it is necessary to consider the entire supply chain. This also better shows a total hardwood value chain. Therefore, this paper provides data to the solid hardwood business and develops a mixed integer linear programming to design a laminated beech wood supply network. The model is applied to Austria as the sample region. It covers the important strategic decisions where to locate a downstream facility within the existing production network with the lowest supply network cost. Fourteen scenarios are developed to examine various future network configurations. Results about optimal material flows and used sawmills as well as downstream production facilities are presented in form of material and financial performances. Two optimal laminated beech production locations are determined by the calculated scenarios results, and the impact of a new sawmill is analyzed which is focused on beech.

  • Kühle, BOKU - University of Natural Resources and Life Sciences, Vienna, Department of Material Science and Process Engineering, and Renewable Institute of Wood Technology Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria E-mail: skuehle@boku.ac.at (email)
  • Teischinger, BOKU - University of Natural Resources and Life Sciences, Vienna, Department of Material Science and Process Engineering, and Renewable Institute of Wood Technology Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria E-mail: alfred.teischinger@boku.ac.at
  • Gronalt, BOKU - University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute of Production and Logistics, Feistmantelstraße 4, 1180 Vienna, Austria E-mail: manfred.gronalt@boku.ac.at
article id 10043, category Research article
Outi Manninen, Rainer Peltola. (2019). Continuous picking may increase bilberry yields. Silva Fennica vol. 53 no. 3 article id 10043. https://doi.org/10.14214/sf.10043
Keywords: sustainability; Vaccinium myrtillus; wild forest berries; collectable goods
Highlights: Bilberry fruit production and fruit set increased under continuous picking by rake in three-year study; Bilberry flower number and fruit mass were not affected by picking; Bilberry compensated for biomass loss; The highest relative deciduous species abundance was found in the picking treatment plots at the end of the experiment.
Abstract | Full text in HTML | Full text in PDF | Author Info

Accumulated knowledge about the health benefits of bilberry (Vaccinium myrtillus L.) has increased the demand and utilization of wild bilberries. Intensive berry picking by metal rakes is believed to cause damage in bilberry stands in areas under continuous picking pressure, and hence expected to hamper the production of berries in forthcoming years. We conducted an experiment to examine the effect of continuous bilberry picking by metal rake on the number of bilberry flowers and fruits, fruit mass, compensation for biomass loss after picking, and plant functional type abundance in the understorey in northern Finland. Bilberry lost less than 0.5% of its biomass annually during the three-year study period due to rake harvesting. The number of flowers was not significantly affected by damage caused by picking, while both fruit production and fruit set increased without any indication of reduced fruit mass, and biomass loss was fully compensated. Moreover, the relative abundance of plant functional types was not affected by picking during the study. We suggest that the low intensity and timing of damage act as a buffer against the adverse effects of picking on bilberry fruit production. On the basis of this study, it is reasonable to anticipate that there are no indications that current intensive berry picking would not be on a sustainable level.

  • Manninen, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Paavo Havaksentie 3, FI-90014 University of Oulu, Finland E-mail: outi.manninen@luke.fi (email)
  • Peltola, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Ounasjoentie 6, FI-96200 Rovaniemi, Finland E-mail: rainer.peltola@luke.fi
article id 10161, category Research article
Jussi Manner, Anders Mörk, Martin Englund. (2019). Comparing forwarder boom-control systems based on an automatically recorded follow-up dataset. Silva Fennica vol. 53 no. 2 article id 10161. https://doi.org/10.14214/sf.10161
Keywords: automation; cut-to-length logging; haulage; crane work; extraction; boom-tip control
Highlights: Boom-tip control saves time compared to the conventional system; This study introduced a field-study design enabling establishment of causal relationships during ordinary forwarding operations; Although the study design requires some extra arrangements, it efficiently combines the representativeness of conventional follow-up datasets with establishment of causal relationships that traditionally have been possible only through observational time studies or standardized experiments.
Abstract | Full text in HTML | Full text in PDF | Author Info

Crane work is the most time-consuming work element in forwarding. Hence, assist systems like boom-tip control are of interest. The first commercially available boom-tip control for forwarders was introduced in 2013. In this study we analysed whether replacing conventional boom control (CBC) with John Deere’s version of boom-tip control (named Intelligent Boom Control, IBC), increases crane-work productivity. We used data automatically gathered from 10 final-felling stands, covering typical logging conditions for southern, central and northern Sweden. Two John Deere 1510E and two John Deere 1910G forwarders were operated by seven experienced operators during the follow-up study, covering 1238 loads in total. A split-plot design was applied to isolate effects of the boom-control system being used (CBC, IBC). We found that using IBC for loading work (crane work and driving included) saved 5.2% of productive machine time compared to using CBC (p ≤ 0.05). The corresponding saving when using IBC for unloading work was 7.9% (p ≤ 0.05). Depending on geophysical factors, this corresponds to approximately 4% savings in productive machine time for forwarding as a whole, including pure transport (with and without load). Moreover, the study introduced in cut-to-length context a novel field-study design to collect a large follow-up dataset in the course of ordinary forwarding operations. We found the study design to be a cost-efficient way to combine the representativeness of conventional follow-up datasets with the ability to establish causal relationships. Establishment of causal relationships has traditionally been possible only through observational time studies or standardized experiments.

  • Manner, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden ORCID http://orcid.org/0000-0002-4982-3855 E-mail: jussi.manner@skogforsk.se (email)
  • Mörk, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: anders.mork@skogforsk.se
  • Englund, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: martin.englund@skogforsk.se
article id 10150, category Research article
Petri Forsström, Jouni Peltoniemi, Miina Rautiainen. (2019). Seasonal dynamics of lingonberry and blueberry spectra. Silva Fennica vol. 53 no. 2 article id 10150. https://doi.org/10.14214/sf.10150
Keywords: understory; remote sensing; boreal forest vegetation; berries; flowers; goniometer; FIGIFIGO
Highlights: Seasonal series of multiangular spectra for lingonberry (Vaccinium vitis-idaea L.) and blueberry (Vaccinium myrtillus L.); Decidous blueberry has strong seasonal pattern while temporal variations of evergreen lingonberry were linked to phenological stages of flowering and berrying; Detection of flowers and berries from shrub spectra was possible; Collected spectral data are openly available through SPECCHIO Spectral Information System.
Abstract | Full text in HTML | Full text in PDF | Author Info

Accurate mapping of the spatial distribution of understory species from spectral images requires ground reference data which represent the prevailing phenological stage at the time of image acquisition. We measured the spectral bidirectional reflectance factors (BRFs, 350–2500 nm) at varying view angles for lingonberry (Vaccinium vitis-idaea L.) and blueberry (Vaccinium myrtillus L.) throughout the growing season of 2017 using Finnish Geospatial Research Institute’s FIGIFIGO field goniometer. Additionally, we measured spectra of leaves and berries of both species, and flowers of lingonberry. Both lingonberry and blueberry showed seasonality in visible and near-infrared spectral regions which was linked to occurrences of leaf growth, flowering, berrying, and leaf senescence. The seasonality of spectra differed between species due to different phenologies (evergreen vs. deciduous). Vegetation indices, normalized difference vegetation index (NDVI), moisture stress index (MSI), plant senescence reflectance index (PSRI), and red-edge inflection point (REIP2), showed characteristic seasonal trends. NDVI and PSRI were sensitive to the presence of flowers and berries of lingonberry, while with blueberry the effects were less evident. Off-nadir observations supported differentiating the dwarf shrub species from each other but showed little improvement for detection of flowers and berries. Lingonberry and blueberry can be identified by their spectral signatures if ground reference data are available over the entire growing season. The spectral data measured in this study are reposited in the publicly open SPECCHIO Spectral Information System.

  • Forsström, Aalto University, School of Engineering, Department of Built Environment, FI-00076 Aalto, Finland ORCID https://orcid.org/0000-0002-2357-2517 E-mail: petri.forsstrom@aalto.fi (email)
  • Peltoniemi, Finnish Geospatial Research Institute (FGI), Department of Geodesy and Geodynamics, Geodeetinrinne 2, FI-02430 Masala, Finland ORCID https://orcid.org/0000-0002-4701-128X E-mail: jouni.peltoniemi@nls.fi
  • Rautiainen, Aalto University, School of Engineering, Department of Built Environment, FI-00076 Aalto, Finland; Aalto University, Department of Electronics and Nanoengineering, FI-00076 Aalto, Finland ORCID https://orcid.org/0000-0002-6568-3258 E-mail: miina.a.rautiainen@aalto.fi
article id 10134, category Research article
Matti Sirén, Jari Ala-Ilomäki, Harri Lindeman, Jori Uusitalo, Kalle E.K. Kiilo, Aura Salmivaara, Ari Ryynänen. (2019). Soil disturbance by cut-to-length machinery on mid-grained soils. Silva Fennica vol. 53 no. 2 article id 10134. https://doi.org/10.14214/sf.10134
Keywords: rut formation; soil compaction; sandy soil; silty soil; harvesting damage
Highlights: The number of machine passes, volumetric water content in the mineral soil and the depth of the organic layer were the controlling factors for rut formation; The harvester rut depth was a good predictor of the forwarder rut formation; Changes in the penetration resistance were highest at depths of 20–40 cm.
Abstract | Full text in HTML | Full text in PDF | Author Info

Factors affecting soil disturbance caused by harvester and forwarder were studied on mid-grained soils in Finland. Sample plots were harvested using a one-grip harvester. The harvester operator processed the trees outside the strip roads, and the remaining residues were removed to exclude the covering effect of residues. Thereafter, a loaded forwarder made up to 5 passes over the sample plots. The average rut depth after four machine passes was positively correlated to the volumetric water content at a depth of 0–10 cm in mineral soil, as well as the thickness of the organic layer and the harvester rut depth, and negatively correlated with penetration resistance at depths of both 0–20 cm and 5–40 cm. We present 5 models to predict forwarder rut depth. Four include the cumulative mass driven over a measurement point and combinations of penetration resistance, water content and the depth of organic layer. The fifth model includes harvester rut depth and the cumulative overpassed mass and provided the best fit. Changes in the penetration resistance (PR) were highest at depths of 20–40 cm. Increase in BD and VWC decreased PR, which increased with total overdriven mass. After four to five machine passes PR values started to stabilize.

  • Sirén, Natural Resources Institute Finland (Luke) c/o Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland E-mail: matti.siren@luke.fi (email)
  • Ala-Ilomäki, Natural Resources Institute Finland (Luke) c/o Aalto University, P.O. Box 15600, FI-00076 Aalto, Finland ORCID http://orcid.org/0000-0002-6671-7624 E-mail: jari.ala-ilomaki@luke.fi
  • Lindeman, Natural Resources Institute Finland (Luke), Korkeakoulunkatu 7, FI-33720 Tampere, Finland E-mail: harri.lindeman@luke.fi
  • Uusitalo, Natural Resources Institute Finland (Luke), Korkeakoulunkatu 7, FI-33720 Tampere, Finland ORCID http://orcid.org/0000-0003-3793-1215 E-mail: jori.uusitalo@luke.fi
  • Kiilo, Versowood, Teollisuuskatu 1, FI-11130 Riihimäki, Finland E-mail: kalle.kiilo@versowood.fi
  • Salmivaara, Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland E-mail: aura.salmivaara@luke.fi
  • Ryynänen, Natural Resources Institute Finland (Luke), Kaironiementie 15, FI-39700 Parkano, Finland E-mail: ari.ryynanen@luke.fi
article id 10132, category Research article
Yan Liu, Yuan Zhang, Qing Zhou, Jian Wu, Pingdong Zhang. (2019). Colchicine did not affect the viability of induced 2n pollen in Populus tomentosa. Silva Fennica vol. 53 no. 2 article id 10132. https://doi.org/10.14214/sf.10132
Keywords: colchicine-induced 2n pollen; pollen production; pollen viability; pollen germination rate; triploid
Highlights: The number of colchicine injections and the meiotic stage at which they were administered both had a significant effect on the occurrence rate of induced 2n pollen in Populus tomentosa; Treating male buds with 5000 ppm colchicine solution during meiosis led to a significant decrease in pollen production; Colchicine injection could induce P. tomentosa to produce 2n pollen and did not lead to dysfunction of induced diploid pollen.
Abstract | Full text in HTML | Full text in PDF | Author Info

Colchicine is widely used as a mutagen to induce production of diploid gametes in plants. However, whether colchicine affects induced pollen viability remains unclear. To clarify whether colchicine affected the viability of induced pollen, we induced production of diploid pollen by colchicine, followed by pollen germination in vitro and crossing induced pollen with normal gametes to produce triploid in Populus tomentosa Carrière. The results showed that the predominant meiotic stages and the number of colchicine injections had significant effects on the occurrence rates of induced 2n pollen. When the colchicine injection was given at diakinesis, a significant decrease in the pollen production per bud was observed (p < 0.001). The morphology of the colchicine-induced 2n pollen was similar to that of the natural 2n pollen in its ectexine structure. The pollen germination experiments revealed that there was also no significant difference in germination rates between the induced diploid pollen and natural 2n pollen grains, and 68 triploids were created by crossing colchicine-induced pollen. Our findings revealed that colchicine injection could induce P. tomentosa to produce 2n pollen and will not lead to dysfunction of induced diploid pollen.

  • Liu, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; College of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China E-mail: 342767649@qq.com
  • Zhang, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; College of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China E-mail: 409192881@qq.com
  • Zhou, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; College of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China E-mail: 876034493@qq.com
  • Wu, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; College of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China E-mail: 1269485709@qq.com
  • Zhang, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China; College of Bioscience and Biotechnology, Beijing Forestry University, Beijing 100083, China E-mail: zhangpd@bjfu.edu.cn (email)
article id 10089, category Research article
Arto Haara, Annika Kangas, Sakari Tuominen. (2019). Economic losses caused by tree species proportions and site type errors in forest management planning. Silva Fennica vol. 53 no. 2 article id 10089. https://doi.org/10.14214/sf.10089
Keywords: forest inventory; value of information; uncertainty; sub-optimality loss
Highlights: Errors in tree species proportions caused more economic losses for forest owners than site type errors; Economic losses due to sub-optimal treatments were observed from 26.5% to 31.7% of plots, depending on the remote sensing data set used; Even with the most accurate remote sensing data set, namely ALS data set, NPV losses were on average 124.4 € ha–1 with 3% interest rate.
Abstract | Full text in HTML | Full text in PDF | Author Info

The aim of this study was to estimate economic losses, which are caused by forest inventory errors of tree species proportions and site types. Our study data consisted of ground truth data and four sets of erroneous tree species proportions. They reflect the accuracy of tree species proportions in four remote sensing data sets, namely 1) airborne laser scanning (ALS) with 2D aerial image, 2) 2D aerial image, 3) 3D and 2D aerial image data together and 4) satellite data. Furthermore, our study data consisted of one simulated site type data set. We used the erroneous tree species proportions to optimise the timing of forest harvests and compared that to the true optimum obtained with ground truth data. According to the results, the mean losses of Net Present Value (NPV) because of erroneous tree species proportions at an interest rate of 3% varied from 124.4 € ha–1 to 167.7 € ha–1. The smallest losses were observed using tree species proportions predicted using ALS data and largest using satellite data. In those stands, respectively, in which tree species proportion errors actually caused economic losses, they were 468 € ha–1 on average with tree species proportions based on ALS data. In turn, site type errors caused only small losses. Based on this study, accurate tree species identification seems to be very important with respect to operational forest inventory.

  • Haara, Natural Resources Institute Finland (Luke), Bioeconomy and environment, P.O. Box 68, FI-80101 Joensuu, Finland E-mail: arto.haara@luke.fi (email)
  • Kangas, Natural Resources Institute Finland (Luke), Bioeconomy and environment, P.O. Box 68, FI-80101 Joensuu, Finland ORCID https://orcid.org/0000-0002-8637-5668 E-mail: annika.kangas@luke.fi
  • Tuominen, Natural Resources Institute Finland (Luke), Bioeconomy and environment, P.O. Box 2, FI-00791 Helsinki, Finland ORCID https://orcid.org/0000-0001-5429-3433 E-mail: sakari.tuominen@luke.fi
article id 10088, category Research article
Antti-Jussi Lindroos, Kira Ryhti, Tomi Kaakkurivaara, Jori Uusitalo, Heljä-Sisko Helmisaari. (2019). Leaching of heavy metals and barium from forest roads reinforced with fly ash. Silva Fennica vol. 53 no. 2 article id 10088. https://doi.org/10.14214/sf.10088
Keywords: recycling; lysimeter; fly ash; forest road rehabilitation; environmental impact assessment; low-volume road
Highlights: Heavy metal concentrations were generally low in percolation and ditch water samples of ash roads, but elevated concentrations were found in some parts of ash roads; Risk for heavy metal leaching is negligible if road parts producing high concentrations are rare.
Abstract | Full text in HTML | Full text in PDF | Author Info

The aim of this study was to determine the effect of leaching of heavy metals (Cr, As, Cd, Cu, Ni, Pb, Zn, Co, Mo) and earth-alkaline metal, barium (Ba), on the percolation and ditch water quality from the forest roads that contained ash in the road structures. Water quality was studied in the immediate vicinity below the ash layers as well as deeper in the road structure. Water quality was also determined in the drainage water in ditches that crossed the forest roads. A mixture of wood and peat based fly ash was used in the road structures. The treatments were: 1) no ash, 2) a 15 cm layer of ash/gravel mixture, 3) a 20 cm layer of ash/gravel mixture, 4) a 25 cm layer of ash, and 5) a 50 cm layer of ash. Large variation in the concentrations of Cr, As, Cu, Ni, Pb, Mo and Ba in the percolation water, even within the same treatment, caused difficulties to generalize the results. The concentrations of Cr, As, Ni, Pb, Mo and Ba in water samples were high in some treatment plot lysimeters containing ash compared to the control (no ash). On the other hand, many lysimeters had low and similar concentrations in water samples in the treatment plots containing ash compared to concentrations in the control plots. The ash in the roads did not affect the concentrations in the ditches. The leaching is uneven and seems to take place only from some parts of the ash layer. Risk for leaching is minimal if such parts are not widely spread.

  • Lindroos, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: antti.lindroos@luke.fi (email)
  • Ryhti, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: kira.ryhti@helsinki.fi
  • Kaakkurivaara, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: tomi.kaakkurivaara@gmail.com
  • Uusitalo, Natural Resources Institute Finland (Luke), Korkeakoulunkatu 7, FI-33720 Tampere, Finland E-mail: jori.uusitalo@luke.fi
  • Helmisaari, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: helja-sisko.helmisaari@helsinki.fi
article id 10068, category Research article
Lari Melander, Risto Ritala, Markus Strandström. (2019). Classifying soil stoniness based on the excavator boom vibration data in mounding operations. Silva Fennica vol. 53 no. 2 article id 10068. https://doi.org/10.14214/sf.10068
Keywords: spot mounding; activity recognition; stoniness classification; supervised machine learning
Highlights: An excavator was equipped with an inertial measurement unit for taking automatic measurements of soil stoniness during mounding work; Supervised machine-learning classifiers were trained utilizing both the automatically measured data and manual stoniness measurements; The class prediction for the soil stoniness achieved an accuracy of 70% when assigned to constant grid cells.
Abstract | Full text in HTML | Full text in PDF | Author Info

The stoniness index of forest soil describes the stone content in the upper soil layer at depths of 20–30 centimeters. This index is not available in any existing map databases, and traditional measurements for the stoniness of the soil have always necessitated laborious soil-penetration methods. Knowledge of the stone content of a forest site could be of use in a variety of forestry operations. This paper presents a novel approach to obtaining automatic measurements of soil stoniness during an excavator-based mounding operation. The excavator was equipped with only a low-cost inertial measurement unit and a satellite navigation receiver. Using the data from these sensors and manually conducted soil stoniness measurements, supervised machine learning methods were utilized to build a model that is capable of predicting the stoniness class of a given mounding location. This study compares different classifiers and feature selection methods to find the most promising solution for this learning problem. The discussion includes a proposition for a meaningful measurement resolution of the soil’s stoniness, and a practical method for evaluating the variability of the stone content of the soil. The results indicate that it is possible to predict the soil stoniness class with 70% accuracy using only the inertial and location measurements.

  • Melander, Automation Technology and Mechanical Engineering, Tampere University, FI-33014 Tampere University, Finland ORCID http://orcid.org/0000-0003-3662-5187 E-mail: lari.melander@tuni.fi (email)
  • Ritala, Automation Technology and Mechanical Engineering, Tampere University, FI-33014 Tampere University, Finland ORCID http://orcid.org/0000-0003-0721-9948 E-mail: risto.ritala@tuni.fi
  • Strandström, Metsäteho Oy, Vernissakatu 1, FI-01300 Vantaa, Finland E-mail: markus.strandstrom@metsateho.fi
article id 10048, category Research article
Urszula Zajączkowska, Karina Kaczmarczyk, Janusz Liana. (2019). Birch sap exudation: influence of tree position in a forest stand on birch sap production, trunk wood anatomy and radial bending strength. Silva Fennica vol. 53 no. 2 article id 10048. https://doi.org/10.14214/sf.10048
Keywords: biomechanics; wood anatomy; forest edge; xylem sap
Highlights: Birch trees along the forest edge exude more xylem sap but less concentrated than the trees from the interior; Radial bending strength of wood in birch trunk is higher in the trees from forest edge; Trees exhibit higher bending strength in western side of the trunk, where the number of vessels and the wood potential conductivity index are smaller.
Abstract | Full text in HTML | Full text in PDF | Author Info

It is commonly accepted that the period of early-spring xylem sap exudation marks a stage during which a positive pressure builds inside the tree trunks. This state changes when leaves appear, initiating water transport within the trunk. It is unknown, however, how the wood anatomical structure and its mechanical resistance influences the sap. We present the results of research on the relationship between exudation of sap from Betula pendula Roth trees from the interior of a forest stand and from its edge, and the anatomical structure of the trunk wood and its bending strength. During the period between March 21 and April 18, we performed five sets of measurements of sap exudation from trees at the edge of the stand and from the forest interior. The resulting radial wood samples were tested for bending strength using a fractometer. We tested the sap for electrolytic conductivity and sugars content. For the anatomical analysis of the wood, we determined the number of vessels per 1 mm2, average vessel lumen area and potential conductivity index. We found that the trees along the edge of the stand exude more sap, but it is less concentrated than the sap from the trees from the interior. Bending strength perpendicular to wood fibres is higher in the trees from the stand edge and in the western side of the trunk, where the number of vessels per 1 mm2 and conductivity index are smaller. Seemingly, this is the result of western winds, which are dominant in Poland.

  • Zajączkowska, Department of Forest Botany, Faculty of Forestry, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland E-mail: urszula.zajaczkowska@wl.sggw.pl (email)
  • Kaczmarczyk, Department of Forest Botany, Faculty of Forestry, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland E-mail: karina.kaczmarczyk@wl.sggw.pl
  • Liana, Department of Forest Botany, Faculty of Forestry, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-776 Warsaw, Poland E-mail: janusz.liana@wl.sggw.pl
article id 10076, category Research article
Tore Skrøppa, Arne Steffenrem. (2019). Genetic variation in phenology and growth among and within Norway spruce populations from two altitudinal transects in Mid-Norway. Silva Fennica vol. 53 no. 1 article id 10076. https://doi.org/10.14214/sf.10076
Keywords: Picea abies; adaptation; tree breeding; height; clinal variation; populations; families; bud flush
Highlights: Norway spruce populations distributed along each of two altitudinal transects showed strong clinal relationships between the annual mean temperatures of the sites of the populations and height and phenology traits in short term tests and height in field trials; Large variation was present among families within populations for height and phenology traits and with a wider range within than among populations; Correlation patterns among traits were different for provenances and families.
Abstract | Full text in HTML | Full text in PDF | Author Info

Progenies from open pollinated cones collected in natural populations of Norway spruce (Picea abies (L.) Karst.) distributed along two altitudinal transects in Mid-Norway were tested in the nursery, in short term tests and in long-term field trials. The populations showed clinal variation related to the mean annual temperatures of the populations, with the earliest bud flush and cessation of shoot elongation and lowest height at age nine years for the high altitude populations. Within population variation was considerable as the narrow sense heritability for these traits was 0.67, 0.31 and 0.09 in one transect and 0.55, 0.18 and 0.14 in the other transect, respectively. Lammas shoots occurred in the short term trials with large variation in frequency between years. There was significant family variation for this trait, but also interactions between populations and year. The variance within populations was considerably larger in the populations from low altitude compared to the high-altitude populations. Significant genetic correlations between height and phenology traits and damage scores indicate that families flushing early and ceasing growth late were taller. Taller families also had higher frequencies of damages. Selection of the top 20% families for height growth in short term tests at age nine years gave a simulated gain of 11% increased height growth at age 18 years in long term trials at altitudes similar to those of origin of the populations. The gain was negative when high altitude populations were selected based on testing in the lowland.

  • Skrøppa, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway E-mail: tore.skroppa@nibio.no (email)
  • Steffenrem, E-mail: as@nn.no
article id 10062, category Research article
Jouni Siipilehto, Miika Rajala. (2019). Model for diameter distribution from assortments volumes: theoretical formulation and a case application with a sample of timber trade data for clear-cut sections. Silva Fennica vol. 53 no. 1 article id 10062. https://doi.org/10.14214/sf.10062
Keywords: bucking; optimization; simplex method; truncated Weibull function
Highlights: The Weibull distribution was solved successfully from assortment volumes using optimization; The solved distribution provided accurate assortment volume when the input variables were correct; Goodness-of-fit tests indicate the compatibility between the solved distribution and the cut trees, according to harvester data; Timber trade contracts showed overestimated average merchantable tree sizes, which resulted in an underestimation of the number of cut trees; The reason for underestimation seemed to be in the decreasing distributions.
Abstract | Full text in HTML | Full text in PDF | Author Info

This study examined a theoretical model for stand structures from the volumes of pulpwood and saw logs of clear-cut stands. The average stem size was used to estimate the number of cut trees. The distribution was solved using nonlinear derivative-free optimization. The truncated 2-parameter Weibull distribution was used to describe the stand structure of the commercial stems. This method was first tested with harvester data collected from seven clear-cut stands in southern Finland. Validation included reliability in the stand characteristics and goodness-of-fit of the species-specific distributions. The distributions provided unbiased estimates for the saw log volume, while the bias in the estimated pulpwood volume was 2%. The standard stand characteristics from the Weibull distributions corresponded notably well with the harvester data. A Kolmogorov-Smirnov (KS) test rejected two distributions out of 21 cases, when the accurate input variables were available for the theoretical model. The results of the study suggest that the presented method is a relevant option for predicting the stand structure. In practice, the reliability of the presented method was dependent on the quality of the information available from the stand prior to cutting. With a timber trade data set, the solution for the distribution for a clear-cut section was found. The goodness-of-fit was dependent on the accuracy of the visually assessed timber trade variables. Especially the average stem size proved difficult to assess due to high number of understorey pulpwood stems. Due to overestimated average stem sizes, the solved number of harvested trees was underestimated. Less than 50% of the distributions predicted for clear-cut sections passed the KS test.

  • Siipilehto, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, P.O. Box 2, FI-00790 Helsinki, Finland E-mail: jouni.siipilehto@luke.fi (email)
  • Rajala, Metsä Group, Revontulenpuisto 2, P.O. Box 10, 02020 METSÄ, FI-02100 Espoo, Finland E-mail: miika.rajala@metsagroup.com
article id 10052, category Research article
Pentti Niemistö, Harri Kilpeläinen, Henrik Heräjärvi. (2019). Effect of pruning season and tool on knot occlusion and stem discolouration in Betula pendula – situation five years after pruning. Silva Fennica vol. 53 no. 1 article id 10052. https://doi.org/10.14214/sf.10052
Keywords: silver birch; pruning saw; discolouration; healing-over; secateurs; stick pruning
Highlights: The occlusion was the fastest in the case of small living branches of fast growing trees pruned in springtime; Occlusion was quicker after saw pruning than after secateurs pruning, due to shorter knot stubs; Branches that were pruned in living state occluded faster than the ones pruned as dead; Dead branches hit down with a stick occluded slowly.
Abstract | Full text in HTML | Full text in PDF | Author Info

This paper investigates and models the effects of pruning season and tool on wound occlusion with varying tree and branch characteristics of silver birch (Betula pendula Roth) stems at the pruning height of 0−4 metres. Dates of eight secateurs prunings, three saw prunings and two sticks prunings as well as unpruned control were tested in permanent plots on four sites. Knot occlusion and discolouration in stemwood were measured from about 1600 studied knots of 112 sample trees felled five to six years after pruning in 2010. Knot occlusion rate was modelled according to pruning tool, date, tree growth, and branch characteristics. The occlusion was the fastest in trees pruned in spring or early summer, and the slowest in trees pruned in autumn. Stubs of living branches occluded faster than the dead ones with the same diameter. Saw pruning resulted in clearly better occlusion rates than secateurs pruning, caused by the shorter knot stubs after saw pruning. Hitting dead branches away with a stick resulted in the worst occlusion status. The colour defects spread more often upward from the knot than downward. Discolouration in stemwood was detected more frequently near to the pruned branches than the unpruned ones, and more widely near to the stubs of dead branches than the living ones. Most saw and secateurs pruned branches were completely occluded during the experiment, so these prunings were suitable for all branches under 20 mm in diameter, and for living branches even up to 30 mm in fast-growing trees.

  • Niemistö, Natural Resources Institute Finland (Luke), Natural resources, Kampusranta 9 C, FI-60320 Seinäjoki, Finland E-mail: pentti.niemisto@luke.fi (email)
  • Kilpeläinen, Natural Resources Institute Finland (Luke), Production systems, Yliopistokatu 6 B, FI-80100 Joensuu, Finland E-mail: harri.kilpelainen@luke.fi
  • Heräjärvi, Natural Resources Institute Finland (Luke), Production systems, Yliopistokatu 6 B, FI-80100 Joensuu, Finland E-mail: henrik.herajarvi@luke.fi
article id 10050, category Research article
Jori Uusitalo, Jari Ala-Ilomäki, Harri Lindeman, Jenny Toivio, Matti Siren. (2019). Modelling soil moisture – soil strength relationship of fine-grained upland forest soils. Silva Fennica vol. 53 no. 1 article id 10050. https://doi.org/10.14214/sf.10050
Keywords: cone index; penetration resistance; shear strength; soil bulk density; VWC
Highlights: Penetration resistance (PR) is best predicted with moisture content (MC), bulk density and clay content; In fully saturated silty or clayey soils PR range from 600 to 800 kPa; The models can be linked with mobility models predicting rutting of forest machines.
Abstract | Full text in HTML | Full text in PDF | Author Info

The strength of soil is known to be dependent on water content but the relationship is strongly affected by the type of soil. Accurate moisture content – soil strength models will provide forest managers with the improved ability to reduce soil disturbances and increase annual forest machine utilization rates. The aim of this study was to examine soil strength and how it is connected to the physical properties of fine-grained forest soils; and develop models that could be applied in practical forestry to make predictions on rutting induced by forest machines. Field studies were conducted on two separate forests in Southern Finland. The data consisted of parallel measurements of dry soil bulk density (BD), volumetric water content (VWC) and penetration resistance (PR). The model performance was logical, and the results were in harmony with earlier findings. The accuracy of the models created was tested with independent data. The models may be regarded rather trustworthy, since no significant bias was found. Mean absolute error of roughly 20% was found which may be regarded as acceptable taken into account the character of the penetrometer tool. The models can be linked with mobility models predicting either risks of rutting, compaction or rolling resistance.

  • Uusitalo, Natural Resources Institute Finland (Luke), Production systems, Korkeakoulunkatu 7, FI-33720 Tampere, Finland E-mail: jori.uusitalo@luke.fi (email)
  • Ala-Ilomäki, Natural Resources Institute Finland (Luke), Production systems Maarintie 6, FI-02150 Espoo, Finland E-mail: jari.ala-ilomaki@luke.fi
  • Lindeman, Natural Resources Institute Finland (Luke), Production systems, Korkeakoulunkatu 7, FI-33720 Tampere, Finland E-mail: harri.lindeman@luke.fi
  • Toivio, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: toiviojenny@gmail.com
  • Siren, Natural Resources Institute Finland (Luke), Production systems Maarintie 6, FI-02150 Espoo, Finland E-mail: matti.siren@luke.fi
article id 10019, category Research article
Junyan Liu, Junfeng Tang, Si-Chong Chen, Wenbao Ma, Zheng Zheng, Tingfa Dong. (2019). Do tree cavity density and characteristics vary across topographical habitats in the tropics? A case study from Xishuangbanna, southwest China. Silva Fennica vol. 53 no. 1 article id 10019. https://doi.org/10.14214/sf.10019
Keywords: heterogeneity; cavity-dependant animals; tropical rainforest; biodiversity conservation
Highlights: Cavities were significantly more abundant in high- and low-slope than high-plateau habitats; There are more “butt hollow” cavities in high-slope habitat and they occurred at a lower height; More “crack” cavities in low-slope habitat and they had a narrower entrance diameter; Certain types of cavities are concentrated in specific habitats, which provide opportunities for forest management and biodiversity conservation.
Abstract | Full text in HTML | Full text in PDF | Author Info

Despite the influence of cavities on the survival and distribution of cavity-dependent fauna, the variation in the density and characteristics of tree cavities across different habitat types in tropical forests is unknown. In this study, we surveyed 26 312 living trees from 376 species and compared cavity density and characteristics (height, size, type, and orientation) across five habitat types (valley, low-slope, high-slope, high-gully, and high-plateau) in a 20-hectare tropical rainforest in southwest China. From a total of 2047 cavities, we found that cavity density was mainly driven by habitat rather than tree species richness or diameter at breast height (DBH), and the characteristics of cavities were not uniformly distributed across habitats. Cavities were significantly more abundant in high- and low-slope than high-plateau habitats. Compared with other habitats, more “butt hollow” cavity types were found in high-slope habitat and they occurred at a lower tree height, whereas more “crack” cavities were found in low-slope habitat and they had a narrower entrance diameter. Although the mean orientation of cavities faced towards the northeast, cavity orientation varied significantly across habitat types. Our results indicate that certain types of cavities are concentrated in specific habitat types, which can provide avenues for forest management and biodiversity conservation. We highlight the importance of habitat heterogeneity in providing resources for cavity nesters.

  • Liu, Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province) and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China E-mail: liujunyan2300@163.com
  • Tang, Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province) and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China E-mail: jft@nn.ch
  • Chen, Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex RH17 6TN, UK; Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Beer-Sheva 8499000, Israel E-mail: chensichong0528@gmail.com
  • Ma, Ecological Restoration and Conservation of Forests and Wetlands Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu 610081, China E-mail: mawenbao_2000@126.com
  • Zheng, Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China E-mail: dioeco@outlook.com
  • Dong, Key Laboratory of Southwest China Wildlife Resources Conservation of Ministry of Education, Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province) and Institute of Plant Adaptation and Utilization in Southwest Mountains, China West Normal University, Nanchong, Sichuan 637009, China E-mail: dongtf@aliyun.com (email)
article id 9968, category Research article
Hubert Lachowicz, Anna Bieniasz, Rafał Wojtan. (2019). Variability in the basic density of silver birch wood in Poland. Silva Fennica vol. 53 no. 1 article id 9968. https://doi.org/10.14214/sf.9968
Keywords: Betula pendula; tree age; forest habitat type; thickness of trees; geographical location; physical properties of wood
Highlights: Location, tree age and forest habitat type, and the interactions between those factors, have a statistically significant impact on the basic density of silver birch wood; The average basic density of silver birch wood increases with the age of the tree.
Abstract | Full text in HTML | Full text in PDF | Author Info

This work presents the findings of a study concerning variability in the basic density of silver birch (Betula pendula Roth) wood, depending on the geographical location of tree stands, the age and thickness of the trees, the forest habitat type, and interactions between some of these factors. The study was carried out on wood from trees aged approximately 30, 50 and 70 years in 12 forest districts located throughout Poland. In total 4777 wood samples, taken from 306 trees from 51 test plots, were measured. The location, the age of the trees, the thickness of the trees and the forest habitat type, as well as interactions between these factors, proved to have a significant influence on the basic density of silver birch wood. The highest mean values of the basic density of the birch wood were found in Sokołów forest district on the FBF habitat type (549 kg m–3) and in Giżycko forest district on the FMBF habitat type (548 kg m–3). For the entire set of examined material, the average values of the basic density of wood increase with tree age. For the examined material originating in FBF and FMBF habitats the average values of basic density showed no significant differences; however, in the cases of the forest districts of Giżycko, Łobez and Rudziniec, significant differences in the analysed property were observed.

  • Lachowicz, Department of Forest Utilization, Warsaw University of Life Sciences SGGW, Nowoursynowska 159 02-787 Warsaw, Poland E-mail: hubert.lachowicz@wl.sggw.pl
  • Bieniasz, Department of Forest Utilization, Warsaw University of Life Sciences SGGW, Nowoursynowska 159 02-787 Warsaw, Poland E-mail: anna.bieniasz@wl.sggw.pl (email)
  • Wojtan, Laboratory of Dendrometry and Forest Productivity, Warsaw University of Life Sciences SGGW, Nowoursynowska 159 02-787 Warsaw, Poland E-mail: rwojtan@wl.sggw.pl
article id 9918, category Research article
Ari Nikula, Vesa Nivala, Juho Matala, Kari Heliövaara. (2019). Modelling the effect of habitat composition and roads on the occurrence and number of moose damage at multiple scales. Silva Fennica vol. 53 no. 1 article id 9918. https://doi.org/10.14214/sf.9918
Keywords: forestry; Alces alces; damage probability; forest damage; forest plantation; habitat selection; habitat modelling; zero-inflated negative binomial distribution
Highlights: The occurrence and number of moose damage were modelled with a zero-inflated count model; An admixture of mature forests within plantations increased the number of damage; Vicinity of inhabited areas and roads reduced damage; Plantations in landscapes with a large amount of pine-dominated thinning forests had less damage in Lapland; Damage risk assessment should include characteristics specific to each region.
Abstract | Full text in HTML | Full text in PDF | Author Info

We modelled the effect of habitat composition and roads on the number and occurrence of moose (Alces alces L.) damage in Ostrobothnia and Lapland using a zero-inflated count model. Models were developed for 1 km2, 25 km2 and 100 km2 landscapes consisting of equilateral rectangular grid cells. Count models predict the number of damage, i.e. the number of plantations and zero models the probability of a landscape being without damage for a given habitat composition. The number of moose damage in neighboring grid cells was a significant predictor in all models. The proportion of mature forest was the most frequent significant variable, and an increasing admixture of mature forests among plantations increased the number and occurrence of damage. The amount of all types of plantations was the second most common significant variable predicting increasing damage along with increasing amount of plantations. An increase in thinning forests as an admixture also increased damage in 1 km2 landscapes in both areas, whereas an increase in pine-dominated thinning forests in Lapland reduced the number of damage in 25 km2 landscapes. An increasing amount of inhabited areas in Ostrobothnia and the length of connecting roads in Lapland reduced the number of damage in 1 and 25 km2 landscapes. Differences in model variables between areas suggest that models of moose damage risk should be adjusted according to characteristics that are specific to the study area.

  • Nikula, Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Ounasjoentie 6, FI-96200 Rovaniemi, Finland E-mail: ari.nikula@luke.fi (email)
  • Nivala, Natural Resources Institute Finland (Luke), Bioeconomy and Environment, Ounasjoentie 6, FI-96200 Rovaniemi, Finland E-mail: vesa.nivala@luke.fi
  • Matala, Natural Resources Institute Finland (Luke), Natural resources, Yliopistokatu 6, FI-80100 Joensuu, Finland E-mail: juho.matala@luke.fi
  • Heliövaara, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: kari.heliovaara@helsinki.fi

Category : Research note

article id 10197, category Research note
Ville Kankare, Ville Luoma, Ninni Saarinen, Jussi Peuhkurinen, Markus Holopainen, Mikko Vastaranta. (2019). Assessing feasibility of the forest trafficability map for avoiding rutting – a case study. Silva Fennica vol. 53 no. 3 article id 10197. https://doi.org/10.14214/sf.10197
Keywords: remote sensing; open data; preharvest information; stand trafficability
Highlights: A static trafficability map was developed to provide information about suitable harvesting season; The majority (91.7%) of the evaluated thinning stands were harvested without causing rutting damage if operations were timed correctly in relation to the static trafficability map information; The static trafficability map provides reliable and slightly conservative estimation of the forest trafficability for supporting forest operations.
Abstract | Full text in HTML | Full text in PDF | Author Info

Information on forest trafficability (i.e. carrying capacity of the forest floor) is required before harvesting operations in Southern Boreal forest conditions. It describes the seasons when harvesting operations may take place without causing substantial damage to the forest soil using standard logging machinery. The available trafficability information have been based on subjective observations made during the wood procurement planning. For supporting forest operations, an open access map product has been developed to provide information on trafficability of forests. The forest stands are distributed into classes that characterize different harvesting seasons based on topographic wetness index, amount of vegetation, ground water height and ditch depth. The main goal of this case study was to evaluate the information of the static forest trafficability map in relation to the detected rutting within logging tracks measured in the field. The analysis concentrated on thinning stands since the effect of rutting is significant on the growth of the remaining trees. The results showed that the static trafficability map provided reliable and slightly conservative estimation of the forest trafficability. The majority (91.7%) of the evaluated stands were harvested without causing significant damage if harvesting was timed correctly compared to the trafficability information. However, it should be pointed out that the weather history at small scale, the skills of a driver, and effects of used machinery are not considered in the map product although they can have a considerable impact on the rutting.

  • Kankare, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland; Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland ORCID https://orcid.org/0000-0001-6038-1579 E-mail: ville.kankare@uef.fi (email)
  • Luoma, Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland E-mail: ville.luoma@helsinki.fi
  • Saarinen, Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland E-mail: ninni.saarinen@helsinki.fi
  • Peuhkurinen, Arbonaut Oy, Malminkaari 13–19, FI-00700 Helsinki, Finland E-mail: jussi.peuhkurinen@arbonaut.com
  • Holopainen, Department of Forest Sciences, University of Helsinki, FI-00014 University of Helsinki, Finland E-mail: markus.holopainen@helsinki.fi
  • Vastaranta, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, Joensuu FI-80101, Finland E-mail: mikko.vastaranta@uef.fi
article id 10195, category Research note
Tiina Laine, Leena Hamberg, Veli-Matti Saarinen, Timo Saksa. (2019). The efficacy of Chondrostereum purpureum against sprouting of deciduous species after mechanized pre-commercial thinning. Silva Fennica vol. 53 no. 3 article id 10195. https://doi.org/10.14214/sf.10195
Keywords: vegetation management; silviculture; mechanization; Chondrostereum purpureum; fungal treatment; stump sprouts
Highlights: Fungal treatments increased stump mortality compared to the control (cutting only); The fungal treatment did not decrease the number of sprouts per stump; Application during mechanized pre-commercial thinning did not yield as high stump mortalities as in earlier treatments performed manually.
Abstract | Full text in HTML | Full text in PDF | Author Info

The use of a white-rot fungus, Chondrostereum purpureum (Pers. Ex Fr.) Pouzar, as a biocontrol agent against sprouting has been studied with good results. The aim of the study was to investigate the efficacy of two pre-commercial thinning machines, Tehojätkä and Mense, to spread an inoculum of C. purpureum as a biocontrol agent on freshly cut birch (Betula pendula Roth and B. pubescens Ehrh.), European aspen (Populus tremula L.), rowan (Sorbus aucuparia L.), and goat willow (Salix caprea L.) stumps (the fungal treatment) and compare that to the control (cutting only, done by Tehojätkä). Efficacy was investigated in terms of stump mortality and the number of sprouts per stump. This study was conducted in one stand and sprouting was investigated for three years after treatment. The fungal treatment resulted in higher mortality of stumps (34.0% for Tehojätkä and 41.5% for Mense after three years), compared to the control (13.4%). However, the fungal treatment did not decrease the number of sprouts per stump compared to the control. The low occurrence of basidiomata indicates that the accuracy of the spreading mechanism was not satisfactory, causing low mortality figures for the fungal treatment compared to previous studies. In the future, this mechanized method may provide a promising alternative in sprout control if the spreading mechanisms, the accuracy of the treatment, and consequently the efficacy could be improved.

  • Laine, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: tiina.laine@luke.fi (email)
  • Hamberg, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland E-mail: leena.hamberg@luke.fi
  • Saarinen, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: mulinvuori@gmail.com
  • Saksa, Natural Resources Institute Finland (Luke), Natural resources, Juntintie 154, FI-77600 Suonenjoki, Finland E-mail: timo.saksa@luke.fi
article id 10012, category Research note
Irving U. Hernández-Gómez, Carlos R. Cerdán, Angélica Navarro-Martínez, Dinora Vázquez-Luna, Samaria Armenta-Montero, Edward A. Ellis. (2019). Assessment of the CLASlite forest monitoring system in detecting disturbance from selective logging in the Selva Maya, Mexico. Silva Fennica vol. 53 no. 1 article id 10012. https://doi.org/10.14214/sf.10012
Keywords: community forestry; forest degradation; tropical forest; Yucatan Peninsula
Highlights: The accuracy of CLASlite to detect forest disturbance from selective logging using Landsat imagery was very low (<19.1%); Selective logging impacts was only detected in one case with the highest logging intensity (7 m3 ha–1); CLASlite shows potential in monitoring forest disturbance from tree biomass impacts greater than 900 m2.
Abstract | Full text in HTML | Full text in PDF | Author Info

Detecting and monitoring forest disturbance from selective logging is necessary to develop effective strategies and polices that conserve tropical forests and mitigate climate change. We assessed the potential of using the remote sensing tool, CLASlite forest monitoring system, to detect disturbance from timber harvesting in four community forests (ejidos) of the Selva Maya on the Yucatan Peninsula, Mexico. Selective logging impacts (e.g. felling gaps, skid trails, logging roads and log landings) were mapped using GPS in the 2014 annual cutting areas (ACAs) of each ejido. We processed and analyzed two pre-harvest Landsat images (2001 and 2013) and one post-harvest image (November 2014) with the CLASlite system, producing maps of degraded, deforested and unlogged areas in each ACA. Based on reference points of disturbed (felling and skidding), deforested (log landings and roads) and unlogged areas in each ACA, we applied accuracy assessments which showed very low overall accuracies (<19.1%). Selective logging impacts, mainly from log landings and new logging road construction, were detected in only one ejido which had the highest logging intensity (7 m3 ha–1).

  • Hernández-Gómez, Facultad de Ciencias Agrícolas, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán, Isleta, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: urielxal@gmail.com
  • Cerdán, Facultad de Ciencias Agrícolas, Universidad Veracruzana. Circuito Gonzalo Aguirre Beltrán, Isleta, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: ccerdan@uv.mx
  • Navarro-Martínez, El Colegio de la Frontera Sur Av. Centenario km 5.5, Col. Pacto Obrero Campesino s/n. Chetumal, Quintana Roo. C.P. 77014, Mexico E-mail: manavaster@gmail.com
  • Vázquez-Luna, Facultad de Ingeniería en Sistemas de Producción Agropecuaria, Universidad Veracruzana. Carretera Costera del Golfo Km. 220, C. Agrícola y Ganadera Michapan, Acayucan, Veracruz. C.P. 96000, Mexico E-mail: divazquez@uv.mx
  • Armenta-Montero, Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana. Morelos No. 44 y 46, Zona Centro, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: samaria.am@gmail.com
  • Ellis, Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana. Morelos No. 44 y 46, Zona Centro, Xalapa, Veracruz. C.P. 91000, Mexico E-mail: eellis@uv.mx (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles