Spectral libraries have a fundamental role in the development of interpretation methods for airborne and satellite-borne remote sensing data. This paper presents to-date the largest spectral measurement campaign of boreal tree species. Reflectance and transmittance spectra of over 600 leaf and needle samples from 25 species were measured in the Helsinki area (Finland) using integrating sphere systems attached to an ASD FieldSpec 4 spectroradiometer. Factors influencing the spectra and red edge inflection point (REIP) were quantified using one-way analysis of variance. Tree species differed most in the shortwave-infrared (1500–2500 nm) and least in the visible (400–700 nm) wavelength region. Species belonging to same genera showed similar spectral characteristics. Upper (adaxial) and lower (abaxial) leaf sides differed most in the visible region. Canopy position (sunlit/shaded) had a minor role in explaining spectral variation. For evergreen conifers, current and previous year needles differed in their spectra, current-year needles resembling those of broadleaved and deciduous conifers. Two broadleaved species were monitored throughout the growing season (May–October), and two conifers were measured twice during summer (June, September). Rapid changes were observed in the spectra in early spring and late autumn, whereas seasonal variations during summer months were relatively small for both broadleaved and coniferous species. Based on our results, shortwave-infrared seems promising in separating tree species, although it is to-date least studied. The spectral library reported here (Version 1.0) is publicly available through the SPECCHIO Spectral Information System.
Optical 2D remote sensing techniques such as aerial photographing and satellite imaging have been used in forest inventory for a long time. During the last 15 years, airborne laser scanning (ALS) has been adopted in many countries for the estimation of forest attributes at stand and sub-stand levels. Compared to optical remote sensing data sources, ALS data are particularly well-suited for the estimation of forest attributes related to the physical dimensions of trees due to its 3D information. Similar to ALS, it is possible to derive a 3D forest canopy model based on aerial imagery using digital aerial photogrammetry. In this study, we compared the accuracy and spatial characteristics of 2D satellite and aerial imagery as well as 3D ALS and photogrammetric remote sensing data in the estimation of forest inventory variables using k-NN imputation and 2469 National Forest Inventory (NFI) sample plots in a study area covering approximately 5800 km2. Both 2D data were very close to each other in terms of accuracy, as were both the 3D materials. On the other hand, the difference between the 2D and 3D materials was very clear. The 3D data produce a map where the hotspots of volume, for instance, are much clearer than with 2D remote sensing imagery. The spatial correlation in the map produced with 2D data shows a lower short-range correlation, but the correlations approach the same level after 200 meters. The difference may be of importance, for instance, when analyzing the efficiency of different sampling designs and when estimating harvesting potential.
Silver birch (Betula pendula Roth) seed origins from the Baltic countries and from Finland were compared in terms of growth, wood density, bark thickness and the incidence of darkened core wood, frost cracks and decay, and the effect of seed origin latitude was examined in two Finnish provenance trials. The material consisted of 21 stand and single tree origins ranging from latitudes 54° to 63°N from the Baltic countries and Finland. The trials, measured at the age of 22 years, were located at Tuusula (60°21´N), southern Finland and at Viitasaari (63°11´N), central Finland. The Baltic origins were superior to the Finnish ones in the southern trial regarding height, whereas in central Finland the Finnish origins grew better. There was no consistent difference between the Baltic and the Finnish group of origins in wood density. Bark thickness decreased with increasing seed origin latitude. The Baltic origins had significantly thicker bark than the Finnish origins. A moderate positive correlation was detected between the seed origin latitude and the incidence of darkened core wood in the southern trial, where the darkened core wood was more common in the Finnish origins than in the Baltic ones. The highest proportion of trees with frost cracks was detected in the south-western Latvian origins growing in central Finland. Seed transfers from the Baltic would have an increasing effect on the bark thickness of birch logs, but no or only minor effects on wood density. Based on our results, there is no reason to recommend the use of non-native Baltic seed origins in Finland instead of the native locally adapted seed sources.
Increased growth rates have reduced rotation lengths, increasing the proportion of juvenile wood relative to mature wood, which may negatively affect mechanical performance of sawn timber. However, there is limited information available on the potential impact of breeding for vigour on juvenile wood in Sitka spruce (Picea sitchensis (Bong.) Carrière). In this study, the relationship between vigour (based on total height) and wood properties was investigated in six-year-old Sitka spruce clones grown in two replicated field trials in Ireland. Six clones were evaluated, two clones from each of three vigour (high, intermediate and low) classes. Discs were cut from the base of one ramet per replication for each clone to assess wood quality attributes. Radial tracheid width was significantly and positively correlated with ring width and height, and was negatively correlated with density. The wood of the most vigorous clone had significantly larger ring width with thinner cell walls and wider tracheids than all clones in the two other vigour classes, resulting in lower mean wood density. Latewood properties for all wood attributes measured differed significantly between the two sites. Wood property differences resulted primarily from variation in the proportions of early- and latewood in each annual ring. Additionally, the width of early- and latewood bands in each ring was found to be a more important determinant of juvenile wood quality than the characteristics of the cells within each band. Wood properties differed greatly between clones, suggesting that there is potential to improve juvenile wood properties through selective breeding.
In the southwest of the Iberian Peninsula, Phytophthora cinnamomi Rands is causing irreversible damage to populations of the two most common species of Quercus, the holm oak (Quercus ilex L.) and the cork oak (Quercus suber L.). Although the symptoms are similar in the two species, the mortality rates are different. We found significant differences in the post-infection growth of the root system as a function of tree species, as well as initial plant size, and inoculum level. We observed a marked decrease in the growth of new roots in Q. ilex with increasing inoculum level, while in Q. suber, we found longer but thinner roots with a moderate inoculum level. In both species, we observed a worsening in the water status of the plants from the lowest inoculum level.
Being a logging contractor involves several uncertainties, amongst others, information quality in the work order received from customers. The information quality of work orders is of the utmost importance for logging contactors, in order to be able to plan and conduct work properly. The purpose of this paper is three-fold: 1) identifying work order information components in harvesting, 2) identifying work order information quality dimensions in harvesting and 3) assessing work order information quality in harvesting. The paper is based on interviews and a survey. Various interviews took place in Sweden with professionals within the harvesting industry as well as logging contractors, and thereafter a survey was developed. Random selection was conducted and 100 Swedish logging contractors were contacted by telephone in order to answer the survey, with a response rate of 82% from the sample. The paper concludes that the information quality dimension of accuracy concerns the individual work order information components, whereas timeliness is related to receiving the complete work orders. A factor analysis has been conducted with five factors emerging. The assessment of work order information quality in harvesting implies that the potential for improvement exists with regard to increasing the accuracy of the order information for the components of “Cleaning under story trees – not conducted” and “Cleaning under story trees – of low standard” as well as “Landing – size”, and “Landing – placement”. However, their effect on capacity is utilization needs to be explored.
Models attempting to predict treeline shifts in changing climates must include the relevant ecological processes in sufficient detail. A previous correlative model study has pointed to nutrients, competition, and temperature as the most important factors shaping the treelines of Pinus sylvestris L., Picea abies (L.) H. Karst. and Betula pubescens Ehrh. in Finnish Lapland. Here, we applied a widely used process-based dynamic vegetation model (LPJ-GUESS) to (i) test its capability to simulate observed spatial and temporal patterns of the main tree species in Finnish Lapland, and (ii) to explore the model representation of important processes in order to guide further model development. A European parameterization of LPJ-GUESS overestimated especially P. abies biomass and the species’ northern range limit. We identified implemented processes to adjust (competition, disturbance) and crucial processes in boreal forests to include (nutrient limitation, forest management) which account for the model’s failure to (edaphically) restrict P. abies in Finnish Lapland and the resulting species imbalance. Key competitive mechanisms are shade and drought tolerance, nutrient limitation, fire resistance, and susceptibility to disturbances (storm, herbivory) which we discussed with respect to boreal ecology and promising model developments to provide a starting point for future model development.
This study was aimed at determining the maximum cost level of artificial drying required for cost-efficient operation. This was done using a system analysis approach, in which the harvesting potential and procurement cost of alternative fuel chip production systems were compared at the stand and regional level. The accumulation and procurement cost of chipped delimbed stems from young forests were estimated within a 100 km transport distance from a hypothetical end use facility located in northern Finland. Logging and transportation costs, stumpage prices, tied up capital, dry matter losses and moisture content of harvested timber were considered in the study. Moisture content of artificially dried fuel chips made of fresh timber (55%) was set to 20%, 30% and 40% in the comparisons. Moisture content of fuel chips based on natural drying during storing was 40%. Transporting costs were calculated according to new higher permissible dimensions and weight limits for truck-trailers. The procurement cost calculations indicated that with artificial drying and by avoiding dry material losses of timber, it could be possible to reduce current costs of the prevailing procurement system based on natural drying of timber at roadside landings. The maximum cost level of artificial drying ranged between 1.2–3.2 € MWh–1 depending on the supply chain, moisture content and procurement volume of fuel chips. This cost margin corresponds to, e.g., organization, forwarding and transportation costs or stumpage price of delimbed stems.
Scots pine (Pinus sylvestris L.) is a resilient, wide spread species. This paper reports on the xylem and phloem cell formation process, before and after, the species was put under artificial stress by stem girdling. Microcore method was applied to a healthy control group and a standing group of girdled trees within an 80-year-old pine forest for two consecutive growing seasons (2013 and 2014). The stem girdling was applied in the middle of the first growing season (July 2013). Cambial activity timings (onset and cessation of cell division), cell formation intensity, cell differentiation, and the dynamics of the annual radial increment in the stem were analyzed. Cambial activity was inhibited and eventually ceased below the stem girdling immediately after the removal of the strip. Therefore, no latewood tracheids were formed. However, above the stem girdling and in the control trees, cell formation and tissue differentiation continued until the end of the growing season, with the girdled trees moving at a less intensive pace but for a longer period of time. During the following growing season (2014), the cambial zone was reactivated only above the stem girdling, not below, and eventually the girdled trees died. In 2014, the onset of the cambial activity was delayed and the division rate of the cells was slower in the girdled trees. Furthermore, the girdled trees formed less phloem cells than the control trees.
Bamboo species have a very significant ecological and economic impact. Determining morphological and genetic differences among bamboo genera and species are crucial to explore desirable traits for breeding purposes. Several advances have been made in the taxonomy of bamboos by using molecular fingerprinting tools and next generation sequencing technologies. Nevertheless, classical molecular markers such as RAPD (Random Amplified Polymorphic DNA), AFLP (Amplified Fragment Length Polymorphism) and ISSR (Inter Simple Sequence Repeats) also provide an accurate discrimination among genera and species. Moreover, the RAPD-RFLP (Random Amplified Polymorphic DNA, Restriction Fragment Length Polymorphism) method, in which amplification products from RAPD are digested with restriction enzymes, is a reliable, fast and cost-effective method for fingerprinting. RAPD-RFLP has been scarcely used in the literature and no report regarding bamboo taxonomy is available with this method. Here we explored the molecular (RAPD, RAPD-RFLP) variation among genera (Bambusa, Dendrocalamus, Guadua and Phyllostachys) and species of bamboo cultivated in Brazil. Both molecular markers allowed clear distinction among the genera studied. Moreover, high cophenetic correlation values in UPGMA clusters indicated their potential for discriminating bamboo species. The digestion of RAPD products (RFLP) resulted in high number of polymorphic bands and produced very characteristic profiles for each genus with three enzyme combinations (HindIII/HaeIII, HinfI/RsaI, and single digestion with MspI). We recommend RAPD-RFLP as a reproducible and informative method for screening differences among genera, species and varieties of bamboos. Providing a cost-effective and accurate method for species identification and characterization is straightforward for bamboo conservation, management and breeding.
We describe here a study based on analysis of vegetation indices and land surface temperatures, which provides relevant information for estimating soil moisture at regional scales. Through an analysis of MODIS satellite imagery and in situ moisture data, the triangle method was used to develop a conceptual land surface temperature−vegetation index model, and spatial temperature-vegetation dryness index (TVDI) values to describe soil moisture relationships for a broad landscape. This study was situated mainly within two states of the southern United States (Georgia and South Carolina). The total study area was about 30 million hectares. The analyses were conducted using information gathered from the 2009 growing season (from the end of March to September). The results of the study showed that soil moisture content was inversely proportional to TVDI, and that TVDI based on the normalized difference vegetation index (NDVI) had a slightly higher correlation with soil moisture than TVDI based on the enhanced vegetation index (EVI).
We investigated the causative agent of a disease outbreak affecting small-leaved limes (Tilia cordata Mill.) and resulting in darkening of the leaf petioles and excessive defoliation during summer 2016 in southern Finland. The fungal species composition of the symptomatic petioles was examined by culture isolation and molecular identification using ITS rDNA sequences, which revealed the most prevalent fungal species present in the petioles as Apiognomonia errabunda (Roberge) Höhn. Based on reviewing curated herbarium specimens deposited at the Universities of Helsinki and Turku, A. errabunda is native and widely distributed in small-leaved limes in Finland, and occasionally infects also other broadleaved trees, including Quercus robur L. and ornamental species of Tilia L. and Fagus L. The ITS sequence analysis conducted during this study revealed minor within-species polymorphisms similar to those observed earlier in the Central European and Russian populations of A. errabunda, and reports the first nucleotide sequences of this species from the Nordic countries.