Current issue: 58(5)
Relationships between bulk density and organic matter (OM) content, textural properties and depth are described for forested mineral soils from Central and Northern Finland. Core samples were taken of 0–5, 30–35 and 60–65 cm layers at 75 plots. Three measures of bulk density were calculated: the bulk density of the < 20 mm fraction (BD20), the bulk density of the < 2 mm fraction (BD2), and laboratory bulk density (BDl). BDl was determined from the mass of a fixed volume of < 2 mm soil taken in the laboratory. All three measures of bulk densities were strongly correlated with organic matter content (r ≥ -0.63). Depth and gravel (2–20 mm) content (in the case of BD2) were also important variables. BDl was sensitive to clay contents > 7% but did significantly improve the prediction of both BD2 and BD20 in coarse soils (clay contents ≤ 7%). Predictive models were derived for coarse soils.
Variation in needle nutrient concentrations with age and vertical location in the crown was studied in three Scots pine (Pinus sylvestris L.) stands growing on peat soils in Eastern Finland. The concentrations of N, P, Fe and Zn decreased down the crown and those of Ca and Mn increased. Potassium and magnesium concentration patterns differed between sites.
Potassium and Mg concentrations were highest in the current needles at all heights in the crown, iron and manganese concentrations were highest in the oldest needles. The concentrations of N, P and Zn did not vary with needle age.
The Värriö environmental measurement station has been designed and constructed during 1991 and 1992. The measurement system consists of measurement units for gases (sulphur dioxide, ozone, carbon dioxide), particles, photosynthesis and irradiation. A meteorological station is also included. The preliminary measurement period was started on August, 1991. During the first year (1991–1992) some parts of the system were redeveloped and rebuilt. Full, continuous measurement started in August 1992. The system has been working quite reliably, with good accuracy. The preliminary results show that pollution episodes are observed when the wind direction is from Monchegorsk or Nikel, the main emission sources in Kola Peninsula.
A spatial growth model is presented for Scots pine (Pinus sylvestris L.) on a dwarf-shrub pine mire drained 14 years earlier. The growth model accounts for the variation in tree diameter growth owing to the competition between trees, the distance between tree and ditch, and the time passed since drainage. The model was used to study the effect of tree arrangement on the post-drainage growth of a pine stand. Clustering of trees decreased the volume growth by 9–20% as compared to a regular spatial distribution. Stand volume growth, for a given number of stems, was at its maximum and variation in diameter growth at its minimum when the stand density on the ditch border was 1.5–5 higher than midway between two adjacent ditches.
In this study, model-based and design-based inference methods are used for estimating mean volume and its standard error for systematic cluster sampling. Results obtained with models are compared to results obtained with classical methods. The data are from the Finnish National Forest Inventory. The variation of volume in ten forestry board districts in Southern Finland is studied. The variation is divided into two components: trend and correlated random errors. The effect of the trend and the covariance structure on the obtained mean volume and standard error estimates is discussed. The larger the coefficient of determination of the trend model, the smaller the model-based estimates of standard error, when compared to classical estimates. On the other hand, the wider the range and level of autocorrelation between the sample plots, the larger the model-based estimates of standard error.