Current issue: 58(5)
The first proper growth and yield tables were prepared in Finland already in 1872, but they have been used little as the needs of forestry and forest sciences increased. One of the problems of the old yield tables was how the site quality classes are determined. The new growth and yield tables use the forest site type classification, which enables the use of same site types for all tree species. This makes it possible to compare the growth of different tree species in same kind of sites. The tables also use stem frequency distribution series. In the first stage, the tables were prepared for Southern and Central Finland.
The PDF includes a summary in German.
New growth and yield tables were prepared for Southern Finland. To finalize the tables, it had to be determined whether the forest site types developed by Cajanus could be used in mensurational research.
Comparative study was performed in 1916-1919 to study the growth of the trees in different forest site types. Total of 467 sample sites were measured in Southern and Central Finland. All the forest site types were found to have a distinctive vegetation typical to the site. It can be concluded that the ground vegetation can be used to determine the forest site type. The growth of trees was different in different forest site types, yet similar within each site type. The forest site types are uniform, natural and easy to determine, and can thus be used to classify the forest stands and used in mensurational research and a basis to growth and yield tables.
The PDF includes a summary in German.
Annual variations in wood utilization makes it complicated to estimate the balance between wood utilization and wood production of forests. According to the article, the balance is unsustainable especially in the private forests in the southern part of Finland. The annual wood utilization of the country was 37.3 million m3 in 1913, and the annual wood production 35.2 million m3, according to a report of a committee that was appointed to find methods to prevent overcutting. The committee suggested legislation to forbid forest devastation. Also the growth of the forests could be increased, if the forests are well managed, the article argues. To prove this, the potential wood production capacity is estimated for the municipalities of Viipuri, Mikkeli and Kuopio, and compared to the present wood production and wood utilization of the area.
The PDF includes a German summary.
Norway spruce (Picea abies (L.) H. Karst.) forests in Northern Finland are situated mainly in the state lands. The survey is based on silvicultural surveys made in the northernmost districts of the state forests. The quality of private lands of the area was deduced based on the adjacent state lands and specific observations. A map was drawn on the distribution of productive Norway spruce forest in the study area.
The continuous Norway spruce forest areas covered 1,112,000 hectares, of which 866,000 hectares were on the state lands. Especially in the northern parts of the area also more fragmented spruce forest could be found (130,000 hectares in the state lands). The estimated total volume of the wood in the forests in the state and private lands was 57.78 million m3 in the continuous spruce forest area. The spruce forests were often situated on hill and fell areas relatively high above the sea level. In the areas north of the 66th parallel, almost half of the forests were above 300 meters above the sea level. Because spruce forests of the state lands were concentrated near watershed areas, the wood harvesting was more expensive, and reduced the value of the state forests. The spruce forests grow usually on fresh mineral soil sites. However, towards north the species was found on drier sites. The stands were mostly pure spruce stands or mixed birch-spruce stands. The older age groups were the most common, but young stands were rare.