Current issue: 58(5)
The analysis of costs is the foundation for the efficient management of logging activities. However, there is little research on cost accounting of logging. This article is an overview on harvesting of timber and its cost accounting, concentrating on joint costs. Costs have to be divided on their structural elements and then regrouped according to different accounting needs to be investigated. This investigation bases the structural cost analysis on running booking of costs. Due to the variability of logging, the costs are divided in detail into categories. The costs of logging are classified by their origin into personnel cost, material costs, costs of services, compensation for use, unrequited costs, risks, depreciation and interest. Further, the costs are classified according to the subject and quality of performance, and by location.
The PDF includes a summary in English.
In this investigation was studied 1) Volume growth and yield of timber in managed Norway spruce (Picea abies (L.) Karst.) forests under different rotations. 2) Value growth, net forest income and soil expectation value of managed forests under different rotations, and 3) The rotations of spruce forests managed on different rotation principles. The data was collected from Oxalis-Myrtillus type forests in South-West Finland.
Two developmental series of stands were constructed for the research, one of which were of better sites than the other. Sample plots were pure, even-aged spruce stands in well-managed forests. The stands had been thinned from below. The age varied from 25-30 years to the age of final cutting.
According to the study, in the artificially regenerated spruce stands the highest mean annual volume growth, 9.7 m3/ha, and also the highest net annual income of 14,50 Finnish marks/ha (calculated from average stumpages) was reached in rotation of 70 years. In the other managed spruce forests a mean annual volume growth of 6.6-8.8 m3/ha and the net annual income of 10,500-14,500 Finnish marks/ha were reached in the rotation of 70-100 years. The rotation for the maximum mean annual volume growth varied in the different series between 67-92 years. The maximum mean annual forest rent was only achieved in series B in a rotation of about 100 years, and in a naturally normal stand in a rotation of about 120 years. The intensity of thinnings and silviculture had a greater effect on value growth and on net income than on volume growth.
The PDF includes a summary in English.
Natural regeneration of Scots pine (Pinus sylvestris L.) by leaving a seed tree stand on a cutting area has long been the most popular regeneration method in Finland. Results of the method have, however, been unsatisfactory. The aim of the investigation was to study the basic problems of natural regeneration of Scots pine. Regeneration success was studied in 144 sample plots in pine stands at different stages of regeneration in Southern Finland. In addition, the data included information of 42 previously investigated areas.
According to the results, Scots pine can be successfully regenerated naturally on sandy and gravelly soils in Southern Finland. Preparing the ground surface by breaking or burning considerably facilitates the establishment of a seedling stand. The number of seedlings was considerably lower in the ground vegetation than in the mineral soil. Considering growth of the seedlings, root competition of the mother trees was heavy in dense stands, but insignificant in thin stands. The stand density did not affect germination of the seeds. In regeneration areas proper, where the density of mother trees usually is under 50 per hectare, there was in average 4,700 seedlings per hectare in Calluna type forests and 5,200 in Vaccinium type forests.
The PDF includes a summary in English.
Forest transport of timber in Finland has been arranged as horse haulage during winter time using horses vacant from farm work. Tractors have now begun to replace horses in agriculture, which will lead to shortage of horses for timber harvesting in future. The aim of this investigation was to find a method of mechanized forest transport suitable for Finnish conditions. The method should be provided by an agricultural wheel tractor that is shared with agriculture. It should also be applicable to timber transport of relatively small forest holdings.
A method for time studies of tractor driven timber harvesting was developed. The competitivity of tractor transport of timber against the traditional method was studied in four pulpwood harvesting sites. The results suggest that if the tractor forest transport method in question is to be applied in practice, conditions should first be chosen which favour it most. A tractor forest transport method evolved on the basis of experiments presupposes certain conditions to be successful. These include snow for the construction of the packed-snow driveway, frost to harden the driveway, the location of strip roads in relatively easy topography, and of the main haulage road that is gently sloping in the haulage-loaded direction. The optimal transport distance for this method are about 3-10 km.
The PDF includes a summary in English.