Distribution of rainfall in in a Scots pine (Pinus sylvestris L.) stand and in an open place in Alajärvi in Central Finland was studies in 1959–1960. Density of the about 80 years old stand was 0.36 and the height of the trees 8–14 m. The dependence of throughfall and dependence of stemflow on 24-hour precipitation, and dependence of the distribution of 24-hour precipitation on the amount and nature of precipitation was calculated.
The precipitation of the crown of the forest depended on the rainfall. When the rainfall in the open place was over 7 mm, the rainfall within the forest was in average 89% of the rainfall in the open place, but if the rainfall in the open place was less than 1 mm, the rainfall within the forest was only 64% of that in the open place. Total stemflow in the pine stand was only 0.4%, and interception loss was 13.6%.
The PDF includes a summary in English.
Result of a survey of soils supporting forest plantations in Wisconsin in the United States indicated a close correlation between the levels of fertility of non-phreatic, coarse-textured soils and the growth of red pine (Pinus resinosa Roezl) stands aged from 15 to 32. This relationship, however was not observed in plantations established on deep-gley soils, underlain at a depth of 3–9 fl by ground water.
The survey encountered 20 red pine plantations on soils underlain by a deep ground water table accessible to tree roots thorough their contact with gley horizon or with extended capillary fringe. The average growth of the stands was 80 cubic feet/acre (5.6 m3/ha) at the age of 22 years. Thus, mensuration analysis suggested that the soils are the choice grounds for forestry enterprise. However, the analysis of soil samples showed that in many instances the soils are extremely low in mineral colloids, organic matter and nutrients. Many of the sites would be regarded as critically deficient in nitrogen, phosphorus and potassium.
The following hypothesis are suggested to explain this discrepancy:
a) The moisture content of coarse-textured non-phreatic soils remain near the wilting point during a large apart of the growing season with subsequent reduction of transpiration and uptake of nutrients. If a capillary fringe provides a supply of water for the root system, trees may derive an adequate supply of salts and exchangeable ions from comparatively infertile substrata.
b) The suitably located ground water provides adequate aeration of the surface soil layers which is not impeded by capillary fringe, increasing activity of mycorrhiza, and a mycotrophic uptake of nutrients from unweathered minerals.
c) The above effects of natural subirrigation should change the concept of soil fertility based on mere chemical analysis. The time during which the roots are engaged in active absorption appears to be of equal importance as the concentration of nutrients in available form.
The PDF includes a summary in Finnish.
A comparison was made between two alternative methods of continuous national forest inventory. In method 1, samples measured annually are taken throughout the country, in method 2 samples are confined to one section of the country each year. The figures are derived from national forest inventories carried out in the North-European countries Finland, Norway and Sweden. Systematic sampling on the ground has been employed without remeasured sample plots. Field work consisted of survey tracts.
For the whole country, method 1 gives results, which are continuously up-to-date, although detailed information requires observation over a period of several years. On an average, the results obtained from method 2 area at least n/2 years old (survey cycle n years). For a specific section of the country, method 1 gives preliminary results already in 1-2 years, but more accurate results are at least n/2 years old. Method 2 gives accurate results every nth year. Thus, method 2 is not always to be recommended, even if the emphasis is laid on regional information and planning.
To gain knowledge of annual timber removals, often necessary in assessing the forest resource situation, stump measurements can be used, either exclusively or by way of control. The corresponding sampling must be affected throughout the whole country, and this can be done only when method 1 is used. Other information required annually, such as estimates of seed crops, occurrence of pests or annual variation of growth due to the climate, favour method 1.
It can be concluded that method 1 has important advantages, although these must be bought at higher costs. A comparison of inventory costs shows, assuming the same degree of accuracy, that the total expenditure for method 2 is 7-8% lower than that for method 1, owing to the difference in transport requirements. Also, other aspects may affect the choice of method, for example, the use of aerial photographs may be arranged more efficiently in method 2.
Lowering of the ground water table is caused by decrease in the amount of water because of evapotranspiration. Evapotranspiration of a forest is determined by converting a lowering of the ground water table into a decrease in the amount of water. This paper describes a method to determine the transpiration of tree stands and ground vegetation as well as total evaporation on a Finnish drained peatland, which ground water table was relatively high, by measuring the level of the ground water table.
It was shown that in drained peatlands with relatively high ground water level, the ground water table fell during the day between about 9 a.m. and 6 p.m., and remain at approximately same level during rest of the day. The fall of ground water table was caused by transpiration of the trees and ground vegetation, and could be over 20 mm. Thus, measuring the daily lowering of ground water table can be used to estimate transpiration of the trees. When the method is applied to measuring the total evaporation of longer periods of time, also rainfall, interception, stand rainfall and stemflow have to be measured. The method is applicable only on sites with relatively high ground water level.
The PDF includes a summary in Finnish.
The determination of biologically most favourable strip width in peatlands to be drained has been hindered by lack of information of the temperature conditions in the surface peat and in the air close to the ground after drainage of different intensities. Temperature measurements were carried out on peatlands drained to different degrees in Central Finland in the summers of 1960 and 1961. The ground water level in the measuring points, and the strip width served as the criterion for differences in water condition.
When the drainage became more intensive, the temperature of the surface peat decreased. However, temperature differences were small, and discernible only when the differences of water conditions were considerable. The effect of strip condition to temperature seems to be of similar nature than the ground water level. Even in extreme cases temperature differences due to different drainage intensity were relatively small, and seldom exceeded 2°C.
Differences in temperature dependent on the growing stock may be as high as 10°C. Thus, the temperature of the surface peat may be dependent on factors more important than temperature differences caused by aspects of drainage. A well-drained peatland is coldest at the beginning of a growing season compared with poorly drained peatland. The temperature differences increase deeper in the peat. This is caused by the better heat conductivity of the moist peat. Also, daily variations in temperature in the surface peat are large in moist peat.
The PDF includes a summary in English.
Trees and shrubs of foreign origin have been grown in Finland at least from the 1700th century. At the State Horticultural Institute in the neighbourhood of the town Turku in southwestern coast of the country, a number of ornamental trees and shrubs have been planted since 1927. During the first decade, weather conditions were quite favourable, but the winters in 1939–1940 were so severe, that only the hardiest plants survived.
It would be important to study hardiness and suitability of the various woody plants cultivated in the different parts of the country. This paper includes notes of the survival of the tree species and shrubs so far planted at the Institute.
The PDF includes a summary in English.
Seasonal variation in the sawmill industry of Finland was studied in an investigation based on questionnaires answered by a random sample of sawmills concerning the time period of 1958-1960. The method is described in detail in a separate article in Acta Forestalia Fennica issue 75 no. 1.
The seasonal variations in purchase of roundwood was largest in big sawmills, which purchase the main part of the timber as standing sales and buy most of the wood from the State Forest auctions at the end of September. Also, they can afford to reserve their material earlier than the smaller companies. The saw logs are mainly felled in the winter in Finland because the climatic conditions and availability of labour are best at that time. Small sawmills begin fellings a little earlier than the larger ones.
In long-transport of timber the proportion of floating decreased from 47% in 1958 to 38% in 1960. At the same time, proportion of truck transport increased from 48% to 55%. Small sawmills use almost exclusively land transport. They received almost three-fourths of their logs between January and May, because the sawing is concentrated in the first half of the year. Therefore, floating does not suit for their transport method. The larger the sawmill, the later is the seasonal peak of log deliveries. The output of the big sawmills is distributed more evenly thoughout the year. The smaller the sawmill, the quicker is the turnover of raw material and the smaller the sawlog inventories.
The seasonal variation in output is sharper at small sawmills where sawing is concentrated in the first half of the year. The seasonal peak of the early spring is due to the aim at getting the sawn wood to dry early enough for shipments in the summer. Air drying takes an average of 4 ½ months. Kiln drying is more common at the larger sawmills, and gives them more flexibility. Due to the large seasonal variation in operation, the capacity of the small mills is poorly utilized. Domestic sales of sawn wood levels up the seasonality of the deliveries. Export sales are concentrated at the end and turn of the year. Also, the seasonal peak of expenditure occurs in the winter, but that of income in the summer.
The PDF includes a summary in English.
The purpose of this paper is 1) to establish the possible seasonal variation of the different phases of work in the sawmill industry in Finland, 2) to study the internal and external factors influencing the seasonal character of the sawmill industry, 3) to study ha time lags between the work phases of the sawmill industry, 4) to analyse the seasonal nature of the industry’s money transactions, and 5) to give information concerning the factors influencing employment. The investigation is based on questionnaires of a random sample of sawmills concerning the time period of 1958-1960. This paper concentrates on the methods of the study, the results are reported in a separate paper in the Acta Forestalia Fennica issue 75 vol 1.
It was concluded that if seasonal variation in the sawmill industry is to be analysed on the scale it has been in the present work, sampling is the cheapest and most practicable method of collecting the material. If seasonal fluctuation of the industry is to be calculated by size classes, the sample must be allocated into strata by measuring the heterogeneity of the classes with a parameter illustrating seasonal variation. It might be useful to apply these parameters already when the total size of the sample is determined. For the smallest sawmills, for which practically all data have to be collected from primary documents, the most practical method is perhaps to send collectors to the spots. To the larger sawmills the questionnaire can perhaps be sent by mail. A moving index should be obtained for calculation of a seasonal index, but this demands long time series. The collection of the data is described in detail.
The PDF includes a summary in English.