The purpose of the study was to determine the effects of the origin of seeds and the location of cultivation of Scots pine (Pinus sylvestris L.) on certain properties particularly important to the pulp industry. The research material consisted of six parallel trials of the same 12 provenances. Increment cores were taken of a total of 1,267 sample trees, 19 years old. The location of the trial site generally affected the properties to a larger extent than the origin of the seed. The effect of the variation of wood density and fibre yield on the cultivation values of the provenances was only a few percentages on average, however, at most the effect was nearly 10%. Eastern Finnish provenances adapted well to western Finnish conditions.
The PDF includes an abstract in Finnish and French.
Variation of monoterpene composition of Pinus sylvestris L. was studied in Southern, Central and Northern Finland using data from both natural stands and plus trees. The natural stands were analysed using different techniques and for fewer terpenes than the plus trees.
There were large differences between areas in the proportion of 3-carene in trees from natural stands, as has been discussed by previous authors. The proportion of 3-carene is bimodally distributed and believed to be controlled by a single gene with large effect. For this reason, we stratified our samples into high carene (>10%) and low carene (<10%) groups. Univariate analysis did not reveal any additional differences between natural populations in different zones for components other than 3-carene. In plus trees, several components showed significant differences, but the proportion of 3-carene did not differ between areas. Multivariate discrimination analysis did not distinguish between areas for natural stands. However, for the plus trees discriminant analysis allowed us to discriminate between the zones relatively efficiently. The proportion of correct classification was greater than 64% using the best methods. The central zone was most distinct, and 80% of its trees were correctly classified. Broad generalizations are not possible due to the limitations imposed by our data. Our analysis of phenotypic variation does not support the suggestion that plus trees selected from the north represent a southern type.
The PDF includes an abstract in Finnish.
Ascocalyx abietina (now Gremmeniella abietina Lagerb.) infects Scots pine (Pinus sylvestris L.) by means of ascospores or conidia. Ascospores are dispersed by the wind, while the conidia are splash dispersed. The infection rate is positively correlated with the number of inocula. The aim of this study was to determine the extent to which G. abietina spreads to the trees surrounding the diseased trees and to find the correct time to perform sanitation cutting.
The results were obtained from Ascocalyx-inventory carried out in a Scots pine progeny test at Loppi, Southern Finland. Three Siberian provenances were totally destroyed, while the Finnish progenies remained relatively healthy. The two rows adjacent to the destroyed plots were inventoried separately.
There were 29.7% more diseased or dead trees in the two adjacent rows than in the rest of the same plots. The difference was statistically significant. The trees had probably been infected by conidia, because the effect of the destroyed plot only extended to the adjacent two rows. Furthermore, pycnidia had mainly developed on the dead shoots.
On the basis of the life cycle of the fungus and the results, the correct time to carry out sanitation cutting is the first winter after the disease symptoms have appeared. If it is done later, the disease could be spread and bark beetles (Tomicus spp.) could propagate in dying trees. Susceptible provenances may spread the disease to surrounding resistant trees owing to the increasing number of spores.
The PDF includes a summary in English.
The Lauhavuori area is barren, consisting of sandstone and granite bedrock covered by coarse moraine and sand. The woodlands are dominated by Scots pine (Pinus sylvestris L.) and Calluna. The top of the hill, rising 230 metres above the sea level, is more fertile, as it was never covered by the ancient Baltic Sea. Numerous springs and spring brooks are bordered by herb-rich Norway spruce (Picea abies (L.) H. Karst.) woodlands and swamps. Although most of the peatlands are oligotrophic, several mesotrophic peatland plants occur, some southern, giving the peatlands a rather northerly character.
The study area is 8 by 12 km. According to the vegetation analysis, 310 species were identified, 208 of which were native to the area and 102 immigrants. The native species can be separated from the immigrants because the area is largely undisturbed.
The PDF includes a summary in English.
Basic density and absorbed energy in impact bending were measured for 500 Norway spruce (Picea abies (L.) H. Karst.) samples from Northern and Southern Finland. Statistical analysis showed that the relationship between impact strength and basic density was significant and regression analysis showed that it was linear.
Furthermore, with constant density, the impact strength was higher in Northern than in Southern Finland. This was due to growth ring width: i.e. when density was kept constant the impact strength increased with decreasing growth ring width. In addition, when the growth ring width was kept constant, the basic density of wood was higher in Southern Finland than in Northern Finland.
The PDF includes a summary in English.
A population consisting of 450 Norway spruce (Picea abies (L.) H. Karst.) samples was gathered from northern and southern Finnish wood. The static bending strength was affected greatly by the density of the wood. However, keeping the density constant, the bending strength was higher in northern than in southern Finnish wood. The reason was the effect of the growth ring width.
The basic density was affected by the growth rate. Keeping the growth ring width constant, the basic density was over 5 kg/m3 lower in northern than in southern Finnish wood. This result supports the earlier findings on the effect of latitude.
The PDF includes a summary in English.
This study, comprising three experiments, aims to determine the effect of the geographical origin of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.) seeds, and the duration of the time lag between the moisture treatment and subsequent irradiation on the gamma-irradiation sensitivity of seeds.
The studies showed that the greater the irradiation dose seeds were subjected to the slower the rate of germination. In general, small radiation doses (250–1,000 rad) had a stimulating effect and the final germination percentage (36–40 days) increased. However, when the level was further increased, the germination percentage decreased. Air-dry and moistened seeds withstood irradiation better than others. In a study with moistened seeds from different geographical sources, pine and spruce seeds from Northern Finland were less able to withstand irradiation than those originating from the south.
The PDF includes a summary in English.
The aim of the study was to find out if it is possible to use Scots pine (Pinus sylvestris L.) seed from Central-Finnish origin in Northern Finland to supplement supply of local seeds. The principle has been to limit transfer of seeds to 200 km. According to this study, it seems possible to permit 300-400 km transfer of seeds at the same height above the sea level, not including the timber line area.
The author’s observations indicate that the trees originating from seeds of Central Finland at 20-35 years age withstand damage caused by snow and pine blister rust as well as the local provenience. However, the seedlings seem to be more susceptible to snow blight. Spraying of 2-3% sulphurated lime in the autumn before the arrival of snow proved to be most effective way to prevent the damage.
Southern proveniences have been found to grow faster than the local proveniences in Northern Finland. The stands of Tuomarniemi (Central Finland) and Rovaniemi (Northern Finland) provenances had no distinct difference in the summerwood percentage, and the volume weight of the Tuomarniemi provenience was higher than the weight of the provenience of Rovaniemi. The Tuomarniemi stand also gave largest yield, but the difference was probably due to partly at age difference of the sample trees. The naturally regenerated local provenance showed the greatest volume weight.
The article includes a summary in English.
Trees and shrubs of foreign origin have been grown in Finland at least from the 1700th century. At the State Horticultural Institute in the neighbourhood of the town Turku in southwestern coast of the country, a number of ornamental trees and shrubs have been planted since 1927. During the first decade, weather conditions were quite favourable, but the winters in 1939–1940 were so severe, that only the hardiest plants survived.
It would be important to study hardiness and suitability of the various woody plants cultivated in the different parts of the country. This paper includes notes of the survival of the tree species and shrubs so far planted at the Institute.
The PDF includes a summary in English.
Planning of large central tree nurseries, which has become topical in Finland, means that the seedlings will be used in a wide geographical area. The nursery must decide which proveniences of seeds of the different tree species it will use. This concerns also the customer that buys the seedlings. The planting and lifting of the seedlings in the nursery have to be timed so that the seedlings are in a right state of growth at the time of planting.
The growth of the seedlings can, under certain conditions, be promoted by using a slightly southerly seed provenience, and large-sized seeds. There are, however, limitations to how much the seeds can be transferred northwards. If the nursery lies much south of the planting site, the seedlings have started height growth at the time of planting. This applies especially larch (Larix sp.), Scots pine (Pinus sylvestris L.) and birch (Betula sp.), but affects less Norway spruce (Picea abies (L.) Karst.). The problem can be handled by using a cool storage space for the seedlings waiting for a delivery in the nursery.
According to an international study, seedlings grown from seeds collected in countries south from Finland usually die already during the first two years in the nursery. Within Finland the seeds can be transferred at least by two latitudes. Spruce seems to tolerate longer transfer. Seed orchards should be planted south of the seed’s origin to ensure better yield and better quality seeds.
The Silva Fennica issue 61 was published in honour of professor Eino Saari‘s 60th birthday.
The PDF includes a summary in German.
The growth of 35 exotic tree species in garden established in 1912 is discussed in the article. The site is located in Kulosaari, Helsinki in the Southern coast of Finland. The species represented the Chamaecyparis, Abies, Tsuga, Picea, Larix, Pinus, Betula, Fagus, Quercus, Juglans, Populus, Salix, Tilia, Acer, Prunus, Crataegus and Amelanchier families. All the tree species from northern continental climate and most of the species of temperate regions grew well or moderately well. Species form northern oceanic climate succeeded moderately well. The species from southern continental or oceanic climate did not endure the climate in Kulosaari. Definite conclusions were not possible to make, because the precise origin of the seedlings was not known, and there was usually only one tree from each species.
The PDF includes a summary in German.
The article includes a dendrological review on the effect of climate to the success of cultivation of exotic tree species, based on literature and analysis of the existing Finnish field tests. The cultivation of an exotic tree species succeeds only if the seed has been procured from an area, which climate is similar to the place of cultivation. Climate is even more important than site quality.
Finnish climate is boreal and continental, and thus tree species of similar climate suit here best. In favorable site conditions it is possible to grow also species from boreal marine, and temperate climates. Finnish summers are not warm enough for species from temperate continental climate to get prepared for the winter, and the shoots can get frost damages. This may be compensated with a warm and sheltered site. If the species tolerates shading, it can be planted under sheltering trees. For species from maritime boreal climate, the Finnish summer tends to be too short, and the winters too cold. A suitable site is rich, warm and sheltered, and has preferably a protective sparse tree cover. Species from southern maritime climate cannot be grown in Finland. The provenance of the seeds is also very important. An important source of seeds are the successful plantations in Finland.
The PDF includes a summary in German.